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Abstract: Due to its effect on the operation time of wind turbines, rotor imbalances of
a wind turbine have to be detected early enough. We present a method that determines
inhomogeneous mass distributions of the rotor as well as deviations in the pitch angles of
the rotor blades from vibrational data only. To this end, a mathematical model connecting
the load caused by the imbalances to the resulting vibrations was developed. After
discretization, the resulting vibration equation was solved analytically. The inverse problem,
i.e., the calculation of the mass and aerodynamic imbalance from vibrational data, was
solved by using nonlinear regularization theory. Numerical simulations were performed
using artificial vibration data.
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1. Introduction

The efficient operation of wind parks calls for a long life time of each wind turbine. As many defects
of a turbine can be related to vibrations of the system, the investigation of vibrations caused by rotor
imbalances gets more and more attention. The growing size of new wind turbines leads to a more
flexible structure and therefore even bigger vibrational amplitudes. Additionally, the operation of large
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off-shore wind parks requires a careful remote monitoring of imbalances. A well balanced rotor will
prevent early fatigue and ensure a safe and economic operation of the wind turbine. Imbalances affect
the drive train components as well as the structural health of the turbine [1]. Hence the detection and
elimination of imbalances are of vital importance.

There are two main imbalance causes: the so-called mass imbalance arising from inhomogeneous
mass distributions caused by, e.g., manufacturing inaccuracies or water inclusions in the blades’ texture,
and aerodynamic imbalances, arising, e.g., from errors in the pitch angles or profile changes of the
blades. In wind turbines with no Condition Monitoring System (CMS), imbalances are only detected
if the vibrations of the turbine are clearly visible, which is only the case if the turbine rotates with a
frequency close to the bending eigenfrequency of the turbine, or if there are already damages in the
drive train components. If the turbine is equipped with a standard CMS, an increased presence of the
rotating frequency and its multiples in the Fourier spectrum can indicate rotor imbalances. In both cases
an expert team has to be employed to detect the imbalance location and quantity. In a time consuming
process, the team first tries to detect aerodynamic imbalances by using mainly optical methods. If the
aerodynamic imbalances have been removed, the remaining vibrations are measured. With a known
test mass placed on one blade, a second set of measurements is obtained, and from both measurements
together the mass imbalances can be calculated. This process requires not only a lot of time but also
expensive manpower. Therefore, it is advantageous to use automatic detection methods. Presently, such
methods to detect mass and aerodynamic imbalances by using signal processing methods as well as trend
analysis to generate an alarm system require a learning phase performed under faultless condition of the
rotor [2]. However, they do not allow to compute the actual value and position of the imbalance. To this
aim, vibration measurements with and without test weights as described above are still necessary. To
replace this expensive procedure by a new CMS feature is the main goal of the authors work.

First results in that direction were achieved for the observation and reconstruction of mass imbalances
only [3]. The mass imbalance reconstruction from noisy vibration measurements was treated as an
inverse problem with methods from the regularization theory [4]. To solve an inverse problem, first
we have to handle the direct problem of computing the turbine vibrations for a given imbalance. This
can be done by using a mathematical model of the turbine that solves the vibration equation with the
Finite Element Method (FEM). Although there already exist several models for wind turbines, in [3] we
developed a new and comparably simple model for two reasons: Firstly, in order to find a solution for
the inverse problem the direct problem has to be solved several times. Thus the computations should be
very fast. Secondly, the imbalance identification algorithm should be applicable to a large variety of wind
turbine types, which means the model should be adaptable without much effort. In short, in our approach
the information from the test run with reference imbalances is replaced by the model information, the
additional measurements are superficial due to the mathematical model. However, the model proposed
in [3] was restricted to mass imbalances and did not consider aerodynamic imbalances. Moreover,
we dealt with a one dimensional model only, i.e., we considered lateral vibrations. Beside axial and
torsional vibrations, aerodynamic imbalances also cause vibrations in lateral direction. Thus, neglecting
aerodynamic imbalances leads to wrong reconstructions. The resulting error depends on the location
of the aerodynamic imbalance and on the rotational frequency, as loads from aerodynamic imbalances
depend on the frequency. If the aerodynamic imbalance is located close to the mass imbalance the forces
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in lateral direction add and we will end up with a reconstructed mass imbalance that is too big. On the
other hand, if the aerodynamic imbalance is located opposite to the mass imbalance, we will get a mass
imbalance reconstruction that is too small.

In the present paper we consider a model that allows for a reconstruction of both mass imbalances
and aerodynamic imbalance caused by deviations in pitch angles at the same time. Since aerodynamic
imbalances also cause vibrations in axial directions and torsional vibration around the tower axis, we had
to expand our turbine model in these dimensions. To describe the forces and moments from aerodynamic
imbalances we have used the blade element momentum (BEM) method. Due to the BEM method, the
direct problem of relating the imbalance cause (here the pitch angle deviation and a mass imbalance) to
the vibrations of the turbine becomes non-linear. Nevertheless, the regularization techniques for solving
the inverse problem also apply to non-linear problems. To ensure a good imbalance reconstruction we
observed that the initial value should already be a fairly good guess for the mass imbalance, which we
obtained by our old method described above, assuming the absence of aerodynamic imbalances. We
reconstructed a good guess for the mass imbalance from the lateral vibrations neglecting the influence
from the pitch error. The result is surely not the correct mass imbalance but serves very well as an initial
value for the reconstruction of both imbalance causes.

The paper is organized as follows: In Section 2, we will present the system of equations connecting
vibrations and imbalances. The mass and stiffness matrices are calculated by a model of the turbine that
considers vibration in lateral and axial direction as well as torsional vibrations around the tower axis.
The description of forces and moments from mass imbalances is relatively easy, the aerodynamic forces
and moments are derived with the BEM method. In Section 3, the vibration equation is solved explicitly,
whereas in Section 4, the inverse problem of deriving the imbalances from the vibrations is considered.
It results in a nonlinear optimization problem. Section 5 contains examples for the numerical calculation
of mass and aerodynamic imbalances from artificial vibration data at the top of the tower.

2. System Equation

Before we can think about reconstructing imbalances from vibration measurements we have to be
able to handle the other direction, i.e., for a given imbalance cause we should compute the resulting
vibrations of the wind turbine tower. In order to derive appropriate formulas we have to make simplifying
assumptions. First we assume that the wind turbine is a flexible shaft (the tower) with an additional mass
(the nacelle and the rotor) at the top point, where one part of that mass (the rotor) rotates with a rotational
frequency Ω. The movement of such a shaft is described by a Partial Differential Equation (PDE) in time
and space. An explicit solution of that equation is seldom possible. Using the Finite Element Method
(FEM), the problem can be discretized in space, which results in an Ordinary Differential Equation
(ODE) in time. The solution of the ODE is much easier and is a good approximation to the solution of
the PDE. The final ODE has the form

Mü + Su = p (1)

where M denotes the mass or inertia matrix, S the stiffness matrix, u the vector of the degrees of
freedom and p the load vector.
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For the FEM approach, we divide the tower into elements that are in our case hollow cylinders. We
consider movements in lateral or z-direction, in axial or y-direction and torsional movements around the
x-axis, see Figure 1 for the coordinate system. There are no movements in x-direction as the tower is
supposed to be rigid against shear forces.

Figure 1. Model of wind turbine.

2.1. Establishment of the Mass and Stiffness Matrix

The mass matrix M and the stiffness matrix S are derived based on the Ritz method following exactly
the way described in [5]. We have divided the tower into N elements with one node at the bottom and
one at the top of each element. Each node has five degrees of freedom (DOF),

• vi, wi - displacement in y- and z-direction,

• βxi - cross section rotation (or torsion angle), and

• βyi, βzi, - cross section slope in y- and z-direction,

c.f. Figure 2. We have to take into account the boundary and transition conditions between the elements.
The global system displacement vector or vector of DOF is defined by

uT = {v1, w1, βx1, βy1, βz1, · · · , vN , wN , βxN , βyN , βzN}

where the index number denotes the node number. We assume that the base of the tower does not move.
Therefore all DOF of the first node are zero and we have 5N entries. The system stiffness matrix and
mass matrix are build from the element stiffness and element mass matrices according to the order in the
global displacement vector and have the dimension 5N × 5N . The mass characteristics from rotor and
nacelle have to be added in the mass matrix at the corresponding DOF.
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Figure 2. Displacement of a beam.

2.2. Establishment of the Load Vector

To complete the description of the system Equation (1), it remains to describe the load vector p.
Within the scope of this paper, we assume the wind turbine is only affected at the top node of our FE
model, and neglect all loads created, e.g., by wind, in other nodes. The forces and moments in the load
vector are ordered according to the order of the DOF in the displacement vector u. Hence, the load
vector has the form

pT = (0, · · · , 0, Fy, Fz, Mx, My, Mz) (2)

where Fy and Fz denote forces in y- and z-direction, Mx, My, and Mz are moments of forces or torques
w.r.t. the x-, y- and z-axis, respectively. Here My = 0 because we assume mechanical energy related to
My is transformed into electrical energy.
In the following, we want to consider loads that result from

• inhomogeneous mass distribution of the rotor, and

• aerodynamic forces arising from incorrect pitch angles settings of the rotor blades.

Mass Imbalance

The inhomogeneity of the rotor mass distribution is modeled as point mass m located in the rotor
plane at a distance r under an angle θm w.r.t. the zero mark at blade A, see Figure 3. The forces caused
by this mass are gravity and centrifugal force. With the angular frequency ω = 2πΩ, the absolute value
for the centrifugal force is given by

Fc = ω2mr

Its projections onto the z- and x-axis are

(Fc)z = Fc cos(ωt + φ + φm) (3)

(Fc)x = Fc sin(ωt + φ + φm)
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Figure 3. Mass imbalance model.

Here, t is time variable, and φ is the angle between blade A and the x-axis. Because the rotational
plane has a distance L to the tower, the forces (Fc)z and (Fc)x also produce moments around the x- and
the z-axes with respect to the tower

M1
x = (Fc)z · L (4)

M1
z = (Fc)x · L.

Besides, the gravity force of the point mass also creates a small moment around the z-axis. However,
this moment is neglected.

Aerodynamic Imbalance

To describe the aerodynamic loads on a wind turbine, we have employed the well known Blade
Element Momentum (BEM) theory, c.f. [7,10]. In the BEM theory, we divide the blades into a finite
number of elements which are sections of the blades into annulus segments with the center at the root of
the blades. The cross section of each element is called “airfoil”, see Figure 4.

Figure 4. Blade element model with airfoil.
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Figure 5. Thrust force on Wind Turbine.

Figure 6. Tangential force on Wind Turbine.

If we are given the airfoil data, the angle of attack of the wind, and the relative wind velocity, as
well as a lift and drag coefficient table, we can calculate the normal or thrust forces F and the tangential
forces T according to the BEM method, see, e.g., [10], and Figures 5 and 6.

The local pitch angle θ for each blade element, i.e., the angle between chord and the plane of rotation,
is the sum of the adjusted pitch angle θp at the blades root and the twist of the blade β:

θ = θp + β.

The result of this procedure are forces on each of the blades distributed over all blade elements.
However, for manipulation it is more convenient to change the distributed forces on a blade into one
equivalent force, see Figure 7.
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The distributed forces and the corresponding lengths are calculated by

F =
∫ R

0
dF = area, l =

∫ R
0 xdF

F
.

Figure 7. Force equivalent to distributed force.

Then, the aerodynamic forces can be modeled as three different thrust forces (normal to the rotor
plane) and three different tangential forces as shown in Figures 5 and 6. Observing Figure 5 we see that
torques caused by F1, F2 and F3 are given by

M2
x = F1l1 sin(ωt + φ) + F2l2 sin(ωt + φ + ϕ) + F3l3 sin(ωt + φ + 2ϕ)

M2
z = F1l1 cos(ωt + φ) + F2l2 cos(ωt + φ + ϕ) + F3l3 cos(ωt + φ + 2ϕ) (5)

where we denote by M2
x and M2

z the torques around the x- and the z-axis on the rotor of the wind turbine
and by ϕ = 2π

3
(120◦) the angle between the rotor blades. Note that if all blades have the same pitch

angle, we have F1 = F2 = F3 and l1 = l2 = l3. This means that the torques M2
x and M2

z vanish. In
addition, it is easy to see that the sum of F1, F2 and F3 is the force applying to the rotor in y direction

Fy = F1 + F2 + F3 (6)

Observing the Figure 5, we know the total force T is

T = T1 + T2 + T3

Projecting T onto z axis and x axis yields

Tz = T1 cos(ωt + φ) + T2 cos(ωt + φ + ϕ) + T3 cos(ωt + φ + 2ϕ) (7)

Tx = T1 sin(ωt + φ) + T2 sin(ωt + φ + ϕ) + T3 sin(ωt + φ + 2ϕ)

As mentioned before, we have a small distance L between rotor plane and tower, thus Tz and Tx also
produces moments around the x- and the z-axes:

M3
x = Tz · L, M3

z = Tx · L (8)
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Load Vector

With the Formulas (3)–(8) the forces and moments from aerodynamic and mass imbalances in (2),

pT = (0, · · · , 0, Fy, Fz, Mx, My, Mz)

summarize to:

Fy = F1 + F2 + F3

Fz = Tz + (Fc)z (9)

Mx = M1
x + M2

x + M3
x

Mz = M1
z + M2

z + M3
z

3. Direct Problem

So far we have derived the matrices M, S, and the load vector p = p(θ1, θ2, θ3, mr, φm). The load
p is a function of the absolute value mr of the mass imbalances, its phase angle φm, and the pitch
angles θ1, θ2 and θ3. These five variables determine the forces and moments of forces in (9). The
solution of (1) is the sum of the general solution of the homogeneous equation and a particular solution
of the inhomogeneous equation with right hand side p. Since p can be written as a sum of a vector
p1 that contains constant entries only, and vectors p2 and p3 that contain the amplitudes of the cos- and
sin- terms, respectively, we can solve the inhomogeneous equation analytically. Using standard methods,
c.f. [11], we get

u(t) = (I− cos((M−1S)1/2 · t))S−1p1 + Re [(−ω2M + S)−1p2e
iωt]

+Im [(−ω2M + S)−1p3e
iωt] (10)

where

pT
1 = (0, · · · , 0, Fy, 0, 0, 0, 0)

p2 =



0

0

T1e
iφ + T2e

i(φ+ϕ) + T3e
i(φ+2ϕ)

T1Leiφ + T2Lei(φ+ϕ) + T3Lei(φ+2ϕ) + ω2mrLei(φ+φm)

0

F1x1e
iφ + F2x2e

i(φ+ϕ) + F3x3e
i(φ+2ϕ)


(11)

p3 =



0

0

F1x1e
iφ + F2x2e

i(φ+ϕ) + F3x3e
i(φ+2ϕ)

0

T1Leiφ + T2Lei(φ+ϕ) + T3Lei(φ+2ϕ) + ω2mrLei(φ+φm)
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Therefore, given a mass imbalance (mr, φm) and a set of pitch angles (θ1, θ2, θ3) the corresponding
vibrations u are calculated by first determining p(θ1, θ2, θ3, mr, φm), and applying Formulas (10)
and (11) afterwards. The forward problem can be solved for every node in our FE-model. However,
in view of the inverse problem, where we rely on measured vibration data, we have to consider that
vibration sensors are only mounted at a few positions. In practice there will be an acceleration sensor in
y-direction, one in z-direction in the middle of the tower top, and, in the best case, one in z-direction at
the end of the tower top. From the difference of the last two the torsional movement around the x-axis
can be derived. Thus only data for the DOF (vN , wN , βxN) will be available. Therefore it is necessary
to restrict our solution to these positions or DOF. We denote the restricted vibration by g = usensor. The
final forward operator A that relates the imbalances causes to the vibrations is the mapping

g = A(θ1, θ2, θ3, ∆mr, φm) (12)

which performs the calculation of p summarized in (9), the solution calculation (10) and the restriction
step. Unfortunately, this operator is nonlinear due to the BEM method. This property will determine
the possible solution methods for the inverse problem of reconstructing (θ1, θ2, θ3, mr, φm) from
measurements of g.

4. Inverse Problem

4.1. Inverse Problem Description

In recent years the theory of treating (non-)linear ill-posed problems has been well established. For an
overview see [4]. For the following, let A be a linear or nonlinear operator between real Hilbert spaces.
With given data g, we want to find a solution f of the equation

Af = g (13)

The problem is called ill-posed, if the solution f does not depend continuously on the data g. In fact,
if we only have noisy data with noise level δ, i.e., ‖gδ − g‖ ≤ δ, then (provided the inverse A−1 exists)
f δ = A−1gδ might be an arbitrarily bad approximation to a solution of (13). To obtain a stable solution,
one has to use so called regularization methods. The general idea is to approximate the discontinuous
inverse operator by a family of continuous operators Tα. The regularization parameter α has to be chosen
such that limδ→0 α(δ, gδ) = 0 holds. For nonlinear operators, equation (13) might have several solutions.
Thus we choose the concept of a f̄ -minimum-norm solution, i.e., we are looking for a solution closest to
an a priory given function f̄ .
A prominent example for a regularization method is Tikhonov regularization. The regularization operator
is defined by

Tαgδ = f δ
α = arg min

f
Jα(f) (14)

with the Tikhonov functional given by

Jα(f) = ‖gδ − Af‖2 + α‖f − f̄‖2 (15)
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For the determination of the regularization parameter α, we can use the so called Morozov’s
discrepancy principle where α is chosen s.t.

δ ≤ ‖gδ − Af δ
α‖2 ≤ cδ (16)

holds [12,13]. For linear operators, the minimizer of the Tikhonov functional can be computed by solving
a linear system. In case of a nonlinear operator, optimization methods have to be used additionally to
compute a minimizer of (15). A classical approach to minimize the functional Jα(f) is the use of gradient
methods. The gradient of the Tikhonov functional is given by

1

2
∇Jα(f) = A′(f)∗(Af − gδ) + α(f − f̄) (17)

where the linear operator A′(f)∗ is the adjoint of the derivative of A at the point f [14]. For other
minimization methods we refer to [15,16]. Please note that the above mentioned methods require the
derivative of A, which is in our case not available at the moment. Instead we used the Matlab routine,
fminsearch. fminsearch uses the simplex search method which is a direct search method. Hence,
we can avoid to use numerical of analytic gradients in case that A does not have Frechet derivative. The
weak point of this method is the slowness in running time.

5. Computational Results

We have tested the performance of the reconstruction technique for a turbine of the type VESTAS
V80-2MW with 100 m tower height and artificial data. We achieved the artificial data by employing the
forward operator (12) for a given imbalances situation. The exact vibration data were disturbed by an
additive and multiplicative error in order to simulate the noise that arises in measurement. This required
the following steps:

1. Construction of mass and stiffness matrix using the technical parameters of the V80-2MW
(geometry, material properties, first (bending) eigenfrequency 0.255 Hz)

2. Setting of a 2 degree pitch angle deviation at the blade C and a mass imbalance of 500 kgm at
angle φm = 4π/3 = 4.19 rad: [θ1, θ2, θ3, mr, φm] = [0, 0, 2, 500, 4.19]

3. Building the load vector p using formulas (3)− (9) (airfoil code NACA63-421, wind speed 6 m/s,
rotational speed 18 rpm, i.e., Ω = 0.3 Hz)

4. Solving equation (1) using (10)

5. Adding 10% noise to the data to simulate the measurements

6. Calculate an approximate solution (θ′1, θ
′
2, θ

′
3, ∆mr′, φ′m) by minimizing the functional (15) with

an appropriate regularization parameter

5.1. Parameter Identification

For our test computations, we set the exact parameters [θ1, θ2, θ3, ∆mr, φm] = [0, 0, 2, 500, 4.1888].
We have employed Tikhonov regularization for different kind of data. In a first attempt we used vibration
data from all nodes of the model, leading to almost perfect reconstructions. However, in practice only
the displacements in y- and z- direction at the top of the tower are available. Reconstructions with these
data were done in a second attempt. Those data and their noisy version are presented in Figure 8.
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The data was contaminated with 10% noise. Tikhonov regularization with α = 10−6 was used for
all reconstructions. The results are displayed in Table 1. The error is split into two parts related to
aerodynamical and mass imbalances:

||(θ1, θ2, θ3)− (θ′1, θ
′
2, θ

′
3)||

||(θ1, θ2, θ3)||
· 100%, and

||∆mr · eiφm −∆mr′ · eiφ′
m||

||∆mr · eiφm||
· 100%

where (θ′1, θ
′
2, θ

′
3, ∆mr′, φ′m) refers to the reconstruction and (θ1, θ2, θ3, ∆mr, φm) is the exact

parameter vector.

Figure 8. Exact vibration and disturbed vibration in the top of the tower.

The results in Table 1 show that the quality of the reconstruction depends on the initial value for the
reconstruction. Good initial values, in particular for the mass imbalance, lead to good reconstructions.
The main reason for this behavior is the fact that the Tikhonov functional with nonlinear operator might
have several, even local minima, where the iteration might get stuck. Therefore, it is crucial to find a
good initial value for the minimization routine.

Table 1. Test results with Tikhonov’s regularization algorithm.

Measurements in Initial value Noise in
%

Result Aero. Error
(%)

Mass. Error
(%)

all nodes 0 0 2 500 4 No 0 0 2 500 4.19 0 0

Yes 0.12 0.05 2.08 500.3 4.19 7.4 0.06

0 0 0 0 0 No -6.1 4.57 2.64 307.6 -2.32 382 42

y, z displacement of
the top

0 0 0 450 4 No -0.81 -0.3 1.98 502.9 4.19 43 0.6

Yes -0.02 -0.88 1.96 504.9 4.2 44 1.4

0 0 0 0 0 No -3.05 -3.05 1.54 83 -2.2 216 84

0 0 0 420 1.7 Yes 0.37 -0.92 1.75 491.7 4.19 51 1.66

As mentioned in the Introduction, the algorithm proposed in [3], reconstructing mass imbalances
only, is inaccurate if we neglect existing aerodynamic imbalances. However, it could provide us with an
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approximate mass imbalance that serves well as an initial guess for our new algorithm. In Table 1, the
last result is calculated by using the initial value from the above mentioned algorithm. The performance
of the algorithm was tested on several other examples, see Table 2. In these examples, we have used
vibrations of the top of the tower as artificial data. The data were disturbed by 10% noise. Again, the
initial values were computed with the algorithm from [3].

Table 2. Test results with Tikhonov’s regularization and fminsearch.

Original Parameters Initial values Reconstructed Parameters Aero. Error
(%)

Mass. Error
(%)

[0 3 0 350 2.09] [0 0 0 647 2.09] -0.25 2.8 0.43 342 2.1 17 2

[2 -2 0 400 1.05] [0 0 0 798 1.05] 1.99 -0.64 -0.06 402 1.05 48 0.5

5.2. Balancing

For the balancing process, we changed the mass and aerodynamic imbalance in the first example
according to the reconstruction (using the last reconstruction in Table 1). Hence, the new pitch angles
are given by [0, 0, 2] − [0.37,−0.92, 1.75] = [−0.37, 0.92, 0.25], and the residual mass imbalance is
computed by 500ei4π/3 + 491.7ei(4.1929−π). Thus, it is 8.5 kgm located at the phase angle −2.33 rad
or 226.5◦. Note that in practice this is achieved by placing extra weights on the blades. Using these new
parameters we have calculated the residual vibration which is plotted in Figure 9.

Figure 9. Vibrations in z direction before and after balancing with the computed parameters.

Clearly, the remaining vibrations are much less after balancing.

6. Summary

In this paper we developed an algorithm that can reconstruct both mass imbalances and aerodynamic
imbalances arising from pitch angle errors in the rotor of a wind turbine. For the first time it is possible
to calculate those values from vibration measurements at the top of the tower only and at the same
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time. To this end we have developed a turbine model of a Vestas V80-2MW that provides us with
the system mass and stiffness matrix. Furthermore, we calculated the load vector that arises in the
presence of imbalances using the BEM method. We have solved the vibration equation that connects
the vibrations of the system and the load explicitly. This has enabled us to handle the direct problem
of computing vibrations in every node of the model for given imbalances, which is necessary to solve
the inverse problem by using regularization techniques. With numerical examples we have confirmed
that our method works well if the initial guess for the mass imbalance is good enough. This value
can be obtained from a previously developed algorithm that works for mass imbalances only. In the
future the algorithm has to be tested with data from field measurements. Its successful application will
lead to a a new condition monitoring tool that will provide a continuous monitoring of imbalances and a
correct distinction between mass and aerodynamic imbalances from pitch angle deviations without using
expensive optometrical measurements and vibration measurements with additional test weights.
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