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Abstract

This article presents the results of research on the potential development of offshore wind
energy in Poland. Wind energy generated in offshore farms is intended to be the second
pillar (alongside nuclear power) of Poland’s energy transition, creating the foundation for a
zero-emission energy system. The authors constructed a neural network that allowed them
to forecast the development of the installed offshore energy capacity for Poland by 2030. For
this purpose, the factors that have the greatest impact on the development of wind energy
in Poland were identified. This knowledge will facilitate the development of state policy
consistent with the Sustainable Development Goals (SDGs) and the European Green Deal.
Since Poland currently does not have installed offshore wind energy capacity, Germany
was used as a benchmark to train the model. The research results fill the identified gap: to
date, forecasts of offshore development in Poland based on a model trained on German
data have not been presented in the literature. The research results show that by 2030,
Poland can achieve the goals set by the United Nations, the European Union, and the Polish
Energy Policy 2040 (PEP2040). The PEP2040 assumes that Poland should have 5.9 GW of
energy installed in offshore wind farms in the Baltic Sea by 2030. The forecast indicates
that this will be approximately 5.3 GW, with the difference between these values remaining
within the model’s margin of error.

Keywords: offshore wind energy; LSTM model; SVR model; energy transition

1. Introduction
The United Nations Agenda for Sustainable Development and the Sustainable De-

velopment Goals (SDGs), adopted in 2015, provide guidelines for member states on the
path to developing stable economies that guarantee a prosperous life for their populations
and eliminate all forms of poverty and inequality. However, in striving to achieve the
SDGs, countries must consider a key aspect, which is climate protection. There are 17 SDGs,
and one of them is Goal 7: Ensure access to affordable, reliable, sustainable and modern
energy for all [1,2]. Achievement of Goal 7 is to be accomplished by increasing the share of
renewable energy sources, developing clean energy infrastructure, and cooperating with

Energies 2025, 18, 5380 https://doi.org/10.3390/en18205380

https://doi.org/10.3390/en18205380
https://doi.org/10.3390/en18205380
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-5945-7991
https://orcid.org/0000-0003-3752-2155
https://orcid.org/0000-0003-4736-3039
https://doi.org/10.3390/en18205380
https://www.mdpi.com/article/10.3390/en18205380?type=check_update&version=1


Energies 2025, 18, 5380 2 of 21

UN member states in order to exchange knowledge and technology. This goal is consistent
with the energy transition guidelines in force in the EU. Transformation in the EU is being
implemented through a number of acts, primarily the European Green Deal [3,4], the Fit
for 55 package, including the Radio Equipment Directive (RED) [5,6], and the REPowerEU
Plan [7]. These assume achievement of climate neutrality by 2050, reducing emissions by
55% by 2030, and increasing the share of renewable energy sources in EU countries’ energy
mixes to 45% by 2030. Wind energy is expected to play a key role in the energy transition
process, replacing energy from fossil fuels, including those imported from the Russian
Federation. Particular optimism is associated with offshore wind energy, where the EU is
already a leader. Offshore wind farms are perceived as sustainable resources that do not
generate public resistance. The development of offshore wind energy in the EU is expected
to be further accelerated by focusing on developing transmission networks and simpli-
fying the issuance of permits for their construction [8]. The Fit for 55 package presents
offshore wind energy as a means of achieving the EU CO2 emission reduction targets. The
development of wind energy in the Baltic Sea will be of particular importance [9].

In Poland, the implementation of the SDGs and the energy transition is being carried
out according to the documents mentioned above. The national document guiding the
energy transition is the Polish Energy Policy until 2040 (PEP2040) [10,11]. This document
also presents renewable energy as a key element of developing a low-emission economy,
ensuring energy security, and thus fulfilling commitments to the EU and the United Nations.
PEP2040 identifies solar and wind energy as the main sources of renewable energy. Wind
energy is divided into two sectors: offshore wind and onshore wind. Onshore wind energy
is expected to continue to grow in Poland, but it is assumed that this growth will be
moderate. However, offshore wind farms are considered particularly important for the
growth of renewable energy in Poland’s energy generation structure due to the greater
potential of strong and stable winds in the Baltic Sea [12]. Offshore energy also benefits
from the favorable location, the limited public resistance, and the lack of problems with
wind turbine proximity to buildings. In Poland, wind turbine proximity to buildings has
been controversial, and the Distance Act and the 10H rule have significantly slowed the
development of onshore energy since 2016.

Offshore wind energy is expected to be the second pillar (alongside nuclear energy)
of Poland’s energy transition, forming the basis for a zero-emission energy system. It is
assumed that a key element of this transition is the building of an offshore wind farm capac-
ity with an installed capacity of approximately 6 GW by 2030 and 11 GW by 2040 [10,13].
To confirm these assumptions, it is necessary to build a reliable mathematical model, but
the literature on the subject lacks such studies. Therefore, in this article, the authors present
a methodology to forecast the development of the installed offshore wind energy capacity
by 2030. Research was carried out in the following steps:

• Determination of a set of explanatory variables that may influence the development of
wind energy in Poland and data standardization.

• Verification of the set, selection of those variables whose statistically significant influ-
ence was confirmed using multiple regression.

• Selection of a benchmark for Poland. Since Poland currently has no installed capacity
in offshore farms, it was necessary to select a set of data on which the forecasting
model could be trained.

• Application of the support vector regression (SVR) machine learning model to forecast
explanatory variables regarding Poland until 2030.

• Introduction of explanatory variables for the benchmark and Poland into the LSTM model.
• Construction of an LSTM model and training it on data from Germany.
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• Introduction of a set of explanatory variables into the LSTM model and creation of a
forecast for the installed capacity of Poland until 2030.

• Model verification, determination of error metrics, and analysis of model residuals.
• Creation of a forecast for the development of installed offshore energy capacity until 2030.

2. Literature Review
Poland began developing its installed wind energy capacity in 2001. By 2024, it had

installed wind energy capacity on 1400 onshore farms [14]. Capacity growth in Poland
was often slowed by legislative changes and modifications of wind energy financing
programs [15]. Until 2016, the wind energy sector was developing dynamically, but there
was no comprehensive renewable energy development strategy that precisely defined the
grid development, connections, and farm locations. The primary mechanism to support
the development of renewable energy was based on green certificates [16], whose price
drops negatively affected the profitability of planned investments. In 2016, the Wind
Energy Investment Act was introduced. It included very detailed and inflexible provisions
regulating the distance of wind turbines from residential buildings [17]. This distance
was to be at least ten times the height of the wind turbine. This led to a slowdown in the
development of onshore wind farms in Poland. Those that were built were often approved
before the aforementioned act came into force. Further impetus for the development of
wind farms came from the amendment of the act in 2023 and the changes scheduled for
2025. The possibility of implementing investments was to be regulated by municipalities,
which ultimately had the power to decide on their spatial development plans.

The largest number of offshore wind farms in Poland are located in the West Pomera-
nian Voivodeship (2188 MW) and the Pomeranian Voivodeship (1326 MW) [18]. This is
due to several factors, primarily favorable wind conditions. Therefore, coastal zones are
classified as Zone I in the five-zone division of Poland and are defined as exceptionally
favorable because the typical wind speeds are in the range of 10–25 km/h. These speeds
guarantee high turbine productivity, while being safe for the equipment. Access to open
spaces, sparsely populated areas, developed transmission grid, and the support of local
authorities also support the development of wind energy. The problems that have so far
slowed its development in Poland can be solved by building offshore wind farms. Poland
is in a privileged position in this regard, as it has access to the Baltic Sea, which along with
the North Sea, is expected to become the main location for wind energy production in the
EU. The Baltic Sea enjoys favorable conditions, mainly higher wind speeds than on land,
averaging around 10 m/s [19], a favorable wind direction, and a favorable average water
depth of 42 m. Construction of the first offshore wind farm in Poland, Baltic Power, began
in 2024 [20], and its commissioning is planned for 2026. Ultimately, it is expected to deliver
more than 1 GW of energy from 100 turbines. Subsequent projects to be implemented in the
coming years include Baltic I, II, and III. Their combined capacity is expected to be 3 GW,
with the first turbines scheduled to be commissioned in 2027. The first stage of the Baltica
project is also scheduled to be completed the same year. Ultimately, the farm is expected to
have a capacity of 2.5 GW by 2030 [21].

Knowledge about the future development of offshore wind energy will be crucial for
shaping Poland’s energy mix. Determining the expected installed capacity in the coming
years will allow effective planning of the country’s energy strategy. This strategy must
consider the ability to ensure energy security while also addressing the EU climate goals
and sustainable development guidelines. A credible offshore wind farm development
plan will help potential investors in making their strategic decisions about participating
in the projects. Such strategic decisions require reliable data on which to base decisions
with long-term consequences. Local governments must also be adequately prepared to
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allow the construction of offshore wind farms in line with their established strategies.
This requires appropriate spatial planning, the designation of areas for potential investors,
the preparation of ports, and the training of officials to support the management of the
energy transition. The development of wind energy in the Baltic Sea will also require
access to qualified personnel, who will first provide the foundation for the construction
of potential investments and ensure the maintenance and repair of the most trouble-
free infrastructure. The presence of such specialists in the labor market also requires
planning, educational institutions preparing appropriate study and vocational training
profiles, and research centers preparing them to carry out work on wind technology.
Educating the public, especially local communities, in areas where technology is to be
implemented is also invaluable. Citizens must be aware of both the potential threats and
the consequences of wind farm construction and the benefits they will bring. The more
such positive outcomes of introducing offshore wind farms into the energy mix can be
demonstrated to citizens, the less resistance they will have to such a change. The main
advantages include affordable clean energy, reduced emissions of substances harmful to
human health and the environment, energy security in terms of access to energy when
needed, in the required quantity and at an acceptable price, and the tax impact of wind
companies on municipal budgets and new jobs. The disadvantages that local communities
may perceive in using offshore wind farms are significantly limited compared to onshore
wind farms. The farms are far enough from the coastline (usually 30 km) that they do
not disturb the landscape, and the community will not be affected by the turbine noise.
However, it is important to remember that resistance in this case can arise from ignorance,
so public education will play a key role.

All these activities, however, require knowledge acquired well in advance, which will
allow the preparation of financial resources, land, infrastructure, specialists, and a positive
public attitude toward the implementation of offshore wind farms. To build forecasts
for offshore wind farms in Poland, it is necessary to use a benchmark. This will enable
training of the forecasting model on data from the model country and then generation of
predictions using explanatory variables specific to Poland. Germany was chosen as the
representative country that would serve as a reference point for Poland. Germany has
followed a long path in implementing renewable energy sources, which began in the late
1980s. In 1991, their development was accelerated by the Stromeinspeisungsgesetz, which
aimed to support and promote the development of renewable energy sources [22]. Then,
in 2000, the German parliament established a plan to change the energy mix, from which
nuclear energy was to be phased out and replaced by renewable energy. The Erneuerbare-
Energien-Gesetz Act (EEG) introduced additional support mechanisms for renewable
energy, including wind energy. It was amended several times. The 2014 version modified
the subsidy mechanism for renewable sources, but wind energy, especially offshore wind
energy, remained a priority in the energy development support mechanism [23]. In 2017,
WindSeeG [24] came into force, regulating the development of offshore installations until
2045. Its immediate goal is to increase the share of offshore energy in three stages: 30 GW by
2030, 40 GW by 2035, and 70 GW by 2045. Power lines are to be developed simultaneously
with farms, requiring coordination of the permitting process, installation planning, and
commissioning. All legal actions taken have been translated into concrete achievements.
The first offshore wind farm in Germany was built in the North Sea and launched in 2010.
It consisted of 12 turbines with a total capacity of 60 MW. Currently, Germany leads the
EU in the development of offshore wind energy, with 32 farms [25], consisting of more
than 1000 turbines in the North Sea, with a total capacity of 7.4 GW. The annual growth
in the generation capacity is over 20%. The first German Baltic Sea wind farm, Baltic 1,
was built in 2011, and currently there are six farms with a capacity of 1.5 GW. By 2024,
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34% of offshore wind farms in the EU were installed in Germany [26,27]. Germany’s
energy strategy assumes that offshore wind farms are to be one of the pillars of the energy
transition, and it should be remembered that by 2030, 80% of Germany’s energy is to come
from renewable sources. Therefore, Germany was assumed to represent the most adequate
model for offshore wind energy development in Poland, and therefore, data from this
country can be used to train a forecasting model. Numerous studies have been conducted
on forecasting wind energy production [28] and installed wind energy capacity [29]. Wind
energy has been forecasted in many ways, including long-term forecasts [30], annual
forecasts [31], immediate–short-term forecasts with a horizon of up to 8 h, and short-term
forecasts, where forecasts are prepared for a single day [32]. Forecasts can also be divided
according to the methodology used, including deterministic, which considers weather data
such as atmospheric pressure, temperature, and wind speed [33]. Statistical and mixed
models are also used. The statistical approach is based on historical data; for example,
the volume of energy production without taking into account weather data [34]. Various
mathematical models have been used to forecast wind energy, including simple models,
such as linear and nonlinear regression models [35–37], ARIMA models [38], Kalman
filter [39], ARCH [40], and fuzzy logic [41], and machine learning models, such as the SVM
model [42] and neural networks in various forms [43]; for example, multi-layer perceptron
(MLP) [44], back propagation neural network (BPNN) [45], generalized regression neural
network, deep neural network DNN [46], convolutional neural network [47], deep belief
network (DBN) [48] and the long short-term memory (LSTM) model [49,50], which is a
recurrent neural network model developed in 1997 during one of the booms in artificial
intelligence development. It is one of the deep learning models.

Deep learning is a subset of machine learning. It uses neural networks modeled
on the human brain, which allows these models to learn [51]. Deep learning models
(DNNs) [52] mainly include recurrent neural networks (RNNs) [53], convolutional neural
networks (CNNs) [54], and feedforward neural networks (FNNs) [55]. CNNs enable the
analysis of temporal data, while RNNs analyze time series and sequential data [56]. FNN
models are characterized by a simple structure. They are suitable for analyzing statistical
data but not time series. FNNs can also be susceptible to overfitting, lack sequential
memory, and face the vanishing gradient problem [57]. RNN models allow for the analysis
of temporal dependencies and hidden state transfer [58]. They are flexible and can be
applied to data with different sequences [59]. The main drawback of these models is the
difficulty of capturing very-long-term dependencies, which has been addressed in the
case of LSTM models, which require a large amount of memory and computational power
when analyzing long sequences [60]. In the case of CNN models, their construction can be
simplified due to weight sharing [61]. Trained on large datasets, they can be used to analyze
new datasets with limited data (fine-tuning) [62]. However, CNN models require a large
amount of labelled data to avoid overfitting [63]. Training a model with multiple layers
also requires large amounts of memory and time [64]. The LSTM model is a special type
of RNN. The model was built to eliminate the phenomenon of exploding and vanishing
gradients, a fundamental problem for RNNs. A special mechanism of memory cells and
LSTM gates allows the model to store information in multiple time steps, allowing it to
represent long-term dependencies. These gates store only important data, so the model acts
as a filter, eliminating random and momentary data variations. The LSTM model has been
used successfully in various industries, including medicine [65], economics, finance [66],
music [67], and even energy [68,69]. The model is extremely versatile, particularly when
it comes to forecasting wind energy. It allows for forecasting hourly, daily, and weekly
production, as well as the expansion of the installed capacity over a yearly horizon.
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The literature offers numerous examples that compare the LSTM model with classical
statistical models, such as the ARIMA model. The forecasts constructed using the LSTM
model were found to achieve RSME errors up to 87% lower than those of the ARIMA
model [70]. A comparison of the LSTM model with the artificial neural network (ANN)
model also indicates its advantage, with the mean absolute percentage error (MAPE) errors
being 15% lower [71,72].

Due to the abovementioned advantages, the authors used the LSTM model to forecast
the installed capacity of offshore wind farms for the next 5 years, that is, until 2030.

The discussion on offshore energy in Poland conducted so far has focused mainly on
social aspects [73], economic aspects [74], public opinion on offshore energy [75], wind
energy production volumes in offshore farms [76], challenges for wind energy development
in light of PEP2040 [77], legislative aspects [78], and, for example, the characteristics of
competitiveness and uncertainty in the production of hydrogen from wind energy [79].
The modeling proposed by the authors was intended to fill a gap in the scientific literature
on the forecasts of the installed wind energy capacity in Poland. The literature contains
numerous studies on forecasting installed wind energy capacity, but there is a lack of
research using transfer learning for Poland, that is, training a neural network model on
data from a country with mature offshore infrastructure. The methods used in the current
research are presented below.

3. Methods
The analysis utilized a Java program written by the authors, consisting of the following

modules: multiple regression, LSTM, SVR model, and model validation and verification
module. The deeplearning4j, Weka, and Apache libraries were used.

Before building the forecasting models, explanatory variables were selected. For this
purpose, multiple regression was used, as described by the following formula:

z = β0 + β1x1 + · · ·+ βixi + ε (1)

where:
βi—regression coefficient,
ε—variable random,
xi—explanatory variables.
The regression coefficients βi indicate the direction and strength of the influence of

the explanatory variable on the dependent variable. However, to verify the statistical
significance of the parameters, it is necessary to conduct a Student’s t-test, which verifies
the following hypothesis:

H0 : βi = 0, which means that the xi variable has no significant effect on the explained
variable and the alternative hypothesis H1 : βi ̸= 0, which means that the variable has a
significant effect on the explained variable. The test statistic is described by the following
formula [80]:

ti =
β̂i

SE(βi)
(2)

where:
β̂i—estimator,
SE—standard error.
Based on the test statistic, a p-value is determined and compared with the significance

level α = 0.05. If p is greater than α, there is no basis for rejecting the null hypothesis, which
means that the effect is insignificant.
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Selected based on the βi values, xi were fed into an LSTM model [81]. The LSTM model
is composed of cells (blocks) that process the input data. Each cell contains an input, output,
and forget gate. The cells are connected recursively. A cell simultaneously processes the
input signal and the output from the previous instant from the other connected cells. If the
information is no longer useful in the forecasting process, it is removed by the forget gate:

ft = σ
(

W f ·[ht−1, xt] + b f

)
(3)

The current signal and the previous output signal at time t − 1 are multiplied by a
weight matrix at the gate and added as bias. This result is processed by a sigmoid activation
function. A computational result close to 0 results in the information being forgotten. A
result close to or equal to 1 leads to the information being retained for further computation.

The input gate allows information to be added to a state cell. The sigmoid function
regulates the information, and the tanh function creates an output vector containing values
between −1 and 1. The regulated values and the vector are multiplied, yielding only useful
information in subsequent steps. The input gate is described by the following formula:

it = σ(Wi·[ht−1, xt] + bi) (4)

The output gate generates a vector of values using the tanh function. The sigmoid
function filters the information, retaining what will be remembered. The results of the
vector and function are then multiplied. The result obtained serves as an output and input
for subsequent cells.

ot = σ(Wo·[ht−1, xt] + bo) (5)

where:
bo,i, f —bias with the forget gates,
[ht−1, xt]—the combination of the current input and the previous hidden state,
Wo,i, f —weight matrix associated with the forget gates,
σ—sigmoid activation function.
The cell state is updated according to the following equation:

Ct = ft·Ct−1 + it·
∼
Ct (6)

The data input into the LSTM model also had to be forecasted to enable forecasts of
the installed capacity in Poland by 2030. For this purpose, the SVR model was used [82].
Figure 1 presents a block diagram of the forecasting process.

The model is designed to determine a function f(x) that is simple and well fitted to the
processed data. The SVR model uses an insensitive loss function that allows the building of
simple and noise-resistant regression functions [83]. The SVR model solves the following
optimization problem [84,85]:

min
1
2
∥w∥2 + C

n

∑
i=1

(ξi + ξ∗i ) (7)

SVR model limitations:

yi − ⟨w, ϕ(xi)⟩ − b ≤ ε + ξi,⟨w, ϕ(xi) ⟩+ b − yi ≤ ε + ξ∗i ,ξi, ξ∗i ≥ 0, i = 1, . . . , n. (8)
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Figure 1. Block diagram of the forecasting process.

The regression function has the following form:

f x = wTϕx + b (9)

where:
w—coefficient vector in the feature space,
ϕx—kernel function to map input x to a vector in the feature space,
b—intercept,
C—hyperparameter C,
T—transposition,
ξi, ξ∗i —slack variables.
Mean error analysis was performed for the forecasts obtained by the models. The

absolute error (MAE) [86], the root mean square error (RMSE) [87], and the MAPE [88]
were determined according to the following formulas:

MAE =
∑n

i=1|et|
n

(10)

RMSE =

√
∑n

i=1 e2
t

n
(11)

MAPE =
∑n

i=1|et/yt|
n

(12)

where:
n—number of observations,
yt—value of the dependent variable in period t,
et—error forecasts.

4. Results
The research began by compiling a set of statistical data on the explanatory variables.

Factors that could influence the demand for wind energy were identified. These variables
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were determined through a literature analysis. Energy prices directly shape the break-even
point for investments [89]. The levels of household income will shape their ability to accept
the costs of energy transformation [90]. In turn, GDP levels influence the state’s ability to
invest in the development of renewable energy [91]. Decreasing the investment costs for
wind energy increases the profitability of projects and stimulates the development of this
sector. CAPEX is decreasing due to technological progress, which results in decreasing
kWh costs [92]. Rare earth elements are a key factor influencing the development of wind
technology, both financially and logistically. The limited resources of these critical metals
can reduce turbine production volumes [93]. Energy efficiency stimulates innovation in the
energy sector and increasing efficiency justifies investments in modern technologies [94].
Import dependence is a significant factor in the development of renewable energy. Coun-
tries are willing to invest in measures that reduce import dependence and increase energy
security [95]. The growing consumption of primary and renewable energy determines
the pace of renewable energy development [96]. The number of patents for renewable
energy stimulates the development of renewable energy, and the development of renew-
able energy stimulates innovation [97]. Wind energy directly results in a reduction in
greenhouse gas emissions [98]. Public spending on environmental protection favors the
development of renewable energy and also indicates political priorities and the state’s
readiness for transformation, as well as the scale of state intervention in the development
of wind energy [99]. The high percentage of households unable to heat their homes may
indicate a social problem that inhibits investments in renewable energy and indicates a
low willingness to bear the costs of energy transformation [100]. The share of renewable
energy represents the effects of implementing the state’s energy policy. The authors con-
sidered variables related to the energy system available in the Eurostat, IRENA, Strategic
Metals Invest, and Energy Institute Statistical Review of World Energy databases. The
initial set of indicators considered during the analysis included those listed in Table 1.
The table also includes information on the data source and unit of measurement for each
variable. The dataset was selected to eliminate missing values and includes annual data
from 2014 to 2023. The set was constructed to reflect the fact that wind energy development
is the result of an interaction of technological, economic, environmental, social and legal
factors. Therefore, the authors ensured that the set included factors that represent each
of these groups. Some factors can be classified into multiple categories, as they provide
comprehensive information on the determinants of wind energy development. The group
of economic factors includes energy prices, wind energy expeditions, income inequality
level, GDP per capita, and rare earth prices. Technological factors are represented by
energy efficiency, import dependence, primary energy consumption, wind power, and
the number of patents. Environmental factors include mainly greenhouse gas emissions,
national expenditure on environmental protection, and environmental taxes by economic
activity—energy taxes. Social factors represent the inability to keep the home adequately
warm and income inequality. Political factors that are difficult to capture quantitatively
are represented by the share of renewable energy, national expenditure on environmental
protection, environmental taxes by economic activity—energy taxes—and wind energy
expenditures. The variables constitute a complementary set, complementing each other,
thus providing a complete picture of the conditions for the development of wind energy.

In this set, the influence of the explanatory variables on the dependent variable was
verified. Using a multiple regression model, the statistical significance of the mutual influ-
ence of the variables was examined. The linear regression model incorporated explanatory
variables identified as potentially shaping the wind energy potential in Poland. The aim of
the study was to verify this set of variables regardless of their intercorrelation. The study
aimed solely at assessing the significance of the indicators for all the selected factors. How-
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ever, to eliminate potential problems related to multicollinearity, weight standardization
was applied. The residuals of the created model were verified. Their normal distribution
was confirmed by the Kolmogorov–Smirnov test with a p-value of 0.14, and the lack of
autocorrelation was confirmed by the Ljung–Box test with a p-value of 0.99. In turn, the
lack of heteroscedasticity of the model was confirmed by the Breusch–Pagan test, where
the p-value was 0.13.

Table 1. A set of factors taken into account when selecting explanatory variables, years 2014–2023.

Factor, Explanatory Variables x Unit Source

Energy prices EUR/kWh Eurostat [101]
Energy efficiency Mtoe Eurostat

Greenhouse gas emission, (x1) Mtoe Eurostat
Inability to keep home adequately warm % Eurostat

Income inequality Ratio Eurostat
Share of renewable energy % Eurostat

National expenditures on environmental protection % GDP Eurostat
Environmental taxes by economic activity—energy taxes Mil EUR Eurostat

Primary energy consumption Mtoe Eurostat
Energy import dependency, (x2) % Eurostat

Wind energy consumption, (x3) EJ Energy Institute Statistical
Review of World Energy [102]

GDP/capita EUR Eurostat
Patents, wind energy, (x4) number IRENA [103]
Wind energy expenditures Mil USD IRENA

Installed wind energy capacity GW Eurostat
Nd, Dy, Pr, Tb prices USD/kg Strategic Metals Invest [104]

The β coefficients of the regression model were determined, thus indicating the
number of units by which Y would change if X changed by one unit. The p-value was then
estimated as a statistical measure of the probability of values similar to those observed,
assuming (the null hypothesis) that the variable had no influence, i.e., β = 0. The results of
the analysis are presented in Table 2.

Table 2. Results of the analysis of the statistical significance of the influence of the explanatory
variables on the Y variable.

Variables β p-Value Comment

x1 CO2 emissions 0.000007 0.01 significant effect (p < 0.05), direction: positive
x2 Energy import 0.051007 0.05 significant effect (p < 0.05), direction: positive

x3 Energy demand 0.2831197 0.00 very significant effect (p < 0.01), direction: positive
x4 Patents −0.00956 0.02 significant effect (p < 0.05), direction: negative

The coefficient of determination of the model was 0.99, while the standard deviation
of the residuals (SEE) was 0.20.

Table 2 includes X variables that were shown to have a significant statistical impact
on variable Y, so the set of 16 factors was reduced to 4 with significant (p < 0.05) and very
significant (p < 0.01) impacts. This group includes the number of patents, the demand for
wind energy, the import of energy, and CO2 emissions. The selected data were entered into
the next step into the LSTM model. The multifactor model allows for the explanation of
specific causes of changes in demand and the tracking of how specific and most significant
factors will influence the analyzed phenomenon. These are also factors that will be the
subject of important discussions, which will be shaped in accordance with the EU energy
and climate policy, particularly the volume of CO2 emissions, energy demand, and import
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dependence. In turn, the number of wind-energy-related patents will also be a consequence
of the EU support (or lack thereof) for this type of research. The dataset consisted of
observations from 2014 to 2023, which is the complete available information for all the data
included in the Eurostat databases.

Although there are differences in policy, industry structure, and transmission grid
maturity, training the model on German data allows for the detection of universal patterns
of dependencies between the explanatory variables and the dependent variable. The
mechanisms of growth in the installed energy demand are similar in each country, occurring
only on different scales. The model trained on German data provides a framework adapted
to Polish conditions by introducing Polish explanatory variables.

The dataset for Germany was divided into two parts: 80% was placed in the training
set and 20% in the test set. In the next step, an LSTM-based multilayer recurrent RNN
network was built with four input variables. Statistical data for Germany enabled the
model. The data was transformed into a time sequence format. The number of input
variables was set to four, and the number of target variables was set to one. The first layer
used a hard sigmoid activation function. This reduced computational complexity ensured
stabilization of the hidden state in the first stages of training. The kernel weights connecting
the input vector with the cell state were introduced. The weights were initialized using the
SIGMOID_UNIFORM method, which ensured a stable initial distribution of the values for
the activation functions used. The structure of the LSTM model is presented in Table 3.

Table 3. Structure of the LSTM model.

Layer LSTM 1 LSTM 2 LSTM 3 Output

Entrance,
features 4 32 32 16

Output,
neurons 32 32 16 1

Activation Hard sigmoid Tanh Tanh Identity
Loss function MSE

The model processed the input data sequentially since the analysis involved time
series. To ensure an appropriate level of accuracy with a small sample size, a three-layer
model was used. The ADAM optimizer with a learning rate of 0.001 was used to optimize
the neural network. The optimizer is responsible for updating the weights and regulating
how the LSTM model remembers information. The activation functions were the tanh
and hard sigmoid, which fit well to the patterns contained in the analyzed time series.
The mean squared error was used as the loss function. The weights were optimized by
the ADAM optimizer to minimize the MSE prediction error. The model was trained for
450 epochs, during which the data were processed by the neural network, the loss function
was calculated, and the calculations were terminated when the loss function stabilized and
reached a minimum. The model used backpropagation, meaning that the network learned
not only from errors at a given time point but also from previous steps. The number of
time steps that the LSTM model simultaneously considered was set to 9.

The normality of the residuals of the model was confirmed by the Kolmogorov–Smirnov
test, where the p-value was 0.21. In the Ljung–Box test, the p-value was 0.99, which excluded
autocorrelation of the residuals. The model errors for the training set are presented in
Table 4, and for the test set in Table 5.

Figure 2 presents the results of the model, the actual values, and the forecast made
using the neural network.
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Table 4. Error metrics of the built LSTM model: training set.

Error Value Standard Deviation

MSE 0.03 0.01
RMSE 0.18 0.01
MAE 0.14 0.02

MAPE, % 7.46 0.82

Table 5. Error metrics of the built LSTM model: test set.

Error Value

MSE 0.68
RMSE 0.83
MAE 0.80

MAPE, % 10.11
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Figure 2. Actual values of installed wind energy capacity in Germany in 2013–2023 and theoretical
values determined by the program.

The literature has determined that model MAPE of 16% can be considered accept-
able [105]. Models with an MAPE below 10% have been defined as highly accurate, those
in the range of 10–20% as good forecasts, 20–50% as acceptable, and those above 50% as
inaccurate [106,107]. Of course, the level of acceptability ultimately depends on the industry
to which the forecast applies and the expectations of the forecast recipient.

The error for the test set increased by 2% to 10%, which can still be considered very
good model accuracy. It should be noted that the increase in the error could have been
caused by the model’s fit to the German data and indicate overfitting. However, it was
not significant, and in addition, the test set (2022–2023) falls in years of strong market
turbulence. The forecasts to 2030 were also treated using a non-deterministic scenario
approach, which eliminated the problem of potential overfitting of the model to the data.

The MAPE of the model was less than 8%; therefore, it was considered sufficiently
accurate and was used to forecast the installed offshore wind energy capacity in Poland
by 2030. Analogous variables were used as input data, as in the case of Germany, but they
were first forecasted to 2030 using the SVR model. The model used the SMOreg algorithm
with an RBF kernel. The model’s C parameter (complexity) was automatically selected
using cross-validation from a range of 1–200. The model’s gamma parameter, defining the
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range of influence of individual observations on the model, was set to 0.1, and its epsilon,
defining the error tolerance, was set to 0.001. The cache size defaulted to 250,000 entries,
providing the program with sufficient space for model estimation. The model parameters
are listed in Table 6.

Table 6. SVR model hyperparameters.

Hyperparameters Value

C 1–200, five-fold cross-validation
γ 0.1
ɛ 0.001

Tolerance 0.001
Cache size 250,000

Because no forecast can be considered 100% reliable, error metrics and scenarios were
determined. Although the model demonstrated small errors, it should be noted that the
quality of forecasts can be influenced by a number of factors, such as the length of the time
series and the selection of explanatory variables. They can also be influenced by the quality
of the data used, as well as external and macroeconomic factors, such as wars, inflation,
and changes in commodity prices.

The MAPE of the explanatory variables did not exceed 20% (Table 7).

Table 7. SVR model MAPE.

Variable MAPE, %

x1 2
x2 20
x3 17
x4 20

Figure 3 presents the forecast and scenarios for the installed offshore wind energy
capacity in Poland by 2030. The forecast showed that in 2026, the installed capacity would
amount to 0.36 GW, and in the last year of the forecast, it would be approximately 5.3 GW.
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Figure 3. Installed offshore wind energy capacity in Poland, forecasts and scenarios for 2026–2030.

5. Discussion
The research results show that by 2030, Poland can achieve the goals set by the UN, the

EU and PEP2040. A 95% confidence interval was constructed for the forecast. The forecast
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represents the baseline, i.e., the most probable scenario, the red series—the optimistic
scenario, and the purple series—the pessimistic scenario. The confidence interval defines
the range within which the forecast may change with a probability of 95%. According
to the baseline scenario, intensive growth in installed offshore capacity begins after 2027,
reaching 5.2 GW by 2030. This dynamic is consistent with the pace indicated by the
historical data. However, it should also be considered that offshore capacity development
may be influenced in the future by factors that are currently unpredictable. Therefore,
the construction of the scenario allows for the consideration of factors that both stimulate
and delay the development of offshore wind energy in Poland. The pessimistic scenario
assumes that only up to 4.7 GW of installed capacity will be built by 2030. This could
be due to unexpected administrative obstacles, grid constraints, or investment problems.
The optimistic scenario, on the other hand, indicates that the installed capacity will grow
very dynamically by 2030, reaching up to 6 GW. This scenario could be realized if planned
projects are implemented on time, the grid infrastructure is rapidly developed, and the
financing programs are facilitated by favorable legal regulations and efficient financing
programs. Scenario analysis indicates that only the pessimistic scenario poses the risk of a
significant discrepancy between the PEP2040 goals and the actual level of offshore energy
development in Poland. The PEP2040 assumes that by 2030, Poland should have 5.9 GW of
installed energy in offshore wind farms in the Baltic Sea. The forecast shows that it will
be around 5.3 GW, and the difference between these values remains within the model’s
margin of error. This means, first, that the model is reliable and uses adequate explanatory
variables. It also demonstrates the consistency of scientific forecasts and policy assumptions.
Therefore, the wind energy policy was developed realistically and is based on rational
goals, not only on political postulates. This consistent nature of the results can strengthen
the decision-making process, as it provides confidence that the direction of offshore energy
development is appropriate. Objective market analysis and alignment with state policy
mean acceptable capital risk and enhance Poland’s attractiveness as a suitable location
for potential projects. Poland is working in accordance with the EU and the Sustainable
Development Goals, taking steps to increase renewable energy in the energy mix, reduce
CO2 emissions and improve the country’s energy security. Wind energy, especially offshore
wind energy, will reduce dependence on fossil fuels and imported energy, which is a key
pillar of the transformation. The development of offshore energy in Poland can contribute
to the achievement of the SDGs, primarily Goal 7, but also Goal 8 (economic growth), by
developing the renewable energy sector and creating new jobs. It will also contribute to
the achievement of Goal 9. Renewable energy is a key sector, and innovations in turbine
development are the basis for optimizing the operation of this technology. This will also
contribute to the achievement of Goal 11, which aims to create sustainable cities and
communities by reducing the negative impact of energy on the environment and human
health, and, of course, Goal 13, which aims to promote climate action. The forecast also
indicates that Poland is at the beginning of a long road to creating a potential similar to that
of Germany. Macroeconomic factors indicate that Poland will be able to achieve the goals of
Poland’s energy policy. However, to materialize these forecasts, Poland must implement a
number of actions. To learn from the mistakes of others, it is beneficial to examine the actions
of Germany, which has been striving since the 1990s to develop renewable energy sources
that can support its energy needs. Germany has established a statutory framework to
support renewable energy sources, which has guaranteed investors’ long-term profitability
of investments. Above all, a stable and predictable law consistent with energy policy is
essential. Frequent regulatory changes have effectively limited the development of onshore
wind energy in Poland in the past. Investors must operate within a stable regulatory and
financial system that provides them with investment predictability for at least the next
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20 years. The development of transmission grids in parallel to offshore energy was also
crucial in Germany. In Poland, the transmission grid already constitutes a bottleneck in
the process of developing renewable energy. It is essential to develop installation ports
and service bases, for example, in Świnoujście, for investments in the Baltic Sea. Germany
has also established an extremely stable financial system that supports the development
of wind energy. Poland lacks such long-term support mechanisms. Poland also lacks
cooperation between science and industry, R&D infrastructure for offshore energy, and a
network of companies that form the supply chain from technology manufacturers to grid
operators. Therefore, Poland will be building its first offshore wind farms more than a
decade later than Germany, which had its first wind farm in the North Sea in 2010, and its
average annual installed capacity growth between 2013 and 2024 was 20%. According to
the forecast, Poland would need to achieve a slightly faster growth rate of approximately
22% annually to reach 5 GW of installed capacity in 5 years. To achieve this, a sustained
investment pace is essential.

Multiple regression analysis identified the factors with the greatest impact on the
development of offshore energy in Poland. Of the 16 indicators considered, four factors
proved to have a statistically significant impact, with the energy demand proving to be
the strongest determinant. The growing demand from the economy and households
requires an increased share of renewable energy sources in Poland’s energy mix to ensure
the country’s energy security while simultaneously meeting the energy transition targets.
Greenhouse gas emissions also positively impact offshore energy development. Regulatory
pressure to reduce greenhouse gas emissions stimulates the development of low-emission
technologies and encourages investment in domestic renewable sources. Another factor
positively influencing offshore energy development is the level of dependence on energy
imports. The higher the level of dependence, the more likely countries are to invest in
renewable energy, which is intended to increase the energy system’s independence from
other countries and increase resilience to energy price fluctuations and geopolitical changes.
The fourth identified factor is the number of patents. This correlation is negative, which
may indicate barriers to the implementation of innovation in Poland. There are no strong
mechanisms that support the transfer of technology to the industrial scale and the use of
the research potential for developing wind energy.

6. Conclusions
The development of offshore wind energy in Poland has been significantly limited

compared to Germany. This was due to regulatory, administrative, financial and infrastruc-
tural factors. The lack of a legal framework and offshore support systems was paramount.
Concepts for the first farms in the Baltic Sea were developed as early as 2010, but it was not
until the adoption of the PEP2040 Act in 2021 and the Act on the Promotion of Electricity
Generation in Offshore Wind Farms that targets for offshore energy development were
introduced and investors were encouraged. Development was also slowed by location
permits, which were a multiyear process and were regulated by the 2020 amendment to
the Maritime Areas Act. The lack of transmission infrastructure in the north of the country
capable of transmitting several gigawatts of energy also posed a limitation. The first inter-
connector, which will deliver electricity to consumers inland, is the Choczewo–Żarnowiec
line, which was approved in 2024. All these factors mean that Poland will begin using
offshore energy more than a decade later than other European countries. The modeling
carried out by the authors provides forecasts for the development of installed offshore
wind energy capacity in Poland based on reliable artificial intelligence forecasting models.
Combining the SVR and LSTM models allows for synergistic effects. The SVR model
generates data for the LSTM model, which in turn provides a forecasting tool that enables
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the modeling of long-term dependencies while eliminating the problem of vanishing gra-
dients. This combination enabled the generation of forecasts with a low MAPE of less
than 8%. The forecasts indicate that by 2030, Poland could reach 5 GW of installed wind
energy capacity, with the factors that will have the greatest impact on this development
being the energy demand, greenhouse gas emissions, development of innovations in wind
energy, and dependence on energy imports. This knowledge is crucial for effective support
of energy policy. The strongest impact of the growing energy demand should signal to
decision makers to prioritize investments in transmission networks and energy storage.

This knowledge also enables efficient resource utilization and allocation based on
where they will yield the greatest benefits. Knowledge of the factors shaping offshore
energy development also allows the development of state policy consistent with the SDGs
and the European Green Deal. The research results fill an identified gap. To date, the
scientific literature has not presented forecasts of offshore development in Poland based
on a model trained on German data. The research provides a reference point for further
analysis, particularly for a time horizon beyond 2030 and in the context of other renewable
energy sources, including nuclear energy, which, along with renewable energy, is expected
to make a significant contribution to the Polish energy mix. They can also be applied to
research on the integration of renewable energy with energy storage, which will be essential
to stabilizing the operation of the renewable-energy-based energy system. The forecasts
obtained are important for shaping and estimating Poland’s energy security. They allow
the verification of whether Poland will be able to diversify its energy mix by 2030 to the
extent necessary to cover the gap left by the gradual phase-out of coal with, among others,
wind energy. This is a huge challenge, considering that currently, around 50% of electricity
in Poland is generated from coal. Having a domestic energy source also means that the
energy system is less vulnerable to external crises, which have been numerous in recent
years as a result of the war in Ukraine.

The presented solution can also support monitoring and reporting of EU countries’
progress in achieving energy transition goals or the SDGs. The results can be valuable for
policymakers, suggesting practical and effective solutions to achieve a zero-emission econ-
omy, investors, energy grid operators, local governments, and the scientific community. The
forecasts obtained provide essential information for planning energy transitions, creating
plans with limited investment risk, planning further research directions, and educating the
personnel necessary for wind energy generation. The analytical results provide the basis for
assessing the profitability of planned projects, as well as potential profits, assessing supply
chain capabilities, turbine supply, balancing, and developing energy system flexibility
mechanisms. These are important aspects that require time to design correctly, and the
forecasts developed will certainly enable planning well in advance. The method used also
has its drawbacks. The lack of data for Poland regarding the installed offshore energy
capacity meant that the model was trained on data from Germany. This was necessary,
but it can generate limitations resulting from knowledge transfer. Although Germany
provides the best possible benchmark due to geographical similarities, similar natural
and wind conditions, technical requirements for turbines, energy demand, infrastructure
connections, and implementation of EU policies, it is natural that differences between
Poland and Germany also exist, limiting the model’s applicability. Above all, Germany is
already very advanced in terms of offshore energy development, while Poland is at the
beginning of its journey to build a suitable offshore wind energy potential technologically,
procedurally, regulatorily, and infrastructurally.
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