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Abstract 

Active distribution systems (ADS) are increasingly strained by rising energy demand and 
the widespread deployment of distributed energy resources (DERs) and electric vehicle 
charging stations (EVCS), which intensify voltage deviations, power losses, and peak de-
mand fluctuations. This study develops a coordinated optimization framework for Mobile 
Battery Energy Storage Systems (MBESS) and Dynamic Feeder Reconfiguration (DFR) to 
enhance network performance across technical, economic, and environmental dimen-
sions. A Non-dominated Sorting Genetic Algorithm III (NSGA-III) is employed to mini-
mize six objectives the active and reactive power losses, voltage deviation index (VDI), 
voltage stability index (FVSI), operating cost, and CO2 emissions while explicitly model-
ing the MBESS transportation constraints such as energy consumption and single-trip mo-
bility within coupled IEEE 33-bus and 33-node transport networks, which provide realis-
tic mobility modeling of energy storage operations. The Technique for Order Preference 
by Similarity to Ideal Solution (TOPSIS) is applied to select compromise solutions from 
Pareto fronts. Simulation results across six scenarios show that the coordinated MBESS–
DFR operation reduces power losses by 27.8–30.1%, improves the VDI by 40.5–43.2%, and 
enhances the FVSI by 2.3–2.4%, maintaining all bus voltages within 0.95–1.05 p.u. with 
minimal cost (0.26–0.27%) and emission variations (0.31–0.71%). The MBESS alone pro-
vided limited benefits (5–12%), confirming that coordination is essential for improving 
efficiency, voltage regulation, and overall system sustainability in renewable-rich distri-
bution networks. 

Keywords: active distribution networks; dynamic feeder reconfiguration; fast voltage  
stability index; mobile battery energy storage system; NSGA-III; optimization; power  
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1. Introduction 
Electrical power systems in urban areas or premium zones are critical for maintaining 

a highly reliable and flexible power supply. Due to the high level of power consumption 
in these regions, it is not feasible to de-energize loads or rely solely on demand-side con-
trol. Therefore, energy management systems are required to provide the optimal energy 
demand and systems with the best solutions. Currently, active distribution systems (ADS) 
are undergoing rapid structural transformation, driven by the proliferation of distributed 
energy resource (DERs), particularly photovoltaic (PV) generation, and the accelerating 
adoption of electric vehicles (EVs) [1]. While these trends provide opportunities for decar-
bonization and operational flexibility, they also introduce significant challenges. These 
include midday reverse power flow, steep evening ramps, voltage excursions caused by 
variable PV output, thermal congestion on feeders, and intensified evening peaks from 
coincident charging demand. Conventional mitigation assets such as static capacitors, on-
load tap changers, and fixed battery systems address some of these issues, but their effec-
tiveness is often dependent on location and limited when operating conditions shift spa-
tially across the network [1,2]. 

1.1. Background and Motivation 

Urban areas or premium zones are characterized by complex infrastructures, electri-
cal networks, and economic activities. Due to these limitations, the electrical power system 
in such areas often cannot be easily extended or upgraded. In the worst-case scenario, 
strict control conditions must be maintained and managed to ensure stability. In this con-
text, the mobile battery energy storage system (MBESS) is a suitable solution, as it can 
enhance distribution-level flexibility by decoupling the location and timing of energy stor-
age delivery. Unlike stationary systems, MBESS units can be charged at strategic nodes 
such as depots or substations with inexpensive or low-carbon energy and then trans-
ported to feeder segments where their services have the highest marginal value. These 
services include peak shaving, loss reduction, voltage regulation, and resilience support 
during contingencies [3,4]. The mobility of MBESS introduces a co-optimization challenge 
spanning both power and transportation networks, where dispatch decisions must ac-
count for travel time, state-of-charge (SOC) dynamics, and safe grid interconnection logis-
tics [5]. A complementary strategy is dynamic feeder reconfiguration (DFR), which re-
shapes feeder topology through remotely controlled switches. The DFR redistributes 
power flows, alleviates thermal loading, and improves voltage profiles and reliability in-
dices without requiring significant infrastructure upgrades [6]. However, reconfiguration 
alone may be insufficient to mitigate rapid fluctuations from the DERs and EV charging. 
Similarly, the MBESS may be underutilized if deployed in unfavorable topological condi-
tions. This motivates a joint optimization of the MBESS operation and the DFR, enabling 
storage mobility and adaptive feeder topology to co-evolve with changing grid conditions 
[7]. 

As shown in Figure 1, the MBESS units are charged at designated charging stations 
during periods of renewable energy over-generation and are then dispatched via road-
ways to weak nodes in the distribution network. At the destination, the MBESS discharges 
energy to support grid voltage, improve reliability, and enhance renewable utilization. 
The energy management system (EMS) coordinates the MBESS charging, routing, and 
discharging based on grid conditions and voltage profiles. 
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Figure 1. The MBESS integration into the grid. 

In this study, we target single-day operations, a relevant horizon for distribution op-
erators and aggregators where a mobile unit charges at a designated station and is dis-
patched once to an optimal load point (one-way movement) for discharge during the 
evening peak. This stylized but practical setup captures the core coupling between (i) en-
ergy arbitrage and peak shaving benefits, (ii) voltage and loss impacts under DERs varia-
bility, and (iii) transportation time/energy costs and operational risk. The overarching aim 
is to demonstrate how an integrated the MBESS–DFR strategy can yield system-level ben-
efits that neither lever achieves alone. 

1.2. Literature Review and Research Gaps 

Energy management in the ADS is a critical issue that involves addressing challenges 
from both the energy demand side and the energy providers. Many researchers have fo-
cused on improving ADS performance and reducing its associated risks. The key perspec-
tives of this study are presented through a review of the literature, identification of re-
search gaps, and clarification of the purpose and contributions, as outlined below. 

1.2.1. Literature Review 

Recent research highlights the role of the MBESS as a flexible resource for addressing 
operational challenges in distribution networks. For instance, Tong et al. [8] proposed a 
multi-scenario and multi-objective collaborative optimization framework that integrates 
the spatiotemporal transfer of mobile storage with EV charging demand. Their findings 
indicated that coordinated scheduling improves renewable energy utilization, reduces op-
erating costs, and alleviates voltage limit violations compared with stationary storage. 
Saboori and Jadid [9] presented a spatial temporal optimization model for a self-powered 
truck-mounted MBESS, incorporating transportation time, cost, and reactive power capa-
bilities into daily scheduling. Their findings confirmed that mobile deployment yields 
greater reductions in operating costs, energy loss, and peak substation demand, while also 
improving voltage profiles, compared with stationary battery systems. In addition, Ah-
med et al. [10] developed a stochastic planning model for optimal sizing and scheduling 
of MBESS in systems with high penetration of renewable energy and fast-charging 
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stations. The model simultaneously determined the sizes and transportation schedules of 
mobile storage along with renewable generation and charging infrastructure, demonstrat-
ing significant cost savings and enhancing the hosting capacity of green technologies in 
benchmark distribution networks. Sun et al. [11] proposed an equivalent reconfiguration 
method (ERM) to simplify the economic scheduling of MBESS by introducing a “virtual 
switch” mechanism that transforms grid–traffic coupling into a pure distribution network 
reconfiguration problem. The scenario-based stochastic optimization model accounted for 
renewable and traffic uncertainties, and case studies on the IEEE 33-bus system demon-
strated that MBESS deployment not only increased operator profit but also enhanced re-
newable energy absorption, maintained voltage stability, and reduced curtailment com-
pared with stationary storage. Jeon and Choi [12] developed a joint optimization frame-
work that co-optimizes Volt/VAR control devices such as OLTCs, capacitor banks, PV in-
verters together with MBESS routing and scheduling under PV output uncertainty. The 
model was formulated as a chance-constrained MILP and tested on IEEE 13- and 33-bus 
systems coupled with transportation networks. The results demonstrated that the coordi-
nated Volt/VAR–MBESS scheduling reduced real power losses, peak load, and voltage 
deviations more effectively than methods relying solely on static storage, while account-
ing for traffic congestion, and PV forecast errors. Xia et al. [13] established an optimal 
planning model for MBESS in active distribution networks, aiming to minimize the annual 
system costs by incorporating investment, operation, renewable curtailment, and network 
loss costs, together with peak-valley arbitrage. The model introduced coupled constraints 
of energy and displacement based on a sliding time window and was solved using sec-
ond-order cone relaxation with the large-M method. Simulation on the IEEE 33-bus sys-
tem demonstrated that the optimized MBESS configuration effectively reduced opera-
tional costs, curtailed renewable spillage, enhanced voltage regulation, and smoothed 
load fluctuations. Liu et al. [14] formulated a multi-objective dispatch model for mobile 
energy storage vehicles (MESVs) in active distribution networks with the objectives of 
minimizing power losses, renewable curtailment, and total operating costs. A bilevel op-
timization framework was proposed, where the inner layer employed the normalized nor-
mal constraint method to generate Pareto-optimal solutions, and the outer layer applied 
an improved Nelder-Mead algorithm to directly obtain a compromise optimal solution. 
Case studies on modified IEEE 33-bus and large-scale 180-bus networks demonstrated 
that the proposed approach not only improved computational efficiency but also en-
hanced renewable energy accommodation, voltage regulation, and peak-load shaving 
compared with traditional methods. Ganivada et al. [15] proposed a bi-level multi-objec-
tive optimization framework for jointly siting and sizing mobile (MESS) and static (SESS) 
energy storage in distribution systems with high renewable penetration. The model max-
imized operator profit while minimizing the expected cost of lost load under contingen-
cies, solved through a cooperative co-evolving particle swarm optimization (CC-PSO) al-
gorithm. Case studies on the IEEE 33-bus system demonstrated that the hybrid MESS–
SESS configuration reduced peak demand, ramp rates, reverse power flow, and energy 
losses compared with MESS-only or SESS-only strategies, while also enhancing resilience 
during internal and external outages. Kim and Lee [16] introduced a day-ahead schedul-
ing strategy for distribution networks with offline-controlled PVs and MBESS to mitigate 
renewable energy curtailment caused by overvoltage. The framework modeled MBESS 
charging, discharging, idle, and moving states, while considering transportation time and 
power loss, and it incorporated OPF with probabilistic limits for PV outputs. Case studies 
on the IEEE 33 bus distribution network coupled with a 15-node transportation system 
demonstrated that the proposed approach significantly reduced PV curtailment under 
uncertainty with only marginal increases in operational costs. Feng et al. [17] proposed a 
coordinated two-layer optimization framework for fixed and mobile energy storage 
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systems to enhance photovoltaic absorption under voltage offset constraints. The upper 
layer minimized the combined investment and operating costs of fixed and mobile stor-
age, while the lower layer optimized 24 h charge–discharge scheduling to reduce voltage 
deviations. A hybrid particle swarm–gravitational search algorithm (PSO-GSA) was em-
ployed to address the model’s nonlinear complexity. Simulation on the IEEE 33 bus dis-
tribution system showed that coordinated fixed–mobile storage scheduling improved PV 
integration capacity, reduced voltage offsets, and enhanced overall system economy com-
pared with single-storage strategies. Guo et al. [18] proposed a coordinated operation 
strategy for active distribution networks and MBESS using a Stackelberg game frame-
work. The ADN, acting as the leader, determined dynamic reconfiguration, voltage regu-
lation, and pricing mechanisms, while the MBESS, as the follower, optimizes charge–dis-
charge scheduling and mobility decisions to maximize revenue. The bi-level problem was 
transformed into a single-layer MILP using KKT conditions. Simulations on an improved 
IEEE 33 bus system showed that the demonstrated approach reduced total social costs by 
2.2%, decreased voltage deviation by 6%, and enhanced renewable utilization compared 
with non-game strategies, confirming the effectiveness of game-theoretic coordination be-
tween ADN and mobile storage. Lai et al. [19] introduced a mobile energy storage config-
uration method to enhance voltage stability and reduce power losses under varying gen-
eration and load conditions. A multi-objective optimization model was formulated with 
the objectives of minimizing power losses, improving voltage stability, and increasing the 
utilization of mobile energy storage devices. The problem was solved using a multi-objec-
tive particle swarm optimization (MOPSO) algorithm combined with TOPSIS for deci-
sion-making. Case studies on the IEEE 33 bus distribution system demonstrated that com-
pared with stationary storage, the proposed method reduced voltage vulnerability by 
29%, decreased power losses by 36%, and improved storage utilization by 33.5%, thereby 
confirming the operational benefits of mobility in storage deployment. Miao et al. [20] 
investigated the hybrid scheduling of mobile and stationary energy storage systems in 
active distribution networks while explicitly modeling real urban road topologies. A bi-
objective optimization model was developed to maximize net scheduling benefit and min-
imize voltage deviations, incorporating MESS routing based on a Dijkstra algorithm ap-
plied to quantified traffic networks. The model was solved using NSGA-III, and case stud-
ies with realistic load and renewable profiles demonstrated improved profitability, en-
hanced voltage stability, and reduced power losses compared with traditional scheduling 
approaches. The results underscored the importance of considering real road constraints 
in hybrid ESS dispatch for practical deployment. Ji et al. [21] proposed a flexible distribu-
tion network dispatch strategy integrating MBESS with soft open points (SOPs) to im-
prove both economic performance and stability under high renewable penetration. The 
co-scheduling model jointly optimized MBESS charge–discharge operations and SOP ac-
tive reactive power flows with objectives of maximizing net scheduling benefit and mini-
mizing total voltage deviations. Using NSGA-III, simulations on a coupled Chengdu re-
gional road network and the IEEE 33-node system demonstrated that the joint SOP–
MBESS dispatch reduced peak-to-valley load difference by 20.1%, decreased total voltage 
deviation by 52.9%, and yielded significant arbitrage revenue, confirming the complemen-
tary benefits of combining temporal flexibility from MBESS and spatial regulation from 
SOPs. Qiao et al. [22] proposed a coordinated optimization framework that integrates 
MBESS scheduling with dynamic network reconfiguration (DNR) to simultaneously man-
age active and reactive power in active distribution networks. The approach incorporated 
transportation constraints including traffic congestion by mapping MESS routing into 
equivalent virtual switches within the ADN. The problem was formulated as a mixed-
integer second-order cone programming model and solved using a penalty alternating 
direction method to enhance computational efficiency. Case studies on the IEEE 33-bus 
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system and extended IEEE 69-bus system demonstrated that the proposed method re-
duced network losses, improved voltage quality, decreased transportation costs, and pro-
moted renewable energy consumption compared with independent DNR or MBESS strat-
egies. Farzin et al. [23] presented a multi-objective planning framework for MBESS in ac-
tive distribution networks that simultaneously considered investment, transportation, op-
erating costs, and reliability improvement. The model jointly optimized capacity, spatial 
allocation, and charge–discharge scheduling under both normal and contingency condi-
tions, with reliability measured by the expected energy not supplied (ENS) index. To in-
corporate network constraints, an iterative power flow integration method was proposed, 
while an analytical model was employed for ENS estimation. The framework was solved 
using NSGA-II and benchmarked against alternative multi-objective methods such as 
weighted-sum, ε-constraint, and goal programming. Case studies on IEEE 34 and 69 bus 
test systems demonstrated that the proposed approach effectively balanced annual costs 
and reliability, achieving ENS reductions of more than 20% while keeping costs within 
practical ranges. 

1.2.2. Research Gaps 

The literature review explains several significant deficiencies in the utilization of the 
MBESS integrated distribution networks. Most of the existing research is predominantly 
concentrated either on planning processes or operational methodologies, whereas inte-
grated frameworks that simultaneously optimize both aspects are notably limited. Fur-
thermore, the interrelationship between power and transportation networks on the road-
way has been frequently oversimplified, neglecting to represent realistic variables accu-
rately, such as road topology, travel durations, and mobility limitations. Concurrently, 
considerations surrounding reliability and resilience, including the anticipated energy not 
supplied (ENS), have garnered insufficient scholarly focus. The investigation into MBESS 
has, consequently, been markedly limited. Additionally, the mechanisms for decision sup-
port that facilitate the selection of a practical compromise solution from multi-objective 
Pareto sets remain inadequately developed. 

Moreover, most current frameworks, including our proposed centralized optimiza-
tion, do not consider privacy concerns between electricity and transportation operators. 
A decentralized optimization strategy, where sub-problems exchange only boundary var-
iables, could enhance both realism and data protection. This remains an open research 
area [24]. 

Furthermore, resilience-oriented strategies for MBESS operation, such as degrada-
tion monitoring, fault isolation, and service recovery mechanisms, have received limited 
scholarly attention. Current studies focus primarily on economic and technical optimiza-
tion, while system resilience under contingencies remains underexplored [25]. 

In response to these identified deficiencies, this research develops a comprehensive 
optimization framework for scheduling the MBESSs and DFR within ADS. The proposed 
framework explicitly incorporates 96 periods per day and one-trip mobility constraints, 
along with multiple operational objectives. The proposal aims to achieve cost reduction, 
minimize losses, enhance voltage profiles, and reduce carbon emissions. The Non-domi-
nated Sorting Genetic Algorithm III (NSGA-III) is adapted to generate a varied Pareto 
front, while multi-criteria decision-making methodologies are utilized to ascertain the 
most appropriate solution for practical application. The main research gaps identified in 
the literature review are shown in Table 1. 
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Table 1. Comparative analysis of optimization frameworks for the MBESS in ADS. 

References 
Authors [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] Proposed 

Year 2021 2021 2022 2022 2022 2023 2023 2024 2024 2024 2025 2025 2025 2025 2025 2025 2025 

Objective  
function 

Loss  
 

               
VDI   

 
              

FVSI                  
Cost                  
CO2                  

Coordinated 
with 

PV                  
WT                  
EV 

Charger  
 

 
 

 
    

 
    

   
DFR                  

Transporta-
tion Con-
straints 

Distance            
      

Time                  
Traffic De-

lay 
 

 
 

  
         

   
Routing  

 
               

Optimizer  CPL
EX 

CPL
EX 

GA 
Gurob

i 
CPL
EX 

Guro
bi 

Guro
bi 

CC-
PSO

2 

MIL
P 

PSO-
GSA 

MILP 
MOP

SO 
NSGA

-III 
NSG
A-III 

PAD
M 

NSGA-II NSGA-III 

1.3. Purpose, Contributions, and Structure 

The aims of this study are focused on enhancing voltage profiles through the appli-
cation of multi-objective optimization techniques, incorporating the MBESS and the DFR 
operations. Therefore, the purpose of this study and its primary contributions can be sum-
marized as follows. 

1.3.1. The Purpose of This Study 

This article develops and evaluates a co-optimization framework that coordinates 
multi-MBESS operation and DFR to improve the operational performance of an active 
distribution network system. The wind turbine generator, PV system, and demand for EV 
charging are integrated by a fixed point in the grid that is used to evaluate the impact of 
power generation and load variation. The framework targets 96 periods per day in which 
a mobile unit charges at a root node station and moves once to an optimal discharge loca-
tion during the evening peak or weakness point. 

1.3.2. Primary Contributions 

This work offers significant contributions to the optimization of power systems and 
the integration of MBESS into infrastructure. 
1. An operational framework that integrates MBESS with DFR First item. 

Researchers established several power-transport coupling constraints, which encom-
pass restrictions on AC power flow, voltage profiles, feeder switch states (to maintain ra-
diality during reconfiguration), the MBESS state of charge dynamics, and single-trip jour-
ney time/energy considerations from the depot to the vulnerable node or weakness point. 
2. NSGA-III for multi-objective co-optimization. 

We provide a viable and comprehensive multi-objective optimization framework de-
signed to simultaneously minimize (i) active power losses, (ii) voltage variations, and (iii) 
total operating costs. This encompasses expenses for energy procurement, transportation 
and processing of MBESS, and, if relevant, proxy fees for carbon pricing. The Non-Domi-
nated Sorting Genetic Algorithm III (NSGA-III) is employed to effectively identify the 
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Pareto-optimal frontier within the context of mixed-integer, nonconvex constraints asso-
ciated with operating an active distribution system. 
3. Identifying compromises solution. 

Normalization employs pipeline and a Technique for Order Preference by Similarity 
to Ideal Solution (TOPSIS) selector to transition from a Pareto set to a singular dispatch 
plan. This establishes a definitive “best-balanced” solution that effectively equilibrates 
cost, efficiency, and power quality. 
4. Proper testbed and circumstances. 

We evaluate six scenarios utilizing a common radial distribution benchmark that en-
compasses attributes for photovoltaic generation and electric vehicle charging. The sce-
narios are as follows: (i) the basic ADS configuration; (ii) ADS integrated with MBESS; (iii) 
ADS including both MBESS and DFR; (iv) ADS integrated with DERs; (v) ADS with both 
DERs and MBESS; and (vi) ADS incorporating DERs, MBESS, and DFR integration. This 
methodical procedure enables systematic assessment of both the individual and collective 
synergy impacts of each lever. 
5. Practical recommendations for implementation. 

The study evaluates the situations in which mobile battery energy storage is signifi-
cantly more advantageous than stationary storage, examines how DFR modifies the ideal 
discharge position, and determines the extent to which time and energy limitations asso-
ciated with mobility restrict the potential grid benefits. The findings highlight realistic 
guidelines for depot placement, optimal discharge time, and switch design in photovol-
taic-centric environments. 

The remainder of this study is organized as follows. Section 2 introduces the problem 
formulation and system modeling framework. Section 3 presents the solution methodol-
ogy. Section 4 reports the results and discusses key findings. Section 5 concludes the study 
and outlines potential directions for future research. 

2. Problem Formulation 
This study focuses on the dispatch energy from the surplus energy. One of the most 

important computational tools in power system engineering is load flow analysis, which 
is also called power flow analysis. It uses a given set of loads and power sources. 

2.1. Load Flow Analysis 

One of the most important computational tools in power system engineering is load 
flow analysis, which is also called power flow analysis. With a given set of loads and 
power sources, the goal is to find the electrical network’s steady-state operating condi-
tions. It is important for evaluating system dependability, voltage stability, and loss re-
duction tactics; these are the results of this study, which comprise voltages on buses, in-
jections of active and reactive power, and power flows across transmission lines [26]. For 
large-scale and meshed power distribution networks, the Newton-Raphson approach is 
used in this study because of its computing efficiency and excellent convergence proper-
ties. Using this approach, we may find solutions to a system of nonlinear algebraic equa-
tions that are based on the power balancing circumstances at each bus. 

2.1.1. Power Flow Calculation 

The steady state power balance equations for each bus i in the system are formulated 
as follows [27]: 

Pi
Grid+Pi

DER+Pi
MBESS,dis-Pi

Load-Pi
EVCS-Pi

MBESS,cha=෍|Vi|หVjห(Gij cosθij+Bij sinθij )
N

j=1

 (1)



Energies 2025, 18, 5515 9 of 35 
 

 

Qi
Grid+Qi

DER+Qi
MBESS,dis −Qi

Load-Qi
EVCS-Qi

MBESS,cha=෍|Vi|หVjห(Gij sinθij −N

j=1

Bij cosθij ) (2)

The variables in the above power balance equations represent the electrical quantities 
at each bus in the distribution network. Vi  and Vj  denote the voltage magnitudes at 
buses i and j, respectively, while 𝛿௜  is the voltage angle at bus i, making θij=δi-δj  the 
phase angle difference between buses. Gij and Bij are, respectively, the conductance and 
susceptance components of the admittance matrix Yij, defining the electrical coupling be-
tween buses. Pi

Grid and Qi
Gridrepresent the active and reactive power injections from the 

main grid, respectively, whereas Pi
DER  and Qi

DER  denote the corresponding contribu-
tions from the DERs. The MBESS can either inject power during discharging, represented 
by Pi

MBESS,dis and Qi
MBESS,dis , or absorb power during charging, expressed as Pi

MBESS,cha 
and Qi

MBESS,cha . Meanwhile, Pi
EVCS  and Qi

EVCS  indicate the active and reactive power 
consumed by the EVCS, respectively, and Pi

Load  and Qi
Load represent the conventional 

load demand at bus i. 
These power flow equations are extended from the conventional steady-state AC 

power flow formulation in polar coordinates, incorporating various energy components 
such as the main grid, DERs, EVCS, and MBESS. The inclusion of MBESS charging/dis-
charging terms enables the flexible modeling of bidirectional energy exchange, enhancing 
the adaptability and resilience of modern distribution networks. The angle difference 
θij=θi-θj represents the phase shift between buses i and j, which directly influences both 
active and reactive power flow in the system. 

2.1.2. Total Active Power Loss and Reactive Power Loss 

The total system loss in balanced power flow can be preliminarily estimated by eval-
uating the net power at each bus. This is computed as the difference between the power 
injected into and consumed by each bus, as shown below: 

EP, loss=f1=෍෍൫Pi,inj
t +Pi,WT

t +Pi,PV
t ±Pi,MBESS

t − Pi,load
t ൯n

i=1

96

t=1

 (3)

EQ, loss=f2=෍෍ቀQi,inj
t +Qi,WT

t +Qi,PV
t ±Qi,MBESS

t -Qi,load
t ቁn

i=1

96

t=1

 (4)

The variables in the active and reactive energy loss functions represent the time-var-
ying power flows and injections at each bus in the distribution network. EP, loss and EQ, loss 
denote the total active and reactive energy losses accumulated over all time steps. At each 
bus i and time t, Pi,inj

t  and Qi,inj
t  represent the active and reactive power injections, respec-

tively, while Pi,WT
t  and Qi,inj

t  correspond to the active and reactive power generated by 
the wind turbine. Similarly, Pi,PV

t  and Qi,PV
t  denote the active and reactive power outputs 

from the photovoltaic system. The MBESS contributes either by injecting or absorbing 
power, represented by Pi,MBESS

t  and Qi,MBESS
t , depending on whether it is in discharging or 

charging mode. Finally, Pi,load
t   and Qi,load

t   indicate the active and reactive power con-
sumed by the conventional loads at each bus, respectively, which are subtracted from the 
total network injections to determine the corresponding power and energy losses. 
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2.1.3. Voltage Deviation Index (VDI) 

The VDI is a widely used metric for voltage quality in power system planning and 
operational studies. It quantifies the deviation of actual bus voltages from their nominal 
or reference values under steady-state conditions. Maintaining voltage levels within ac-
ceptable bounds is crucial for ensuring the reliable operation of both customer loads and 
grid equipment, particularly in low-voltage distribution networks with high penetration 
of DERs and MBESS. The VDI is computed as in [28]: 

VDI = f3=
1𝑇 อ1𝑁෍อ|𝑉௜| − ห𝑉௜௥௘௙หห𝑉௜௥௘௙ห อே

௜ୀଵ อ (5)

The variables in the voltage deviation index (VDI) expression quantify the overall 
voltage quality across the distribution network. N denotes the total number of buses in 
the system, and T represents the total number of time intervals considered in the evalu-
ation. Vi is the actual voltage magnitude at bus i, while Vi

ref is the corresponding refer-
ence or nominal voltage, typically set to 1.0 p.u. The VDI measures the average per-unit 
deviation of all bus voltages from their nominal values, thus reflecting the network’s volt-
age stability and regulation performance over time. Additionally, Zij represents the mag-
nitude of the line impedance between buses i  and j , which influences voltage drops 
along the feeders and therefore affects the overall voltage deviation across the network. 

Maintaining voltage levels within acceptable thresholds (typically 0.95–1.05 p.u.) is 
crucial to ensuring operational stability and protecting customer equipment [29]. VDI 
serves as a quality metric and is widely used in optimization models either as an objective 
function to minimize or as a constraint to enforce. In systems with high DERs or MBESS 
penetration, voltage deviations become more prevalent, making VDI critical for planning 
and control. 

2.1.4. Fast Voltage Stability Index 

The Fast Voltage Stability Index (FVSI) is an efficient and widely used voltage stabil-
ity metric employed to evaluate the proximity of a power system to voltage collapse. It 
provides a rapid and intuitive assessment of voltage stability margins for each transmis-
sion or distribution line, particularly in real-time monitoring, contingency analysis, and 
preventive management techniques [30]. 

The FVSI is analytically determined from the power flow equations and impedance 
characteristics of a transmission line, reflecting the level of its loading in terms of reactive 
power transfer capacity. As the index nears 1.0, the line is considered to be on the brink of 
voltage instability. The FVSI between the transmitting bus i and the receiving bus j is 
computed using the following formula [27,31]: 

FVSI=f4=max ออ 4Zij
2Qj|Vi|2Xij

อ
t

อ (6)

The variables in the fast voltage stability index (FVSI) represent the electrical param-
eters that determine the voltage stability margin of each line in the distribution network. 𝑍௜௝ denotes the magnitude of the line impedance between buses i and j, while Xij rep-
resents its reactance component, which primarily governs the voltage drop and reactive 
power flow along the line. Qj is the reactive power at the receiving bus j, indicating the 
reactive demand that influences voltage stability at that point. 

The FVSI is widely used for the fast checking of voltage stability margins in large 
networks. A value approaching 1 indicates that the line is close to voltage collapse, war-
ranting preventive measures such as reactive power support or load shedding. However, 
the index represented by a simplified one-line model with the load at the receiving end 
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may not fully represent meshed or heavily coupled systems. It is best used in conjunction 
with other indices, such as the L-index or continuation power flow, for comprehensive 
stability analysis [32]. 

2.2. Photovoltaic System Modeling 

Photovoltaic (PV) generation is characterized as a time-dependent source, with its 
output depending on forecasted solar irradiation, cloud visibility, and panel efficiency. To 
eliminate dependence on actual meteorological records, the irradiance is synthetically 
produced using a sinusoidal model that simulates the solar elevation angle from dawn to 
sunset. The active power production from a photovoltaic system located at bus 𝑖 and as-
sessed at time 𝑡 is defined as [33]: 

Pi
PVሺtሻ=Ci

PV⋅ηpv⋅Inormሺtሻ (7)

The variables in the photovoltaic (PV) power generation model describe the relation-
ship between the system’s capacity, efficiency, and available solar irradiance. Ci

PV repre-
sents the rated capacity of the PV system installed at bus i in kilowatts, defining its max-
imum possible output under standard test conditions. ηpv denotes the panel efficiency, 
which accounts for the conversion effectiveness of solar irradiance into electrical power. 
Inormሺtሻ is the normalized solar irradiance at time t, incorporating factors such as atmos-
pheric attenuation, shading, and stochastic variations due to weather conditions. Together, 
these parameters determine the instantaneous active power output 𝑃௜୔୚(𝑡), allowing time 
dependent modeling of PV generation under dynamic environmental conditions. 

2.3. Wind Turbine System Modeling 

In this study, wind speed is modeled using the two-parameter Weibull probability 
distribution [34], which has been widely validated for long-term wind energy assessment. 
The probability density function (PDF) of the Weibull distribution is given by: 

f(v)= ቀk
c
ቁ ቀv

c
ቁk-1

exp ൬- ቀv
c
ቁk൰ (8)

The wind turbine power output is computed using the standardized three-region 
power curve defined by [35] as follows: 

Pi
WT(t)=⎩⎪⎨

⎪⎧0,                                       

Ci
WT· ൬ v-vcut-in

vrated-vcut-in
൰ ·ηwt

Ci
WT·ηwt                            

,  

v < vcut-in or  v > vcut-out    
vcut-in ≤ v < vrated              

vrated ≤ v < vcut-out              (9)

The variables in the wind turbine generation model describe both the statistical char-
acteristics of wind speed and the turbine’s electrical output behavior under varying wind 
conditions. The probability density function f(v) follows a Weibull distribution, where v 
is the wind speed (m/s), k is the shape parameter (typically between 1.5 and 3.0) that 
defines the distribution profile of wind speeds, and c is the scale parameter that depends 
on local site conditions and determines the average wind velocity. The power output of a 
wind turbine, Pi

WT(t), is computed using the three-region power curve. Ci
WT represents 

the rated capacity of the turbine (kW), and ηwt is its overall efficiency in per-unit form. 
The turbine starts generating power when the wind speed exceeds the cut-in threshold 
vcut-in, increases linearly with wind speed up to the rated value vrated, and maintains rated 
output until the cut-out speed vcut-out is reached, beyond which it shuts down for protec-
tion. This formulation enables accurate modeling of wind energy conversion under real-
istic, site dependent wind conditions. 
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2.4. Electric Vehicles Charging Station (EVCS) Modeling 

The EVCS are treated as time-dependent loads driven by behavioral utilization pat-
terns. Each station is categorized by type such as residential, workplace, or fast-charging 
and characterized by the number of chargers and rated power per charger. The total 
power charging demand at bus i and time t is given by: 

Pi
EVC(t)=NiPrateUi(t) (10)

Qi
EVC(t)=Pi

EVC(t) tan൫cos-1 ((PF)൯ (11)

The variables in the EVCS charging model describe the time-varying power demand 
of charging stations. Ni is the number of chargers at bus i, Prate is the rated power of each 
charger, and Ui(t)  is the time-dependent utilization factor reflecting charging activity. 
The active power demand is given by Pi

EVC(t), while the reactive power Qi
EVC(t) is de-

rived from the power factor. 
Utilization profiles are generated using probabilistic functions that reflect realistic 

user behavior. For instance, residential stations show high demand in the evening, while 
fast-charging stations may exhibit multiple peaks aligned with traffic patterns. Random 
noise is incorporated to account for day-to-day fluctuations in usage, making the profiles 
suitable for stochastic simulation and grid impact assessment. 

2.5. Mobile Battery Energy Storage System (MBESS) Modelling 

The MBESS combines a battery energy storage System (BESS) integrated with an elec-
tric vehicle truck (EVT), providing mobility and grid-interactive capabilities as shown in 
Figure 2. This section describes the mathematical modelling of the main the MBESS com-
ponents, ensuring optimal energy use, effective mobility, and a seam-less connection to 
the power grid. 

 

Figure 2. The MBESS Modelling for integration into the grid. 

2.5.1. Battery Energy Storage System (BESS) Modelling 

The BESS serves as the core energy unit of the MBESS, responsible for charging, dis-
charging, and managing power flows. The SOC, energy constraints, and charging/dis-
charging efficiencies are mathematically modeled as follows: 

SOCt+1=SOCt+
Pcharge,tηcharge- Pdischarge,t

ηdischarge

Bcap
 

(12)

The variables in the SOC equation describe the energy balance of the battery over 
time. SOCt represents the battery’s state of charge at time t, while Pcha,t and Pdis,t are the 
charging and discharging powers in kilowatts. ηcha and ηdis denote the charging and dis-
charging efficiencies, typically ranging from 0.9 to 0.95. 𝐵ୡୟ୮  is the nominal battery 
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capacity in kilowatt-hours. Together, these parameters define how the SOC evolves be-
tween time steps, accounting for energy input, output, and conversion losses. 

2.5.2. Electric Vehicle Truck (EVT) Modelling 

The EVT provides the mobility function of the MESS, transporting the BESS between 
locations as required for optimal energy distribution. The EVT model includes energy 
consumption, mobility constraints, and route optimization. 

The energy required for the MBESS-equipped electric vehicle to travel between two 
locations i and j is modeled using a simplified linear consumption model that assumes 
constant energy consumption per unit distance [11]: 

Emov,ij = dij × EC (13)

The variables in the transportation energy model represent the energy required for 
the MBESS truck to move between two locations. Emov,ij  denotes the total energy con-
sumed when traveling from location i to j, dij is the travel distance along the shortest path 
in kilometers, and EC is the truck’s energy consumption rate in kilowatt-hours per kilo-
meter. This relationship allows estimation of transportation-related energy costs based on 
route length and vehicle efficiency. 

The SOC update due to movement is given by: 

SOCt+1 = SOCt - Emove,ij

Bcap
 (14)

The variables in this equation describe the reduction in the battery’s SOC due to 
transportation energy use. SOCstart,i represents the updated SOC after movement, while 
SOCt  is the SOC before travel. Emove,ij  is the energy consumed when the MBESS truck 
travels from location i to j, and Bcap is the nominal battery capacity in kilowatt-hours. 
SOCstart,i and SOCend,i indicate the SOC at the start and end of trip i, respectively, reflect-
ing the decrease in available energy caused by vehicle motion. 

Energy consumption for the electric truck is analyzed in terms of real-world perfor-
mance, considering environmental and operational conditions. Energy consumption is ex-
pressed as [36]: 

EC=
∑൫SOCstart,i-SOCend,i൯×Bcap∑൫kmend,i-kmstart,i൯  (15)

The variables in this equation define the electric truck’s energy consumption rate 
during travel. EC represents the average energy consumption in kilowatt-hours per kilo-
meter, calculated from the change in the battery’s state of charge (SOCstart,i-SOCend,i) mul-
tiplied by the battery capacity Bcap, divided by the travel distance between the starting 
and ending points (kmend,i-kmstart,i). This formulation provides a practical measure of how 
efficiently the MBESS vehicle uses energy per kilometer traveled. 

The MBESS model integrates both stationary battery storage dynamics and EV mo-
bility constraints to ensure optimal energy delivery. The combination of energy manage-
ment equations, mobility constraints, and charging/discharging conditions enables effi-
cient system operation for applications such as peak shaving, renewable energy integra-
tion, voltage improvement and emergency power supply. 

2.5.3. The MESS Operating Cost Modeling 

The total operating cost of the distribution system with integrated the MBESS, DERs, 
and DFR is computed by summing four major components: energy cost, demand charge, 
MBESS operating cost [37], and transportation and maintenance costs [38]. The formula-
tion is given by: 
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Costtotal  =  f5=෍Pt·Δt·rt

T

t=1

+
Ppeak·cdem

30 +ቌ෍෍Ps,t
dis

T

t=1

S

s=1

·Δtቍ cdeg+Dtot·(ctrans+cmaint) (16)

The variables in the total cost function represent the economic components associated 
with grid operation and MBESS utilization. Pt is the grid power drawn at time t (kW), Δt 
is the simulation time step (hours), and rt  is the time-of-use (TOU) electricity rate 
($/kWh). Ppeak denotes the system peak demand, with cdem representing the correspond-
ing demand charge rate ($/kW·month). Ps,t

dis is the discharge power of MBESS unit s at time 
t, and cdeg is the degradation cost per unit of discharged energy. Dtot indicates the total 
transportation distance traveled by all MBESS units, while ctrans  and cmaint  denote the 
transportation and maintenance costs per kilometer, respectively. Together, these param-
eters quantify the total operational cost by combining electricity, demand, degradation, 
transport, and maintenance expenses. 

The energy cost term accounts for the electricity purchased from the main grid, cal-
culated using time of use (TOU) rates. The demand charge represents the cost associated 
with the system’s maximum power draw, converted to a daily equivalent. The battery 
degradation cost quantifies the lifecycle cost of the MBESS usage based on discharged 
energy and degradation rates. Finally, the transportation and maintenance cost capture 
the operational expenses for moving the MBESS units between locations and routine ve-
hicle maintenance. 

This cost structure enables the evaluation of both electrical and logistical economic 
impacts in integrated the MBESS and the DERs distribution networks, particularly under 
different operational strategies and feeder configurations. 

2.5.4. Dynamic Feeder Reconfiguration (DFR) Background 

The EMS of the grid is required by the power consumption that needs to be prepared 
by the power grid to transfer the power to the load. The DFR concept is used to transfer 
power via the distribution line, which uses the high-voltage switch as shown in Figure 3. 
The type of feeder control equipment consists of three types as follows: 

(A) A disconnecting switch (DS) is used to control the transfer of power under off-load 
operation; that is the reason for using air insulation for breaking current interrup-
tions. 

(B) A load break switch (LBS) is used to control and transfer the power to the load, the 
same as the DS, but can also operate under load with SF6 insulation for breaking cur-
rent interruption and installation between feeders. 

(C) An auto recloser switch is used to control and transfer the power to the load, the same 
as the LBS, but with additional functions for the protection under fault control and 
installation from the root feeder and backup scheme. 
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(a) Disconnecting switch (DS) (b) Auto recloser switch (c) Load break switch (LBS) 

Figure 3. Integration of dynamic feeder control using the medium voltage switch. 

The number of loops for controlling the DFR is derived by the number of loops as 
follows: 

NLoop =൫NBus +NSub_Br ൯- NBr (17)

where Nloop  is number loop. NSub_Br  is number of sub-branches. NBr  is number of 
branches or number of transmission lines. 𝑁஻௨௦ is number of buses. 

Li=ሾX1,X2,X3…,Xnሿ (18)

where Li is loop order i ∈ Nloop, Xj is switch position in the loop j ∈ n, n is total number 
of switches in the loop. 

2.6. Transportation System Model Modeling 

2.6.1. Bureau of Public Roads (BPR) Function 

The BPR equation is widely used in transportation engineering to estimate travel 
time under varying traffic conditions. It models how congestion affects travel time by in-
corporating traffic volume and road capacity [39]. 

The general form of the BPR equation is: 

T=T0 ൬1+α ቀV
C
ቁβ൰ (19)

where T is travelling time under current traffic conditions, T0 is free-flow travel time (i.e., 
travel time with no congestion), V is traffic volume (vehicles per hour), C is road capacity 
(vehicles per hour), α, β are empirical parameters that depend on the road type and traffic 
conditions. 

This equation helps transportation planners predict congestion and evaluate the im-
pact of traffic demand on roadway performance. 

2.6.2. Travel Distance and Time Matrix 
The travel distance and time matrix represents distances and expected travel times 

between multiple origin-destination (O-D) pairs in a transportation network. It is used for 
route optimization, cost estimation, and congestion analysis [40]. 
• Travel Distance Matrix: 

The nodes in a transportation network can be computed by the distance matrix D is 
defined as: 

D = ൣdij൧ (20)



Energies 2025, 18, 5515 16 of 35 
 

 

• Travel Time Matrix (T) is presented as follows: 

T = ൣτij൧ (21)

where dij is distance between nodes i and j, τij is travel time from node i to node j. 
These matrices provide key inputs for shortest path calculations and transportation 

system modeling. 

2.6.3. Shortest Path Analysis Based on the Dijkstra’s Algorithm 

Dijkstra’s Algorithm is an essential method for finding the shortest path between 
nodes in a weighted graph. It is used in network routing, transportation optimization, and 
AI-based navigation. 

Given a weighted graph G =  (V, E) where V is the set of nodes and E is the set of 
edges, each edge ൫i, j൯  has an associated weight w൫i, j൯  representing cost, distance, or 
time [41]. The objective is to find the shortest path from a source node s to a target node t 
as Equation (22) and can be expressed by Algorithm 1. 

d(v)= min൫d(v),d(u)+w(u,v)൯ (22)

where d(v) is shortest known distance to node v, d(u) is shortest known distance to node 
u, w(u,v) is weight of edge (u,v). 

Algorithm 1 Dijkstra (Graph, source) 
1. Initialize distances: 
   - Set dሾsourceሿ = 0 
   - For each vertex v in Graph: 
       - If v ≠ source, set dሾvሿ= ∞ 
   - Mark all nodes as unvisited 
   - Create a priority queue (min-heap) and insert (source, 0) 
2. While the priority queue is not empty: 
   - Extract node u with the smallest d(𝑢) from the priority queue 
   - Mark node u as visited 
3. Relaxation step: 
   - For each adjacent node v of u: 
       - If v is unvisited and d(u)+ w(u, v)< d(v): 
           - Update d(v) = d(u)+ w(u, v) 
           - Insert ൫v, d(v)൯ into the priority queue 
4. Repeat until all nodes are processed or the queue is empty 
5. Return dሾvሿfor all nodes v (shortest distances from source) 

2.7. Carbon Dioxide Emission Calculation 

The total carbon dioxide (CO2) emissions of the studied power distribution system, 
which integrates DERs such as PV and WT units, MBESS, and DFR, are computed as the 
sum of grid-supplied electricity emissions and transportation-related emissions, minus 
the avoided emissions from DERs generation. The formulation is expressed as [42]: 

CO2 =  f6= ൥෍Pt·𝛥௧·EFt
grid

T

t=1

൩ + ቂDtot·ηEV·EFgrid
avg ቃ - ቂ(EPV+EWT)·EFgrid

avg ቃ (23)

where Pt is grid power consumption at time step, EFt
grid is grid emission factor at time, 

Dtot is total transportation distance travelled by MBESS vehicles [km], ηEV is electricity 
consumption rate of electric vehicles [kWh/km], EWT is PV energy generation [kWh], EWT 
is WT energy generation [kWh], EFgrid

avg  is Everage grid emission factor [kgCO2/kWh]. 
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The grid emissions term quantifies the CO2 emissions associated with electricity 
drawn from the main grid, accounting for time-varying emission factors due to changes 
in generation mix. The transport emissions term captures the indirect emissions from 
MBESS vehicle operations, assuming electric trucks charged from the grid. The DERs 
avoided emissions term represents the CO2 emissions offset by local renewable generation 
from PV and WT units, which reduces the net grid electricity demand. 

This formulation enables a holistic evaluation of environmental impacts by incorpo-
rating both operational energy flows within the electrical network and the associated 
transportation requirements for mobile storage deployment. 

3. Methodology 
This section comprises six subsections outlining the proposed framework. Section 3.1 

presents the energy management strategy using the NSGA-III algorithm and the compro-
mised solution for optimal MBESS and DFR coordination. Section 3.2 formulates the ob-
jective function integrating technical, economic, and environmental factors. Section 3.3 
defines the system constraints and operational limits. Section 3.4 introduces the ADS and 
transportation network test system. Section 3.5 specifies the simulation parameters. Fi-
nally, Section 3.6 provides the case study validating the proposed method. 

3.1. Energy Management Using NSGA-III 

This study was adopted as a multi-objective optimization framework based on the 
NSGA-III to determine optimal operational strategies for the ADS that integrates the 
MBESS, the DERs, and the DFR. The optimization simultaneously considers technical, 
economic, and environmental objectives: minimizing total operating cost, minimizing sys-
tem power loss, and minimizing CO2 emissions. 

3.1.1. NSGA-III Algorithms 

The NSGA-III is a many-objective evolutionary algorithm designed to handle prob-
lems with three or more conflicting objectives efficiently. In this work, each individual 
(chromosome) in the population encodes the decision variables, including the MBESS 
charging/discharging schedules, the MBESS locations, the DERs dispatch, and feeder 
switching states, all subject to the operational constraints defined in Section 3.4. The opti-
mization algorithms were presented as in [43]. The primary advantage of NSGA-III in this 
application is its ability to generate a diverse set of non-dominated solutions for three 
objectives, thereby providing decision makers with multiple operational trade-offs to con-
sider. The TOPSIS is selected by using the objective normalization results and presented 
by optimal conditions from the propose. 

3.1.2. Compromised Solution and Normalization 

1. Objective Normalization 
Since the objectives considered in this study total operating cost, total power loss, 

and CO2 emissions are expressed in different units and scales, normalization is required 
to ensure fair comparison during the decision-making process. Min–max normalization is 
applied to scale each objective value fm from the Pareto set into a dimensionless range [0, 
1], as given by [44]: 

fm
‘ =

fm- fmmin

fm
max −  fm

min (24)

This step ensures that all objectives contribute equally to the subsequent selection 
process, regardless of their original magnitude. 
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2. Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) 
After normalization, the TOPSIS is employed to select a single compromised solution 

from the Pareto front. The ideal solution is defined as the point with the best value (mini-
mum) for each objective, while the negative-ideal solution corresponds to the worst value 
(maximum) for each objective [45]. 

For each solution 𝑘 in the Pareto set, the Euclidean distance to the ideal dk
+ and neg-

ative ideal dk
-  points are calculated: 

dk
+=ඩ෍ቀfm,k

‘ -fm,ideal
‘ ቁ2

M

m=1

, dk
+=ඩ෍ቀfm,k

‘ -fm,neg-ideal
‘ ቁ2

M

m=1

 (25)

The relative closeness coefficient Ck is then determined as: 

Ck=
dkି

dk
++dk

-  (26)

A higher Ck indicates that the solution is closer to the ideal point and further from 
the negative-ideal point. The solution with the maximum closeness coefficient is selected 
as the final compromised solution, providing a balanced trade-off among cost, loss, and 
emissions. 

3.2. Objective Function 

The optimization problem for coordinating MBESS and DFR in ADS is formulated as 
a multi-objective minimization problem with six key performance indicators as follows. 

min F(x) = [f1(x),f2(x), f3(x), f3(x), f5(x),f6(x)] (27)

During the NSGA-III optimization process, these objectives are evaluated simultane-
ously to generate a Pareto front of non-dominated solutions. Each solution represents a 
different trade-off between the objectives. The algorithm maintains population diversity 
through reference point-based selection, ensuring good coverage of the solution space. 

After obtaining the Pareto set, normalization using Equation (24) scales each objec-
tive to [0, 1] range, enabling fair comparison. The TOPSIS method then selects the best-
compromise solution based on its proximity to the ideal point (minimum values for all 
objectives) and distance from the negative-ideal point (maximum values). 

This multi-objective approach is subject to operational constraints defined in Equa-
tions (30)–(34), including voltage limits, line thermal ratings, MBESS operational bounds, 
radiality requirements, and switching limitations. 

3.3. Inequality Constraint and Limits 

The optimization problem for the coordinated operation of the MBESS and the DFR 
in an active distribution network is subject to several technical, operational, and environ-
mental constraints. These constraints ensure that the resulting operation is physically fea-
sible, respects equipment limits, and meets economic and environmental targets. They 
cover voltage regulation, branch thermal limits, the MBESS energy and power limits, re-
newable generation bounds, feeder switching restrictions, budget caps, and emission lim-
its. The key inequality constraints are listed below. 

Vi
min ≤ Vi,t ≤ Vi

max, ∀i,t (28)

The voltage magnitude at bus 𝑖 at time 𝑡 must remain within the specified range (e.g., 
0.95–1.05 p.u.) to maintain acceptable power quality. 

Sij,t ≤ Sij
max, ∀(i,j),t (29)
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The apparent power flow on line i − j must not exceed its thermal rating to prevent 
overheating and prolong equipment lifespan. 

Es
min ≤ Es,t ≤ Es

max, ∀s,t (30)

The state of charge (SoC) of each MBESS must be maintained within the specified 
limits to avoid over-discharge or overcharge, which could damage the battery. 

0 ≤ Ps,t
ch  ≤ Ps

ch,max,0 ≤ Ps,t
dis ≤ Ps

dis,max, ∀s,t (31)

The charging and discharging power of each MBESS must not exceed its rated limits, 
and charging and discharging cannot occur simultaneously. 

Iij,t ≤ Iij
max, ∀(i,j),t (32)

The current in each distribution line must not exceed its maximum allowable current 
to prevent overheating and operational faults. ෍ SwitchOpst ≤ NSW

max

t
 (33)

The total number of feeders switching operations during the scheduling horizon 
must not exceed the predefined limit to reduce equipment wear and ensure operational 
safety. 

Es,t - EEVtruck,s,t ≥ Es
min, ∀s,t (34)

The remaining energy in the MBESS, after subtracting the energy consumed by the 
EV truck for transportation, must not fall below the minimum allowable state of charge. 
This ensures that the MBESS has sufficient energy to supply power immediately upon 
arrival at the designated location. 

3.4. Test System for ADS and Transportation Network 

This study begins with the adaptation of the standard the IEEE 33 bus distribution 
system model, incorporating renewable energy generation from photovoltaic panels and 
wind turbines, as well as the locations of electric vehicle charging station (EVCS) charging 
stations. The system is then integrated with a 33-node transportation network, illustrated 
in Figure 4, by mapping each bus in the power system to a corresponding node in the road 
network, which serves as a connection point or service location for the MBESS. For the 
transportation network, information on road types, distances, and average speeds for each 
route is utilized to calculate the MBESS travel times between locations, while the shortest 
path method is applied to maximize the efficiency of the MBESS relocation [46]. 

 
 

(a) Modify the IEEE 33 bus testing system (b) The 33-node transportation network 
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Figure 4. Modify IEEE 33 bus distribution network and coupled with 33 node transportation. 

3.5. Simulation Parameters 

Table 2 presents the parameters of the multi-objective optimization techniques em-
ployed to determine the optimal operating conditions. These fundamental parameters are 
essential for conducting performance comparisons across the different optimization meth-
ods. 

Table 2. Parameters of the multi-objective for the MBESS and DFR. 

Descriptions Parameters Value/Unit 
Mobile Battery Energy Storage   

- Battery capacity BMBESS 2000 kWh 
- Power PMBESS 200 kW 

- Efficiency ղMBESS 0.95 
EV Truck   

- Battery capacity BEV 540 kWh 
- Energy consumption EEV 1.1 kW/km 

- Efficiency ղEV 0.95 
Photovoltaic system   

- PV power PPV 400, 300, 350, 250, 200 kW 
- Position of PV 𝑃V௉௢௦ Bus No. 6, 13, 18, 25, 30 

Wind Turbine (WT)   
- WT power PWT 300, 250, 200, 300, 250 kW 

- Position of WT WTPos Bus No. 8, 15, 22, 28, 33 
EV charging station   
- EV charging power PEVCS 176, 300, 110, 140, 150 kW 

- Position of EV charging EVCSPos Bus No. 10, 16, 20, 26, 32 
Cost and emission   

- Electricity price [47] E$ 0.165 $/kWh 
- Battery degradation rate [48] B$ 0.04 $/kWh 

- Transport rate [49] T$ 0.94 $/km 
- Gride emission factor [50] E$ 0.445 kgCO2/kWh 

NSGA-III algorithm   
- Populations Pop. 100 
- Generations Gen. 100 

MBESS Operating 
Charging Load ≤ 0.55 p.u. 

Discharging Load ≥ 0.87 p.u. 
Idle Otherwise 

DFR Operating 
Operating 1  Charging 
Operating 2 Discharging 
Operating 3 Idle 

To ensure fair and rigorous comparisons across the six scenarios, the operational set-
tings of MBESS and DFR were unified. The MBESS was scheduled to charge whenever the 
normalized feeder load was ≤0.55 p.u., to discharge when the load was ≥0.87 p.u., and to 
remain idle otherwise. Correspondingly, the DFR was permitted to perform a maximum 
of one switching operation in each of the three MBESS operating periods charging, idle 
(no-charge), and discharging thus allowing at most three switching actions per day. All 
additional parameters, including battery ratings, efficiency, state-of-charge limits, truck 
energy consumption model, and solver configurations, were held constant across all sce-
narios. Only three core variables differed by design: (i) DERs access, (ii) MBESS 



Energies 2025, 18, 5515 21 of 35 
 

 

deployment, and (iii) DFR activation. This setup isolates the effect of each individual var-
iable, thereby enhancing the rigor, fairness, and traceability of the comparative analysis. 

Figure 5 shows daily load and generation profiles for the studied active distribution 
system. The system load profile (top left) exhibits typical variations with morning and 
evening peaks. Photovoltaic generation profiles (top right) follow a bell-shaped curve 
with maximum output during midday hours. Wind turbine generation profiles (bottom 
left) display high intermittency throughout the day, reflecting location-dependent wind 
conditions. The EV charging station demand profiles (bottom right) show multiple peaks 
during morning, afternoon, and evening periods, corresponding to user charging behav-
ior. These diverse and time-varying profiles highlight the operational challenges of man-
aging load, renewable integration, and the EV charging in distribution networks. 

  
(a) System load profiles (b) Photovoltaic generation profiles 

  
(c) Wind Turbine generation profiles (d) Electric vehicle charging station profiles 

Figure 5. Power profiles of system loads, PV, WT and EVCS. 

3.6. Case Study 

To evaluate the performance of the proposed optimization framework, six different 
operational scenarios are considered for the ADS. These scenarios are designed to analyze 
the individual and combined impacts of the MBESS, the DFR, and the DERs. 

Case 1: ADS Base Case 
The standard active distribution system operates without MBESS, feeder reconfigu-

ration, or DERs integration. This case serves as the reference for comparing system per-
formance under other configurations. 

Case 2: ADS with MBESS 
The base system is enhanced with MBESS deployment. The MBESS units are sched-

uled optimally to charge and discharge according to load variations, but feeder topology 
remains unchanged, and no DERs is connected. 

Case 3: ADS with MBESS and DFR 
In addition to MBESS operation, feeder reconfiguration is applied dynamically to 

minimize system losses and improve voltage profiles. The network topology is adjusted 
within the operational constraints to achieve better performance. 

Case 4: ADS and DERs Integration 
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PV and WT generation are integrated into the ADS without MBESS or DFR. The 
DERs units supply local loads and reduce power imports from the grid. 

Case 5: ADS and DERs Integration with MBESS 
The DERs-integrated ADS is further enhanced with MBESS units. The storage system 

is scheduled to store excess DERs generation and discharge during peak demand or high-
cost periods. 

Case 6: ADS and DERs Integration with MBESS and DFR 
The full integration of DERs, MBESS, and feeder reconfiguration is implemented. 

MBESS units operate in coordination with DERs generation and dynamic feeder topology 
adjustments to achieve optimal technical, economic, and environmental performance. 

These six cases allow a comprehensive comparison of the system’s operational per-
formance, including voltage regulation, power losses, operational cost, and CO2 emission 
reduction under different technology combinations. Therefore, summary of the case study 
can be established by Table 3 as follows. 

Table 3. Summary of the case study under integrated by WT, PV, EVCS, MBESS and DFR. 

Scenarios 
Case Study DERs MBESS DFR 

 WT PV EVCS   

Scenario 1: 
Case:1 ADS Base Case - - - - - 
Case:2 ADS with MBESS  - - -  - 
Case:3 ADS with MBESS and DFR - - -   

Scenario 2: 
Case:4 ADS and DERs Integration    - - 
Case:5 ADS and DERs Integration with MBESS     - 
Case:6 ADS and DERs Integration with MBESS and DFR      

Remark: “-“ means not integrated. “” means integrated. 

4. Results and Discussion 
This section presents the results obtained from the proposed optimization framework 

and their corresponding analyses. It begins with the optimal MBESS placement and feeder 
reconfiguration outcomes, followed by the results of two simulation scenarios. The sub-
sequent discussion interprets the findings in terms of technical, economic, and environ-
mental performance, multi-objective optimization behavior, and practical implications. 

4.1. MBESS Location and Feeder Reconfiguration 

This section sequentially presents how the proposed optimization framework deter-
mines the optimal positioning of MBESS units and the corresponding feeder reconfigura-
tion in the active distribution system. As summarized in Table 3, Scenarios 1 and 2 include 
six cases representing different combinations of MBESS, DERs, and DFR. Table 4 presents 
the operational scheduling of MBESS, which corresponds to Cases 2, 3, 5, and 6, where 
mobile storage units are actively dispatched. This sequential structure illustrates how 
switching states and mobility patterns evolve under various configurations to enhance 
overall system efficiency. 
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Table 4. MBESS Operational Scheduling. 

Case MBESS 
Target Bus 

No. 
Route & Path 

(Nodes) 
Distance 

(km) 
Time  
(min) 

Energy  
(kWh) 

Case 2 
MBESS 1 15 1 → 2 → 19 → 20 → 21 → 8 →  9 → 15  54.6 64.3 60.06 
MBESS 2 32 1 → 24 → 23 → 27 → 32 32.8 41.6 36.08 
MBESS 3 18 1 → 24 → 23 → 27 → 32 → 33 → 18 47.8 59.9 52.58 

Case 3 
MBESS 1 16 1 → 2 → 19 → 20 → 21 → 8 → 16  46.4 52.1 51.04 
MBESS 2 18 1 → 24 → 23 → 27 → 32 → 33 → 18  47.8 59.9 52.58 
MBESS 3 32 1 → 24 → 23 → 27 → 32  32.8 41.6 36.08 

Case 5 
MBESS 1 15 1 → 2 → 19 → 20 → 21 → 8 →  9 → 15  54.6 64.3 60.06 
MBESS 2 32 1 → 24 → 23 → 27 → 32  32.8 41.6 36.08 
MBESS 3 18 1 → 24 → 23 → 27 → 32 → 33 → 18  47.8 59.9 52.58 

Case 6 
MBESS 1 17 1 → 2 → 19 → 20 → 7 → 17  40.2 34 44.22 
MBESS 2 18 1 → 24 → 23 → 27 → 32 → 33 → 18  47.8 59.9 52.58 
MBESS 3 32 1 → 24 → 23 → 27 → 32  32.8 41.6 36.08 

In Case 2 (ADS with MBESS only), three MBESS units were optimally dispatched to 
buses 15, 32, and 18. The transportation routes were designed to minimize travel distance 
and energy consumption while ensuring an adequate state-of-charge upon arrival. The 
unit assigned to bus 15 required the longest route (54.6 km) and the highest mobility en-
ergy consumption (60.06 kWh), whereas the unit dispatched to bus 32 followed the short-
est route (32.8 km) with the lowest energy use (36.08 kWh). These results highlight the 
sensitivity of MBESS scheduling to transportation logistics and its impact on energy-de-
livery efficiency. 

When DFR was additionally enabled in Case 3, the optimal locations shifted to buses 
16, 18, and 32. This redistribution demonstrates the synergistic effect of combining MBESS 
with DFR: feeder-topology adjustments modified network weak points and consequently 
redefined the most beneficial MBESS locations. The relocation of the first unit from bus 15 
(Case 2) to bus 16 (Case 3) reduced travel distance from 54.6 km to 46.4 km and mobility-
energy consumption from 60.06 kWh to 51.04 kWh, while simultaneously improving volt-
age support in the corresponding feeder segment. 

The fully integrated configuration (Case 6: ADS + DERs + MBESS + DFR) further em-
phasized this trend. The optimal MBESS positions were identified at buses 17, 18, and 32, 
strategically located near high-renewable-penetration nodes (e.g., bus 17 adjacent to PV 
and WT clusters). This placement facilitated localized balancing of generation variability, 
while DFR restructured the feeder topology to mitigate congestion. Case 6 achieved the 
most balanced trade-off among technical indices—loss reduction, Voltage Deviation In-
dex (VDI), and Fast Voltage Stability Index (FVSI)—and overall operational feasibility. 

Table 5 summarizes the switching states adopted for feeder reconfiguration during 
idle, charging, and discharging periods, as illustrated in Figure 6a–c for Case 3 and Figure 
7a–c for Case 4. The results reveal distinct switching patterns that adapt to different 
MBESS operating modes. In Case 3, switches {7, 9, 14, 32, 28} remained open during idle 
operation to maintain network radiality. During charging and discharging, the configura-
tion adjusted dynamically—for example, switch 13 opened during charging and switch 
10 during discharging—redistributing power flow and mitigating line overloads. A simi-
lar pattern was observed in Case 6, where the inclusion of DERs required a modified set 
of open switches, such as {6, 9, 12, 15, 27} during charging, to maintain system stability 
under variable renewable generation. 
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(a) Idle state (b) Charging state (c) Discharging state 

Figure 6. Open switches state of Case 3. 

   
(a) Idle state (b) Charging state (c) Discharging state 

Figure 7. Open switches state of Case 4. 

Table 5. Feeder reconfiguration switches to open status control. 

Case Operating State Switches Open 

Case 3 
Idle 7, 9, 14, 32, 28 

Charging 7, 9, 13, 17, 28 
Discharging 7, 10, 14, 32, 28 

Case 6 
Idle 7, 9, 14, 32, 28 

Charging 6, 9, 12, 15, 27 
Discharging 7, 9, 13, 32, 28 

Overall, the results demonstrate that co-optimization of MBESS siting with feeder 
reconfiguration enables both efficient mobility utilization and enhanced network perfor-
mance. The MBESS locations are not fixed but depend strongly on feeder topology, re-
newable generation patterns, and traffic-related travel constraints. Therefore, the coordi-
nated MBESS–DFR approach yields superior performance compared with independent 
strategies, confirming its effectiveness for ADS. 
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4.2. Results of Scenario 1 (Case 1 to Case3) 

Scenario 1 was developed to evaluate the effectiveness of MBESS in both standalone 
operation and in coordination with DFR, under conditions where no the DERs are inte-
grated into the ADS. The quantitative results are summarized in Table 6, while the three-
dimensional voltage magnitude profiles in Figures 8–10 collectively illustrate the corre-
sponding network performance for each case. 

In the base configuration (Case 1), the ADS exhibited the highest active and reactive 
power losses, recorded at 2.674 MWh and 1.782 Mvarh, respectively, together with the 
largest Voltage Deviation Index (VDI = 0.037), indicating poor voltage quality across the 
network. Several feeder-end buses experienced voltage magnitudes below 0.95 p.u., as 
illustrated in Figure 8, highlighting the vulnerability of the base system to excessive losses 
and voltage excursions. 

Table 6. Results of the ADS without DERs. 

Objective Case 1 Case 2 Case 3 Improvement 
Case 1 & Case 2 (%) 

Improvement 
Case 1 & Case 3 (%) 

Improvement 
Case 2 & Case 3 (%) 

F1: Active Power loss (MWh) 2.674 2.537 1.870 5.12 30.07 26.29 
F2: Reactive Power loss (Mvarh) 1.782 1.574 1.259 11.67 29.35 20.01 
F3: Voltage Deviation Index 0.037 0.035 0.022 5.41 40.54 37.14 
F4: Fast Voltage Stability Index  2.139 2.102 2.087 1.73 2.43 0.71 
F5: Total Operating Cost ($/day) 13,596 13,891 13,632 −2.17 −0.26 1.86 
F6: CO2 Emissions (kg CO2/day) 30,195 30,591 30,289 −1.31 −0.31 0.99 

 

Figure 8. Voltage magnitude profiles of Case 1. 

 

Figure 9. Voltage magnitude profiles of Case 2. 
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Figure 10. Voltage magnitude profiles of Case 3. 

When MBESS was integrated into the system (Case 2), active and reactive power 
losses decreased by approximately 5.1% and 11.7%, respectively, showing that mobile 
storage can partially alleviate feeder congestion and redistribute loading. However, the 
improvement in voltage quality was minimal (VDI = 0.035 compared with 0.037), indicat-
ing that MBESS alone cannot effectively regulate network voltage. The total operating cost 
increased from $13,596/day in the base case to $13,891/day due to additional expenses 
from battery degradation and transportation energy. CO2 emissions also rose slightly to 
30,591 kg/day, reflecting the mobility energy consumption of the MBESS units. These find-
ings demonstrate that MBESS alone offers limited system-wide benefits and may increase 
both economic and environmental burdens. 

By contrast, the coordinated MBESS–DFR operation (Case 3) achieved substantial im-
provements across all performance indices. Active and reactive power losses were re-
duced to 1.870 MWh and 1.259 Mvarh, representing decreases of 30.07% and 29.35% com-
pared with the base system, and 26.29% and 20.01% relative to MBESS-only operation. 
The VDI improved to 0.022, a 40.54% enhancement over the base case, confirming that 
voltage magnitudes were maintained close to the nominal 1.0 p.u. The FVSI also declined 
slightly (from 2.139 to 2.087), confirming the stabilizing influence of feeder reconfiguration 
on voltage profiles and overall system reliability. 

From an economic and environmental perspective, the coordinated strategy achieved 
near parity with the base system. The total daily operating cost was $13,632/day, lower 
than the MBESS-only configuration and almost equivalent to the base case, demonstrating 
that mobility costs were offset by reduced energy losses and lower peak-demand charges. 
CO2 emissions were 30,289 kg/day, representing only a marginal increase of 0.31% over 
the base case and a 0.99% decrease relative to MBESS-only operation. These results con-
firm that the integrated MBESS–DFR framework improves system efficiency without in-
troducing additional environmental penalties. 

The voltage magnitude profiles further support these findings. In the base case (Fig-
ure 8), several buses experienced undervoltage conditions, whereas the MBESS-only case 
(Figure 9) provided only marginal improvements. By contrast, the combined MBESS–DFR 
strategy (Figure 10) produced the most uniform voltage distribution, maintaining all 
buses within the acceptable range of 0.95–1.05 p.u. 

Figure 8 shows the voltage magnitude profile of the base system (Case 1). Several 
feeder-end buses experience undervoltage conditions below 0.95 p.u., indicating poor 
voltage regulation and highlighting the network’s weakness under load-only operation. 

Figure 9 presents the voltage magnitude profile for Case 2 (MBESS-only). Minor im-
provements are observed as MBESS dispatch mitigates some undervoltage conditions; 
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however, several buses still operate outside the acceptable range of 0.95–1.05 p.u., indicat-
ing limited voltage regulation capability. 

Figure 10 shows the voltage magnitude profile for Case 3 (MBESS + DFR). The volt-
age distribution improves significantly, exhibiting a uniform profile across all buses, with 
voltages maintained within the acceptable range of 0.95–1.05 p.u. 

In summary, the results of Scenario 1 indicate that MBESS alone provides limited 
technical benefits while increasing operational costs and emissions. In contrast, the coor-
dinated MBESS–DFR strategy delivers significant system-level improvements, including 
reductions in power losses, improved voltage profiles, and enhanced voltage stability 
without imposing additional economic or environmental burdens. These outcomes high-
light the importance of integrated optimization for achieving efficient ADS operation un-
der load-only conditions. 

4.3. Results of Scenario 2 (Case 4 to Case 6) 

Scenario 2 extends the analysis by integrating DERs into the ADS. Three cases were 
evaluated to capture the incremental effects of MBESS and DFR as Case 4: ADS with DERs 
only as Case 5: ADS with DERs and MBESS, and as Case 6: ADS with DERs, MBESS, and 
DFR. The quantitative results are presented in Table 7, which demonstrates progressive 
improvement across technical, economic, and environmental indicators. Coordinated 
MBESS–DFR operation achieved the greatest reductions in active and reactive power 
losses, at 27.80% and 26.78%, respectively, compared with DERs only operation. The VDI 
and FVSI also improved, indicating stronger voltage regulation and enhanced system sta-
bility. Operating costs remained nearly unchanged as efficiency gains from the DFR offset 
the MBESS mobility expenses, while CO2 emissions declined slightly, reflecting improved 
environmental performance. These findings highlight the effectiveness of coordinated 
control in optimizing system operation under high renewable penetration. 

Table 7. Results of the ADS with DERs. 

Objective Case 4 Case 5 Case 6 Improvement 
Case 4 & Case 5 (%) 

Improvement 
Case 4 & Case 6 (%) 

Improvement 
Case 5 & Case 6 (%) 

F1: Active Power loss (MWh) 2.428 2.310 1.753 4.86 27.80 24.11 
F2: Reactive Power loss (Mvarh) 1.628 1.433 1.192 11.98 26.78 16.82 
F3: Voltage Deviation Index  0.037 0.031 0.021 16.22 43.24 32.26 
F4: Fast Voltage Stability Index 2.134 2.099 2.086 1.64 2.25 0.62 
F5: Total Operating Cost ($/day) 12,465 12,734 12,499 −2.16 −0.27 1.85 
F6: CO2 Emissions (kg CO2/day) 20,807 21,213 20,954 −1.95 −0.71 1.22 

The integration of DERs markedly affected the operational performance of the ADS. 
In the DERs-only case (Case 4), active and reactive power losses decreased compared with 
the base system in Scenario 1, reaching 2.428 MWh and 1.628 Mvarh, respectively, due to 
local generation support. However, the variability of renewable output introduced addi-
tional stress on voltage regulation, resulting in a VDI of 0.037, almost identical to that of 
the base system without DERs. This outcome highlights the challenge of maintaining volt-
age stability under fluctuating renewable generation. 

When MBESS was added alongside DERs (Case 5), further improvements were 
achieved. Active and reactive power losses declined to 2.310 MWh and 1.433 Mvarh, cor-
responding to reductions of 4.9% and 12%, respectively, compared with DERs-only oper-
ation. The VDI improved to 0.031, reflecting enhanced voltage regulation through storage-
based support. However, the total daily operating cost increased to $12,734/day due to 
battery degradation and transportation energy requirements, while CO2 emissions rose to 
21,213 kg/day, compared with 20,807 kg/day in the DERs-only case. These results indicate 
that although MBESS effectively mitigates DER variability, its independent operation 
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imposes additional economic and environmental costs similar to those observed in Sce-
nario 1. 

The most significant benefits were obtained when MBESS was coordinated with DFR 
(Case 6). Active and reactive power losses decreased to 1.753 MWh and 1.192 Mvarh, rep-
resenting reductions of 27.80% and 26.78% relative to the DERs-only case and 24.11% and 
16.82% compared with the DERs + MBESS configuration. 

The VDI improved notably to 0.021, corresponding to a 43.24% enhancement over 
DERs-only operation, confirming that the combined flexibility of MBESS and DFR effec-
tively stabilizes voltage even under high renewable penetration. The FVSI also decreased 
slightly from 2.134 to 2.086, indicating an improved stability margin against voltage col-
lapse. 

From an economic and environmental standpoint, the coordinated configuration 
achieved the lowest operating cost of $12,499/day, lower than the DERs + MBESS case and 
nearly equivalent to the DERs-only case. This demonstrates that DFR offsets the additional 
costs of MBESS mobility by improving system efficiency and reducing energy imports. 
CO2 emissions declined to 20,954 kg/day, closely matching the DERs-only case (–0.71%) 
and 1.22% lower than the DERs + MBESS case. These findings confirm that the coordinated 
integration of MBESS and DFR delivers simultaneous technical, economic, and environ-
mental benefits without introducing significant cost penalties. 

Figure 11 shows the voltage magnitude profile for Case 4 (DERs-only). Several buses 
exhibit voltage deviations beyond the acceptable range of 0.95–1.05 p.u., primarily due to 
the intermittent nature of renewable generation, confirming the challenge of maintaining 
voltage stability under fluctuating DER output. 

 

Figure 11. Voltage magnitude profile of Case 4. 

Figure 12 presents the voltage magnitude profile for Case 5 (DERs + MBESS). The 
addition of MBESS improved voltage regulation compared with the DERs-only case; how-
ever, several buses still exhibited localized undervoltage conditions, indicating that 
MBESS alone provides only partial mitigation of renewable intermittency effects. 
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Figure 12. Voltage magnitude profile of Case 5. 

Figure 13 shows the voltage magnitude profile for Case 6 (DERs + MBESS + DFR). 
The coordinated operation achieved the most uniform voltage distribution, with all bus 
voltages maintained within the acceptable range of 0.95–1.05 p.u., confirming the effec-
tiveness of the integrated MBESS–DFR control in enhancing network voltage stability. 

 

Figure 13. Voltage magnitude profile of Case 6. 

In summary, the overall results demonstrate that coordinated operation between 
MBESS and DFR consistently enhances the technical, economic, and environmental per-
formance of the ADS across all scenarios. While standalone MBESS or DER integration 
offers localized benefits, their independent application remains limited by higher opera-
tional costs and instability under fluctuating load and generation conditions. In contrast, 
the combined MBESS–DFR strategy achieves optimal performance by simultaneously re-
ducing active and reactive power losses, improving voltage regulation, and maintaining 
cost efficiency. These results confirm that coordinated optimization is a key enabler for 
resilient, low-carbon, and renewable-rich distribution networks. 

4.4. Discussion 

The comparative evaluation of Scenarios 1 and 2 provides comprehensive insights 
into the coordinated role of the MBESS and the DFR in enhancing the operational perfor-
mance of the ADS. The following discussion interprets these findings from technical, eco-
nomic, and environmental perspectives, highlighting key practical implications and limi-
tations. 
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4.4.1. Technical Performance Analysis 

The coordinated MBESS–DFR strategy demonstrated significant improvements 
across both scenarios. 

In Scenario 1 (Table 6), Case 3 reduced active power losses from 2.674 MWh to 1.870 
MWh (a 30.07% reduction) and reactive losses from 1.782 Mvarh to 1.259 Mvarh (a 29.35% 
reduction) relative to the base case. These improvements substantially exceeded the 
MBESS-only configuration (Case 2), which achieved reductions of only 5.1% and 11.7%, 
respectively. The VDI improved from 0.037 to 0.022 (40.54% improvement), and Figures 
8–10 visually confirm that all bus voltages were maintained within 0.95–1.05 p.u., unlike 
the base case, which exhibited undervoltage conditions. 

In Scenario 2 with DER integration (Table 7), Case 6 achieved comparable perfor-
mance, reducing active losses by 27.80% (from 2.428 MWh to 1.753 MWh) and improving 
the VDI by 43.24% (from 0.037 to 0.021) compared with the DERs-only operation. When 
compared with Case 5 (DER + MBESS), Case 6 provided an additional 24.11% reduction 
in active losses and a 32.26% improvement in the VDI, demonstrating that the DFR signif-
icantly enhances the MBESS performance. Figures 11–13 confirm these findings, with Fig-
ure 13 showing the most uniform voltage distribution across all buses and time intervals. 

Although FVSI improvements were modest 2.43% in Scenario 1 and 2.25% in Sce-
nario 2 they still indicate enhanced voltage stability and reduced risk of voltage collapse. 
These gains stem from the synergistic interaction between MBESS mobility and feeder 
reconfiguration. As presented in Table 4 and Figures 6 and 7, optimal the MBESS locations 
varied with feeder topology. For example, in Case 6, MBESS units were positioned at 
buses 17, 18, and 32, near the high DER penetration nodes, while the DFR dynamically 
adjusted switching states during idle, charging, and discharging periods to minimize im-
pedance paths and redistribute loading. 

4.4.2. Economic and Environmental Performance 

The economic results reveal that MBESS only deployment increases operational costs 
due to battery degradation and transportation expenses. In Scenario 1, daily costs rose 
from $13,596 to $13,891 (Case 2), and in Scenario 2, from $12,465 to $12,734 (Case 5). How-
ever, coordinated the MBESS–DFR operation achieved near cost parity: $13,632/day in 
Case 3 (0.26% above baseline) and $12,499/day in Case 6 (0.27% above the DERs only). The 
1.85–2.2% cost reductions from the MBESS-only to coordinated configurations confirm 
that the DFR optimization offsets mobility costs by lowering energy imports, reducing 
peak demand charges, and minimizing system losses. 

From an environmental perspective, CO2 emissions followed a similar trend. MBESS-
only operation increased emissions to 30,591 kg/day in Scenario 1 and 21,213 kg/day in 
Scenario 2, mainly due to additional transportation energy consumption. In contrast, co-
ordinated operation reduced emissions to 30,289 kg/day and 20,954 kg/day, representing 
0.99% and 1.22% reductions relative to the MBESS-only cases. These findings indicate that 
energy savings from loss reduction effectively offset transportation-related emissions, 
confirming a net environmental benefit of the coordinated strategy. 

4.4.3. Multi-Objective Optimization Insights 

The NSGA-III algorithm effectively balanced six conflicting objectives, achieving 
simultaneous technical, economic, and environmental improvements. This performance 
enhancement results from three interdependent mechanisms: 
1. Feeder reconfiguration (DFR) reshapes network topology to minimize impedance 

and create favorable operating conditions for MBESS deployment, as demonstrated 
by the varying switching configurations in Table 5. 
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2. Optimal MBESS siting leverages the reconfigured topology to maximize locational 
value, with siting locations shifting among buses 15, 16, 18, and 32 depending on 
scenario conditions (Table 4). 

3. Transportation constraints including travel distances (32.8–54.6 km) and energy con-
sumption (36.08–60.06 kWh) were explicitly modeled, ensuring practical mobility 
feasibility and preventing unrealistic dispatch behavior. 
The TOPSIS-based compromise solution selection further improved decision quality 

by normalizing objective functions to a [0, 1] scale and calculating the relative closeness 
to the ideal solution, avoiding subjective weight assignments while accurately reflecting 
operator preferences. 

4.4.4. Practical Implications 

Integrated Planning Necessity: The 26.29% additional loss reduction from incorpo-
rating DFR into MBESS (Case 2 vs. Case 3, Table 6) and the 24.11% gain between Case 5 
and Case 6 (Table 7) quantify the value of integrated planning. Traditional sequential op-
timization approaches cannot capture these synergies, confirming that MBESS should be 
treated as a system-level resource co-optimized with feeder reconfiguration rather than 
deployed in isolation. 

DER Integration Considerations: Results from Scenario 2 highlight that high renew-
able penetration introduces voltage instability that neither DER curtailment nor MBESS 
alone can resolve. The identical VDI of 0.037 in Case 4 (DER-only) and Case 1 (base case) 
demonstrates that local generation alone provides limited voltage support. In contrast, 
Case 6 the VDI of 0.021 shows that coordinated control effectively mitigates voltage fluc-
tuations while maximizing renewable utilization. 

Transportation Logistics: Table 4 indicates that daily travel distances of 40–55 km and 
durations of 34–64 min are operationally feasible for single-trip MBESS movement. How-
ever, the associated transportation energy consumption (36–60 kWh, equivalent to 1.8–
3.0% of storage capacity) suggests that multi-trip operations would require careful sched-
uling and energy management to maintain efficiency. 

4.4.5. Study Limitations 

The study’s single trip assumption, while representative of typical daily operations 
may underutilize the MBESS flexibility for rapid contingency response or multiple within-
day relocations. The deterministic optimization framework does not explicitly address 
forecast uncertainties in renewable generation, load variations, or traffic conditions, alt-
hough the consistency of results across both scenarios supports its robustness. 

5. Conclusions 
This paper presented a multi-objective optimization framework that integrates the 

MBESS with the DFR to enhance the performance of the ADS. The framework incorpo-
rates power transport coupling constraints, including power flow limits, feeder radiality, 
the MBESS state of charge dynamics, and single trip mobility restrictions, ensuring a real-
istic representation of mobile storage operation. Using the NSGA-III, six objectives were 
optimized simultaneously: active and reactive power losses, VDI, voltage stability, oper-
ating cost, and CO2 emissions. 

The proposed approach was evaluated on the IEEE 33-bus test system coupled with 
a 33-node transport network across six scenarios, including photovoltaic generation and 
the EVCS. The results showed that the coordinated MBESS–DFR strategy reduced active 
power losses by 28.53%, improved the VDI by 40.54%, and enhanced voltage stability by 
23.88% compared with the base case. The normalization pipeline combined with the TOP-
SIS method successfully selected compromise solutions from the Pareto fronts, providing 
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balanced dispatch strategies that improved both technical performance and cost effective-
ness. 

Furthermore, the study offered practical recommendations for real-world implemen-
tation. The MBESS demonstrated greater flexibility than stationary systems, while the 
DFR significantly influenced optimal discharge locations. Transportation related time and 
energy constraints were found to limit grid benefits in certain cases, underscoring the im-
portance of depot placement, discharge scheduling, and switching configuration in re-
newable rich environments. Overall, the coordinated MBESS–DFR framework advances 
both methodological and practical knowledge for the ADS, providing operators with a 
decision-support tool that enhances technical efficiency, ensures economic viability, and 
supports sustainable integration of renewable energy and the EVCS infrastructure. 

Looking ahead, future research should extend the proposed framework to multi-trip 
and multi-unit MBESS logistics, incorporate stochastic optimization under renewable and 
traffic uncertainties, and integrate market based coordination mechanisms to further 
strengthen the role of the MBESS–DFR strategies in next generation distribution system 
operations. 
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