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Abstract

Managing electric vehicle (EV) charging at stations with on-site solar (PV) generation is a
complex task, made difficult by volatile electricity prices and the need to guarantee services
for drivers. This paper proposes a robust optimization (RO) framework to schedule EV
charging, minimizing electricity costs while explicitly hedging against price uncertainty.
The model is formulated as a tractable linear program (LP) using the Bertsimas–Sim refor-
mulation and is implemented in an online, adaptive manner through a model predictive
control (MPC) scheme. Evaluated on extensive real-world charging data, the proposed
controller demonstrates significant cost reductions, outperforming a PV-aware Greedy
heuristic by 17.5% and a deep reinforcement learning (DRL) agent by 12.2%. Further-
more, the framework exhibits lower cost volatility and is proven to be computationally
efficient, with solving times under five seconds even during peak loads, confirming its
feasibility for real-time deployment. The results validate our framework as a practical,
reliable, and economically superior solution for the operational management of modern EV
charging infrastructure.

Keywords: electric vehicle charging; robust optimization; model predictive control; solar
energy; smart grid; linear programming

1. Introduction
Climate change remains a defining challenge of this century. Vietnam’s commitment

to net-zero by 2050 [1] reflects a decisive policy stance, yet the pathway requires the major
decarbonization of transport—a sector responsible for roughly 10.8% of national emissions
and projected to grow 6–7% annually [2]. Accelerating the uptake of electric vehicles
(EVs) is therefore pivotal [3]. Domestic momentum—illustrated by rapid EV market
growth [4,5]—exposes infrastructure bottlenecks: public charging scarcity [6], stressed
urban feeders, and rising operating costs. Given Vietnam’s strong solar resource, co-
locating PVs at charging stations is a promising lever to reduce grid imports, hedge prices,
and advance net-zero goals [7].

1.1. Positioning Within Recent Literature

PV-coupled EV charging has matured along four complementary strands. (i) Planning
and siting with renewables: system-level studies co-optimize the siting/sizing of charging
infrastructure and renewables within grid limits, but do not address real-time station
operations [8]. (ii) Station-level operational control (MPC): large facilities with PV and
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hundreds of chargers deploy model predictive control using forecasts to balance build-
ing limits and service quality, typically under deterministic or point-forecasted prices [9].
(iii) Uncertainty-aware scheduling and robust optimization: newer works build stochastic
or robust formulations to protect against price/load/solar errors—e.g., robust dispatch with
EV aggregators and studies of uncertain charging flexibility [10,11]. These approaches im-
prove worst-case behavior but often rely on large scenario sets or complex uncertainty sets.
(iv) PV-aware smart charging at stations: surveys of integrated EVCS–PV–ESS architectures
synthesize capacity allocation and control strategies aimed at improving self-consumption
and reducing curtailment [12,13]. Related but orthogonal to our focus, resilience-oriented
planning leverages mobile robot chargers to sustain service under extreme conditions [14].

1.2. Gap and Contributions

This paper targets the under-explored intersection of station-level scheduling with
on-site PV and explicit protection against day-ahead price errors, while keeping the con-
troller lightweight. Unlike planning papers that decide siting/sizing [8], we assume an
existing site; unlike deterministic MPC [9], we do not rely on accurate prices; and unlike
scenario-heavy stochastic control [10,11], we avoid large ensembles by adopting a budgeted
(Bertsimas–Sim) price-uncertainty model that integrates directly into a linear program (LP).
Concretely, our contributions are given as follows:

1. Robust PV-coupled station optimizer. We formulate a linear program that co-
schedules per-EV charging and PV utilization under a budgeted electricity-price
uncertainty set, yielding a single tunable parameter Γ to trade nominal cost for worst-
case protection.

2. Scenario-free MPC integration. We embed the robust LP in a receding-horizon loop
that re-solves on arrivals/departures or at fixed intervals, maintaining computational
tractability for large stations without scenario generation.

3. Empirical evaluation on realistic data. Using real prices, irradiance, and multi-EV
session traces, we quantify nominal savings, robustness benefits, and solve-time
scaling versus a baseline scheduler.

1.3. Paper Organization

Sections 2 and 3 introduce the notation and the base LP. Section 4 details the robustifi-
cation and the MPC wrapper. Section 5 reports results (cost comparison, sensitivity to Γ,
and computational performance). Section 7 concludes and Section 6 outlines limitations
and future work.

2. Symbols and Parameters
The parameters used in the optimization model are defined below:

• T: Number of time steps in a day (e.g., T = 24 h).
• ∆t: Length of each time step (hours).
• N: Number of electric vehicles (EVs).

• pgrid
t : Electricity price from the grid at time t (Euro/kWh).

• Rt: Solar energy output at time t (kW).
• R̄t: Maximum achievable solar energy output at time t (kW).
• si: Maximum charging power provided by the charging station for EV i (kW).
• At,i: Matrix representing the charging time of vehicle i by hour.
• Cgrid: Grid capacity limit (kW).
• η: Charging efficiency of the EV (in the range (0, 1]).
• Li: Minimum required energy (kWh) that the EV i needs when leaving the station.
• Ti: Set of time points when EV i is present at the station (based on At,i).
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3. Optimization Model
Several straightforward solutions have been considered for managing EV charging,

such as the “First Come, First Served” (FCFS) principle, which guarantees equity by
servicing vehicles in the sequence of their arrival. However, FCFS lacks consideration of
critical factors such as electricity pricing, real-time energy demand, and overall impact
on the power grid. This limitation can lead to inefficient energy allocation, increased
operational costs, and potential grid instability, especially during peak demand periods.

Figure 1 illustrates the power flow diagram of charging stations with solar-integration.
The charging socket receives energy from both the solar panel and the grid, and then
delivers it to the EVs. In this model, we employ a linear programming approach to
minimize net electricity consumption costs, which only occur when the charging demand
exceeds the available solar renewable energy.

Figure 1. On-site solar-integrated charging station model.

Decision variables:

• Yi,t ≥ 0: Charging power (kW) of EV i at time t.
• S+

t ≥ 0: Auxiliary variable representing the positive part of the net load at time t,
that is

S+
t = max

{
N

∑
i=1

Yi,t − Rt, 0

}
. (1)

• Rt: The amount of solar energy used at time t.

Objective Function:

min
Y, S+ , R

T

∑
t=1

pgrid
t S+

t ∆t, (2)

where S+
t is used to linearize the expression

(
∑N

i=1 Yi,t − Rt

)
.

The solar contribution Rt is computed as follows:

Rt = Apv
G(t)
1000

ηpv, (3)

where

• Apv indicates the area of the PV panels in m2;
• G(t) indicates the solar irradiance in W/m2;
• ηpv is the efficiency of the PV panels.

Constraints:
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1. Each EV i must be charged with at least the minimum required energy Li through-
out its available period Ti. Here, η is the charging efficiency, Yi,t is the charging
power at time t, and ∆t is the length of each time interval. This requirement can be
expressed as

η ∑
t∈Ti

Yi,t ∆t ≥ Li, ∀i. (4)

2. The charging power of each EV at time t must not exceed the maximum power limit
si that the station provides. However, the actual available power is scaled by the
fraction of the time interval during which the EV i is connected, denoted by At,i.
For example, if the EV is connected only for 10 min in an hour (i.e., At,i = 10

60 ),
then the maximum available charging power becomes si × 10

60 . When the EV is not
connected (i.e., At,i = 0), no charging power is provided, ensuring that Yi,t = 0. This is
modelled by

Yi,t ≤ si At,i, ∀i, ∀t. (5)

3. The total charging power from all EVs at time t must not exceed the maximum grid
capacity Cgrid after subtracting the renewable energy Rt:

N

∑
i=1

Yi,t − Rt ≤ Cgrid, ∀t. (6)

4. The variable S+
t represents the additional power to be purchased from the grid if the

total charging power exceeds Rt. When renewable energy sufficiently supplies the
EVs, S+

t may be zero. It is ensured that the power purchased from the grid cannot
be negative:

S+
t ≥ 0, ∀t. (7)

5. Finally, the solar energy Rt cannot exceed its maximum available limit R̄t at each time
and it must be greater than or equal to 0:

0 ≤ Rt ≤ R̄t, ∀ t. (8)

Database:
We obtained detailed charging session information from 2018 to 2019 from ACN

Data—a public dataset on electric vehicle (EV) charging collected through a collaboration
between the PowerFlex System and the California Institute of Technology (Caltech) [15].
This dataset comprises detailed information on EV charging sessions at two distinct loca-
tions: the Caltech campus and the Jet Propulsion Laboratory (JPL) campus. The JPL site is
representative of workplace charging, whereas Caltech represents a hybrid of workplace
and public charging.

We selected hourly electricity price data for Spain corresponding to the same period
as the charging data, sourced from Ember—European Wholesale Electricity Price Data [16].

Hourly irradiance data were obtained from the EU Science Hub [17] for the
same period. We assume that Gt represents G(i) [W/m2]—the global in-plane irradi-
ance with a slope of 36◦ and an azimuth of 0◦—with Madrid, Spain, chosen as the
representative location.

Lastly, Table 1 shows the values of the constant parameters used during the simulation.
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Table 1. Constant values used in the simulation.

Parameter Value

Cgrid 300 kW
η 0.9
ηpv 0.2
Apv 80 m2

si (Caltech) 86 kW
si (JPL) 37.5 kW

4. Proposed Methodology
To account for uncertainty in the electricity price, we model the grid price at time t as

pgrid
t = p̂t + ∆pt, (9)

where p̂t is the nominal electricity price and ∆pt represents the deviation from this nominal
value. We assume that the deviation is bounded as

|∆pt| ≤ ∆pt, ∀t. (10)

To avoid an overly conservative solution—i.e., assuming that every time period experi-
ences the maximum deviation simultaneously—we adopt a budget of uncertainty Γ. The
uncertainty set for ∆p = (∆p1, . . . , ∆pT) is defined as

U =

{
∆p ∈ RT : |∆pt| ≤ ∆pt,

T

∑
t=1

|∆pt|
∆pt

≤ Γ

}
. (11)

The nominal electricity cost from the grid is given by

T

∑
t=1

pgrid
t S+

t ∆t =
T

∑
t=1

p̂t S+
t ∆t, (12)

where S+
t represents the purchased electricity (in kW) from the grid at time t. Under

uncertainty, the robust counterpart of the objective becomes a min–max formulation:

min
Y, S+ , R

max
∆p∈U

T

∑
t=1

(
p̂t + ∆pt

)
S+

t ∆t. (13)

This expression can be decomposed into the nominal cost and the additional cost resulting
from the uncertainty:

T

∑
t=1

p̂t S+
t ∆t + max

∆p∈U

T

∑
t=1

∆pt S+
t ∆t. (14)

4.1. Bertsimas–Sim Reformulation

We now reformulate the inner maximization problem:

max
∆p∈U

T

∑
t=1

∆pt S+
t ∆t, (15)
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subject to

|∆pt| ≤ ∆pt, ∀t, (16)
T

∑
t=1

|∆pt|
∆pt

≤ Γ. (17)

Here, the terms S+
t and ∆t are treated as fixed parameters. Following the approach of

Bertsimas and Sim [18], we introduce an auxiliary scalar variable λ ≥ 0 and auxiliary
variables µt ≥ 0 for all t = 1, . . . , T. The worst-case additional cost due to price deviation is
then equivalently expressed as

Γ λ +
T

∑
t=1

µt, (18)

subject to the dual feasibility constraints

µt ≥ ∆pt S+
t ∆t− λ, ∀t. (19)

4.2. Final Robust Optimization Model

Incorporating the Bertsimas–Sim reformulation into the full model, the robust opti-
mization problem is given by

min
Y, S+ , R,λ,µ

T

∑
t=1

p̂t S+
t ∆t + Γ λ +

T

∑
t=1

µt

s.t. µt ≥ ∆pt S+
t ∆t− λ, ∀ t,

λ ≥ 0, µt ≥ 0, ∀ t,

η ∑
t∈Ti

Yi,t ∆t ≥ Li, ∀ i,

Yi,t ≤ si At,i, ∀ i, ∀ t,

N

∑
i=1

Yi,t − Rt ≤ Cgrid, ∀ t,

S+
t ≥

N

∑
i=1

Yi,t − Rt, ∀ t,

S+
t ≥ 0, ∀ t,

0 ≤ Rt ≤ R̄t, ∀ t,

Yi,t ≥ 0, ∀ i, ∀ t.

Here, the term ∑T
t=1 p̂t S+

t ∆t represents the nominal electricity cost from the grid, while
Γ λ + ∑T

t=1 µt captures the worst-case additional cost under bounded price uncertainty. The
budget parameter Γ offers a flexible trade-off between protection against extreme scenarios
and conservatism in scheduling decisions.

4.3. Algorithm Development: An Online Implementation

The robust optimization model presented in the previous sections addresses the power
allocation problem in a static (offline) setting, assuming that all information about charging
sessions is known beforehand. However, in a real-world operational environment, charging
stations must operate dynamically (online), handling the random and continuous arrival
and departure of electric vehicles. To address this challenge, we develop an online control
algorithm based on the Model Predictive Control (MPC) methodology.

The MPC approach allows our optimization model to be applied in real-time. The core
idea is that, at each time step, the algorithm solves an optimization problem for a future
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prediction horizon but only executes the control action for the immediate next time step.
This process is repeated, enabling the system to continuously update and adapt to new
information. The specific algorithm is presented in Algorithm 1.

Algorithm 1 Online smart charging using MPC

1: Input: time horizon slots k = 0, 1, 2, . . . , re-solve interval ∆, electricity price pt, station
capacity Cgrid, efficiency η, slot length ∆t

2: Initialize: lastSolve← −∞
3: for k = 0, 1, 2, . . . do
4: for each new EV j arriving at k do
5: remDemandj ← Lj
6: end for
7: Vk ← {i | arrivali ≤ k < departurei ∧ remDemandi > 0}
8: if new arrival/departure at k or k− lastSolve ≥ ∆ then
9: T ← [k, . . . , maxi∈Vk (departurei)− 1]

10: (Y∗i,t, R∗t )← OPT(Vk, T) ▷ Call the robust optimization solver
11: lastSolve← k
12: end if
13: Rk ← R∗k ▷ Set solar power for the current slot
14: for all i ∈ Vk do
15: Yi(k)← Y∗i,k ▷ Apply the first step of the optimal plan
16: remDemandi ← max(0, remDemandi − η ·Yi(k) · ∆t)
17: end for
18: end for

The algorithm operates in a continuous loop over time slots k. At each slot, it performs
the following steps:

1. Handling new arrivals (Lines 4–6): When a new electric vehicle j connects to the
station at time k, the system initializes and records its remaining energy demand,
remDemandj, to be its total required energy Lj.

2. Re-optimization trigger (Line 8): Instead of re-solving the optimization problem
at every time slot (which is computationally expensive), we use a dual-trigger
mechanism. The optimization process is invoked only when one of the following
two conditions is met:

• Event-driven trigger: A new vehicle arrives or an existing one departs. This
ensures that the system reacts immediately to changes in charging demand.

• Time-driven trigger: A predefined time interval ∆ has passed since the last
optimization (k− lastSolve ≥ ∆). This ensures that the charging schedule is peri-
odically updated to reflect the changes in external factors, such as the electricity
price pt or the expected solar energy generation.

3. Solving the optimization problem (Lines 9–11): When triggered, the algorithm will

• Determine the set of vehicles currently at the station that still require
charging (Vk).

• Establish a prediction horizon T, starting from the current time k, and extending
to the latest departure time among all vehicles in Vk.

• Call the function OPT(Vk, T), which is the robust optimization model, to find
the optimal charging schedule Y∗ and solar energy usage plan R∗ for the entire
horizon T.

4. Execution and state update (Lines 13–17): This step embodies the MPC principle.
Instead of applying the entire calculated schedule Y∗, the algorithm only executes the
first step of the plan:
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• It assigns the charging power Yi(k) for each vehicle i and the solar energy usage
Rk only for the current time slot k.

• It then updates the system’s state by reducing the remaining energy demand
remDemandi of each vehicle based on the actual energy delivered in that time
slot (η ·Yi(k) · ∆t).

By repeating this cycle, the algorithm enables the charging station to continuously
optimize its operations dynamically, ensuring cost-effectiveness while adapting to the
unpredictable nature of real-world EV charging sessions.

5. Results and Discussion
5.1. Experimental Setup and Baselines

We evaluate the proposed robust LP controller in a receding-horizon loop against
three baselines that reflect common practice and stronger algorithmic alternatives:

• FCFS (first come, first served). Power is allocated according to arrival order without
considering real-time prices. At time t, the power to EV i is Xti = min

(
si, Lres

i , Cres
t

)
,

where si is the connector limit, Lres
i is the remaining energy of EV i, and Cres

t is the
station’s remaining capacity. If Cres

t = 0, subsequent arrivals must wait.
• Greedy price-first (PV-aware). A myopic heuristic that uses all available PV first, then

fills the residual demand with grid energy starting from the lowest-price slots subject
to per-connector and station limits. Implementation details are provided in as shown
in Algorithm A1 in Appendix A.

• DRL (DQN) Baseline. A Deep Q-Network policy that, at each slot, chooses binary
per-EV grid on/off decisions while PV is allocated greedily. The state aggregates
price, PV, grid capacity, and session features; the reward is the negative electricity cost
with penalties for unmet energy at departure. Training and update rules appear in as
shown in Appendix B.

All methods are evaluated on the same arrivals/departures, PV profiles, price signals,
and physical limits. Unless otherwise specified, the robustness budget Γ in our controller is
fixed across months.

5.2. Monthly Cost Comparison

Figure 2 reports monthly electricity costs from 25 April 2018 to 31 December 2019 for
the three methods. The proposed LP attains the lowest cost in every month, outperforming
both Greedy price-first and DRL (DQN). Over the entire horizon, the LP reduces total cost
by 17.5% relative to Greedy and by 12.2% relative to DQN, with typical monthly savings of
EUR 233 and EUR 153, respectively. Improvements are pronounced in shoulder/winter
periods when PV is scarce, indicating more effective price-aware scheduling. Late-summer
2018 shows the highest absolute costs across all methods, but the LP still maintains a
consistent advantage.

5.3. Weekly Cost Distribution

To examine distributional properties, Figure 3 shows weekly cost box plots for the
same period. The LP exhibits the lowest median and a visibly narrower interquartile range
(IQR) than both baselines, demonstrating lower volatility week-to-week. The upper whisker
is also shorter for the LP, indicating fewer extreme high-cost weeks. These distributional
results complement the monthly aggregates by showing that the LP improves both the
central tendency and the tail behavior of operating costs.
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Figure 2. Monthly electricity costs for LP (ours), Greedy price-first, and DRL (DQN) from 2018 to 04
to 2019-12.

Figure 3. Weekly cost distribution for LP (ours), Greedy price-first, and DRL (DQN) from 2018-04
to 2019-12.

5.4. Comparing Total Power Allocation Based on Price Fluctuation

The temporal allocation patterns explain the observed savings. The panels in Figure 4
compare total charging power across a representative day under varying prices. The LP con-
centrates charging in low-price valleys and throttles during peaks, while non-price-aware
allocation (e.g., FCFS) often consumes grid energy during expensive hours, driving up costs.
For example, at Caltech, around 02:00 on 7 September 2018 (price ≈ 55 EUR/MWh), the
LP schedules substantially more energy than FCFS; the latter compensates later at higher
prices, resulting in unnecessary expenditure. Similar dynamics appear at JPL around 00:00
on 2 May 2019. Overnight charging windows are particularly advantageous for the LP due
to sustained low prices.

5.5. Additional Observations

The analysis is consistent with site-specific comparisons against FCFS using the
ACN data: at Caltech (25,981 sessions), cost reductions ranged from ∼10 to 14% in early
months to larger gains in periods with pronounced price spikes; at JPL (22,185 sessions),
savings ranged from ∼6.2% to ∼19.2%. A marked decline in charging activity after
1 November 2018 at Caltech corresponds to a tariff change (introduction of a 0.12 USD/kWh
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fee), which reduces demand and lowers absolute costs for all methods while preserving the
LP’s relative advantage.

Figure 4. Comparing total power allocation based on price fluctuation.

5.6. Sensitivity Analysis on the Robustness Parameter Γ

The budget of uncertainty, Γ, is a critical parameter that allows the decision maker
to control the trade-off between the nominal cost and the level of protection against price
volatility. A value of Γ = 0 corresponds to the nominal, non-robust optimization, where
price uncertainty is ignored. As Γ increases, the solution becomes more conservative,
protecting against worst-case price deviations across a larger number of time periods.

To analyze this trade-off, we performed a lightweight sensitivity analysis on a repre-
sentative one-week period from the Caltech dataset, which includes 215 charging sessions.
We ran our optimization model with three distinct values for Γ: 0 (nominal), 15 (mod-
erate), and 30 (conservative). The results, summarized in Table 2, illustrate the “price
of robustness.”

Table 2. Sensitivity analysis of total cost for a representative week with varying Γ.

Γ Robustness Level Nominal Cost (EUR) Worst-Case Cost (EUR) Cost Increase (%)

0 None (Nominal) 550.25 685.50 0%
15 Moderate 561.50 610.75 2.04%
30 Conservative 575.80 589.10 4.64%
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As shown in Table 2, increasing Γ from 0 to 30 leads to a modest 4.64% increase
in the planned nominal cost. This increase represents the premium paid to safeguard
against uncertainty. In return, the worst-case cost—the maximum potential cost under the
most adverse price fluctuations allowed by the uncertainty set—is significantly reduced
by approximately 14%. This demonstrates the effectiveness of the robust optimization
framework: for a small, predictable increase in the base operational cost, the model provides
substantial protection against unforeseen price spikes, thereby reducing financial risk for
the charging station operator.

5.7. Computational Performance

For the proposed online scheduling framework to be practical, the optimization
problem must be solvable within a reasonable timeframe. We evaluated the computational
performance of our MPC algorithm (Algorithm 1) on a standard laptop (Intel Core i7, 16 GB
RAM) using Python 3.12.2 with the Gurobi solver. The primary factor influencing the
solving time is the number of active EVs (|Vk|) at the station. Table 3 reports the average
time required to solve the optimization problem for varying the numbers of concurrent EVs.

Table 3. Average solve time per optimization instance.

Number of EVs Average Solve Time (Seconds)

10 0.52
25 1.85

50 (peak load) 4.73

The results indicate that the model is computationally efficient. Even under peak load
conditions with 50 concurrent EVs, the optimization problem is solved in under 5 s. This
runtime is well within the practical limits for an online system where re-optimization may
be triggered every 5–15 min or upon a new event. The performance demonstrates that the
proposed framework is not only theoretically sound but also computationally feasible for
real-world deployment.

6. Limitations and Future Work
While the proposed robust optimization framework demonstrates significant cost

savings and computational efficiency, several limitations present opportunities for
future research:

1. Modeling of uncertainty: The current model robustly handles uncertainty in electricity
prices but treats other key variables as deterministic. A primary area for extension is
to incorporate uncertainty in solar (PV) generation forecasts and EV behavior, such
as unexpected early departures or changes in energy demand. Methodologies like
stochastic programming or more advanced distributionally robust optimization (DRO)
could be employed to create a more comprehensive model that accounts for these
multiple sources of uncertainty.

2. Scope of objectives: The optimization objective is focused solely on minimizing the
direct operational electricity cost. Future work could explore a multi-objective frame-
work that balances cost with other important goals. These could include minimizing
battery degradation for EVs, maximizing user satisfaction, or providing ancillary
services to the grid.

3. System boundaries: The model optimizes the operation of a single charging station.
An important research direction is to extend this framework to a network of charging
stations, considering grid-level constraints and coordinated charging strategies.
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4. Comparison with advanced learning methods: While the LP model outperformed the
DQN baseline, future research could involve benchmarking against more sophisti-
cated deep reinforcement learning (DRL) agents using continuous action spaces (e.g.,
soft actor–critic, SAC).

7. Conclusions
This paper presents a robust optimization framework for scheduling EV charging at

stations with on-site solar generation, specifically designed to mitigate financial risks from
electricity price volatility. By leveraging the Bertsimas–Sim reformulation, we developed
a tractable linear programming model solved within a model predictive control loop,
enabling practical, online implementation.

Our simulation results, based on real-world data, confirm the effectiveness of our
approach. The proposed controller consistently outperforms common industry practices
and learning-based alternatives, achieving average total cost reductions of 17.5% compared
to a PV-aware Greedy heuristic and 12.2% compared to a DRL agent. Our method also
demonstrates superior performance in reducing cost volatility.

Furthermore, the framework’s practicality is validated through sensitivity and compu-
tational analyses. The model offers a flexible trade-off between cost and risk protection and
is computationally efficient enough for real-time deployment, solving complex problems in
under five seconds. In summary, this work delivers a tractable, economically advantageous,
and risk-aware solution for managing modern EV charging infrastructure.
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Appendix A. Greedy PV-First Heuristic
Appendix A.1. Description

The Greedy PV-first algorithm serves as a simple, non-price-aware baseline. Its policy
is to maximize the use of available solar (PV) energy at every time step. Specifically, it
allocates available PV power as evenly as possible among all connected EVs. If the PV
supply is insufficient to meet their charging needs, it then draws power from the grid to
fill the remaining demand, up to the station’s grid capacity limit (Cgrid). This allocation
strategy is myopic and completely ignores electricity price signals.

https://ev.caltech.edu/dataset
https://ember-energy.org/data/european-wholesale-electricity-price-data/
https://joint-research-centre.ec.europa.eu/photovoltaic-geographical-information-system-pvgis/pvgis-tools/hourly-radiation_en
https://joint-research-centre.ec.europa.eu/photovoltaic-geographical-information-system-pvgis/pvgis-tools/hourly-radiation_en
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Appendix A.2. Rationale

This heuristic is included because it represents a common “renewables-first” policy
that is intuitive and easy to implement in practice. It provides a useful lower bound for
evaluating the economic benefits of more sophisticated, price-aware optimization strategies.

Appendix A.3. Key Characteristics

• Advantages: Fully utilizes on-site renewable generation and is computationally trivial,
requiring no optimization solver.

• Limitations: Its obliviousness to electricity prices can lead to high operational costs,
especially if grid power is consumed during peak price periods. It also does not
account for fairness or differing urgency among EVs (e.g., imminent departure times).

Algorithm A1 Greedy PV-first heuristic

1: Input: Time slots k = 0, 1, 2, . . . , station capacity Cgrid, charging efficiency η, slot
duration ∆t

2: for k = 0, 1, 2, . . . do
3: Update set of active EVs Vk = {i | EV i is present and requires charging}
4: Initialize available power: PPV ← R̄k, Pgrid ← Cgrid

▷ Phase 1: Allocate available PV power
5: for each EV i ∈ Vk do
6: Calculate power needed: Pneed,i ← min(smax

i , remDemandi/(η∆t))
7: Allocate shared PV: Yi,PV ← min(Pneed,i, PPV/|Vk|)
8: Yi(k)← Yi,PV
9: end for

10: Update remaining PV: PPV ← PPV −∑i∈Vk
Yi(k)

▷ Phase 2: Fill remaining demand with grid power
11: for each EV i ∈ Vk do
12: Calculate remaining need: Prem_need,i ← Pneed,i −Yi(k)
13: if Prem_need,i > 0 and Pgrid > 0 then
14: Allocate grid power: Yi,grid ← min(Prem_need,i, Pgrid)
15: Yi(k)← Yi(k) + Yi,grid
16: Update remaining grid capacity: Pgrid ← Pgrid −Yi,grid
17: end if
18: end for

▷ Phase 3: Update system state
19: for each EV i ∈ Vk do
20: remDemandi ← max(0, remDemandi − η ·Yi(k) · ∆t)
21: end for
22: Rk ← ∑i∈Vk

Yi(k)−max(0, ∑i∈Vk
Yi(k)− Cgrid) ▷ Total PV used

23: S+
k ← max(0, ∑i∈Vk

Yi(k)− Rk) ▷ Total grid power drawn
24: end for

Appendix B. Deep Reinforcement Learning (DQN) Baseline
Appendix B.1. Description

This baseline uses a deep Q-network (DQN) agent to learn a charging policy. At each
time step, the agent makes a binary (on/off) decision for each EV regarding whether it
should receive power from the grid. Similarly to the Greedy heuristic, available PV energy
is always prioritized and allocated first. The DQN’s goal is to learn a sequence of actions
that minimizes total electricity costs while ensuring that all EVs are fully charged by their
departure times.
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Appendix B.2. Markov Decision Process (MDP) Formulation

• State (sk): A vector representing the system at time k, including the current electric-
ity price (pk), available PV generation (R̄k), total grid capacity (Cgrid), and features
for each active EV (e.g., remaining energy demand, connector power limit, time
until departure).

• Action (ak): A vector of binary decisions zi ∈ {0, 1} for each EV i, where 1 indicates
enabling grid charging and 0 indicates disabling it.

• Reward (rk): The reward is the negative electricity cost incurred in a time step:
rk = −pkS+

k ∆t. A large negative penalty is applied if an EV departs with unmet
energy demand, encouraging the agent to prioritize service completion.

Appendix B.3. Training and Deployment

The DQN agent is trained offline using historical data (Algorithm A2). During deploy-
ment (Algorithm A3), the trained network selects the optimal action at each step based on
the current state.

Algorithm A2 DQN training for EV charging

1: Initialize replay memory D, Q-network Qθ , and target network Qθ̄ with θ̄ ← θ
2: for each episode do
3: Reset the environment (load new arrivals, prices, PV profiles)
4: for each time step k do
5: Observe state sk
6: Select action ak using an ϵ-Greedy policy based on Qθ(sk, a)
7: Execute action ak: allocate PV first, then allocate grid power based on binary

decisions
8: Observe reward rk and next state sk+1
9: Store transition (sk, ak, rk, sk+1) in D

10: Sample a random minibatch of transitions from D
11: Perform a gradient descent step on (yj −Qθ(sj, aj))

2 to update θ

12: Periodically update the target network: θ̄ ← θ
13: end for
14: end for

Algorithm A3 DQN deployment (inference)

1: Load trained Q-network parameters θ
2: for each time step k do
3: Observe current state sk
4: Choose action ak = arg maxa Qθ(sk, a)
5: Apply charging rates based on ak and update system state
6: end for

Appendix B.4. Hyperparameters and Training Setup

The hyperparameters used for training the DQN agent are listed below.

Training Episodes: 5
Discount Factor (gamma): 0.98
Learning Rate: 1e-3
Batch Size: 128
Replay Buffer Size: 50,000
Epsilon Start: 0.2
Epsilon End: 0.05
Epsilon Decay Steps: 2000
NN Hidden Dimensions: 64
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Unmet Demand Penalty: 1e6

Appendix B.5. Ablation Study: Training Budget vs. Performance

We analyzed the impact of the training budget (number of episodes) on the DQN
agent’s performance. The results are summarized in Table A1.

Table A1. Effect of the training budget on DQN performance. “Savings” are calculated relative to the
Greedy PV-first baseline cost. “Deficit” refers to the total unmet energy demand at departure across
all sessions.

Episodes Runtime DRL Cost
(EUR) Savings (%) Deficit (kWh)

2 00:00:22 3276 13.23% 2866.06
5 00:00:37 3596 4.75% 894.81
10 00:01:00 3642 3.54% 686.62
15 00:01:50 3753 0.59% 97.87
20 00:02:30 3767 0.22% 2.09

Interpretation

The results show a clear trade-off between cost optimization and service quality (i.e.,
minimizing the energy deficit). With very few training episodes, the agent learns a cost-
saving policy but fails to reliably charge all vehicles. As the number of episodes increases,
the large penalty for unmet demand forces the agent to prioritize service completion,
significantly reducing the energy deficit to near zero. However, this comes at the cost of
less aggressive price-aware scheduling, causing its economic performance to converge
towards that of the simpler Greedy PV-first baseline. This suggests that achieving a better
balance may require tuning the penalty term or adopting a constrained reinforcement
learning formulation.
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