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Abstract

With the increasing penetration of renewable energy such as solar and wind power into the
grid as well as the addition of modern types of versatile loads such as electric vehicles, the
grid system is more prone to system failure and instability. One of the possible solutions
to mitigate these conditions and increase the system efficiency is the integration of virtual
power plants into the system. Virtual power plants can aggregate distributed energy
resources such as renewable energy systems, electric vehicles, flexible loads, and energy
storage, thus allowing for better coordination and optimization of these resources. This
paper proposes a genetic algorithm-based optimization to coordinate the different elements
of the energy management system of a virtual power plant, such as the energy storage
system and charging/discharging of electric vehicles. It also deals with the random
behavior of the genetic algorithm and its failure to meet certain constraints in the final
solution. A novel method is proposed to mitigate these problems that combines a genetic
algorithm in the first stage, followed by a gradient-based method in the second stage,
consequently reducing the overall electricity bill by 50.2% and the simulation time by
almost 95%. The performance is evaluated considering the reference set-points of operation
from the obtained solution of the energy storage and electric vehicles by performing tests
using a detailed model where power electronics converters and their local controllers are
also taken into account.

Keywords: electric vehicles; energy management; energy storage systems; genetic algo-
rithm; photovoltaic systems; virtual power plants

1. Introduction

The growing demand for new types of electrical devices, such as electric vehicles (EVs)
with bidirectional high-powered fast chargers, is putting extra pressure on power grids,
leading to greater stress and energy shortages. Moreover, the rising demand from end-
use electrification such as heat pumps and industrial loads contributes to this additional
electricity consumption. At the same time, rising prices for fossil fuels are driving up
electricity bills for everyday households. On the positive side, the rapid adoption of
renewable energy sources is increasing, especially due to the falling price of solar panels.
However, the existing infrastructure of the electrical grids was not originally designed to
handle high bidirectional flows from distributed energy resources (DERs) or clustered EV
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charging stations and must be coordinated to maintain the balance in the system. One of
the possible solutions is to use energy storage (ES)-based systems such as virtual power
plants (VPPs), which help to coordinate and optimize energy use. However, as different
renewable energy sources are fed into the grid, distributed energy resources (DERs) must
meet stricter grid codes and technical standards. A flexible and intelligent VPP can help
to ensure compliance with these rules. Within the power system, VPPs offer a range of
benefits from managing energy flows to providing essential support services [1-3]. There
are also various strategies to align the technical performance of VPPs with commercial
objectives [4].

In order to justify the method of current study, the literature review emphasizes studies
relating to the optimization of energy resources. Mixed-integer linear programming (MILP)
is one of the most widely used techniques but other strategies have also been researched,
such as dynamic programming (DP), model predictive control (MPC), nonlinear program-
ming (NLP), and heuristic approaches like genetic algorithms (GAs) and particle swarm
optimization (PSO). Artificial intelligence (Al) techniques like reinforcement learning have
begun to attract more attention in recent years [5]. However, there are still certain obstacles
that Al-based solutions must overcome, especially when it comes to translating what Al
learns in simulations into real-world systems and rigorously adhering to unbreakable real-
world standards [6]. Dijkstra’s algorithm is used to analyze traffic conditions where EVs can
participate to provide ancillary services but fails to deliver incentives to the consumers [7].

The PSO algorithm is presented in a modified form in [8]. The cost estimate incorpo-
rates a dynamic penalty factor that requires careful adjustment. This method, however,
re-runs the algorithm every hour and does not use prediction data for solar generation or
energy consumption. A more straightforward technique to enhance on-site solar energy
consumption is employed in [9]. It is less complicated to calculate and accounts for the
initial setup and maintenance costs but it is limited to two-level power pricing plans (such
as peak and off-peak rates). A modified form of DP is employed in [10] to guarantee that the
battery reaches a predetermined charge level by the end of the day. However, this strategy
involves dividing the battery’s charge levels into steps, which provides a non-smooth and
limited search space. The optimal method of charging and discharging a battery is likewise
planned using DP in [11], this time taking battery aging into account. The system’s overall
cost over time (net present cost) is used to gauge its performance rather than user profit.

In [12], the effects of varying battery sizes and metering configurations on system per-
formance are investigated using a scheduling technique based on quadratic programming
(QP). This strategy also lessens the pressure on the grid by discouraging abrupt voltage
swings brought on by a high power flow. In order to control energy use for groups that
combine energy sources, loads, and storage that are all connected to the distribution grid,
ref. [13] uses an improved version of the sparrow search algorithm (SSA), which includes
a multi-objective variant. Ref. [14] concentrates on limiting energy exchanges with the
grid in order to alleviate strain on the power grid and lower hidden expenses like network
charges. Although the goal of these techniques is to use less energy, they also produce better
financial results than simple tactics like charging the battery only when solar generation
surpasses consumption. Another strategy in [15] aims to control battery operation and
lower energy use. It employs linear programming and weighted sums to aggregate several
goals into a single cost function. However, the selection of those weights has a significant
impact on the outcomes. Reinforcement learning (RL) is one of the newest techniques. A
Proximal Policy Optimization-based system for energy management that does not require
forecast data is created in [16]. However, this approach necessitates a lot of training samples
and careful tweaking, and assumes stable feed-in tariffs and electricity prices. Simpler,
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centralized optimization techniques can usually handle residential applications, in contrast
to large-scale systems that employ distributed algorithms.

Numerous studies that concentrate on energy management optimization oversimplify
the system and frequently fail to take into account the behavior of the low-level controllers
and associated power electronics (PECs). To maximize the system’s potential, however,
these components are essential, as is the way energy storage systems (ESSs) must function.

In contrast to strictly optimization-based approaches, research that incorporates these
lower-level controls demonstrates that the system may be reliably operated in significantly
shorter time periods (down to seconds). For instance, ref. [17] examines an off-grid system
that is controlled by a straightforward EMS based on flowcharts and is fueled by both solar
panels and a wind turbine. In order to manage with uncertainty, ref. [18] modifies the
battery’s minimum charge level based on predictions of energy generation and use. It is
interesting to note that, in contrast to many systems that depend on additional ES devices,
this method sends control signals straight from the top-level controller to the inverter. To
help fulfil peak demand, an electric car is utilized in [19] rather than a second battery.
Although this system was evaluated under different conditions, neither the overall energy
consumption nor the cost reductions were measured. Although these rule-based EMSs are
simpler to set up, they are insufficient for reaching specific objectives like cost or energy
savings while adhering to system constraints. Nevertheless, these less complex technologies
are crucial, particularly when it comes to assisting energy systems in continuing to function
in the face of unforeseen circumstances like black starts (the process of restarting the grid
following a complete blackout) or grid disruptions.

This paper’s primary focus is on the application of a GA to optimize the microgrid’s
components, which include EVs, ESSs, PV power, and home loads. In order to evaluate the
originality of the current study compared with other papers that use GAs for VPPs, a litera-
ture review is conducted. In comparison to PSO and the firefly algorithm, ref. [20] suggests
an adaptive GA optimization strategy that can reduce energy costs for consumers. Two case
studies, one for a single family and the other for a community of twenty homes with PV
energy sharing, are examined using GA optimization to reduce energy expenses [21]. A GA
is used in [22] to enhance demand-side management (DSM) in sizable industrial structures;
by scheduling controllable loads and incorporating renewable energy for more effective
load sharing, the objective is to decrease peak electricity consumption, minimize energy
expenditure, and enhance the peak-to-average ratio (PAR). In order to better schedule
when household appliances operate, a VPP that also leverages a GA is launched in [23];
based on actual data from Moroccan households, it achieves cost reductions of up to 63.48%
while accounting for fluctuating electricity prices, the availability of solar power, and user
comfort. In a similar way, ref. [24] offers a decentralized and intelligent EMS that optimizes
energy distribution through an improved GA; the findings demonstrate that improving a
system’s capacity to lower peak demand lowers operational expenses and boosts energy
efficiency. Under a dynamic pricing model, ref. [25] presents a Home Energy Management
System (HEMS) that employs both a GA and MILP to strike a compromise between re-
ducing energy expenditure and dependence on the grid; according to the findings, MILP
outperforms, lowering costs by 15% and raising the Independence Performance Index (IPI).

Nevertheless, none of these studies discussed above consider EVs in the microgrid
configuration, except for [23]. Another point to be noted is that in most of these proposals,
the battery is completely discharged to reduce the cost as much as possible whereas in
this case, it is limited to a certain value to limit the exploitation of the ESS. A management
system for a residential VPP that integrates solar energy, ES, EVs, and household energy
use is shown in [26]; to maximize financial gains and the provision of grid support services,
it employs a GA. According to the study, single-objective optimization outperforms multi-
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objective techniques in the studied cases. Despite the fact that EVs are discussed in this
paper, it is unclear how all of the system parameters are fulfilled. Also, the computation
time of performing the GA is far higher (approximately 90%) than the proposed approach
of the current paper. Ref. [27] explains these limitations but lacks validation of the results
by using PECs consisting of low-level controllers.

In the second stage of optimization, a gradient-based method (GBM)—namely, the
Finincon solver from MATLAB 2023b version—is used to refine the results after the first
stage and further improve the cost minimization as well as the fulfilment of the constraints.
The research in [28,29] demonstrates that the Fincon Solver is a proven method for min-
imizing costs. However, according to these references, the performance of this method
when used alone is considerably less capable compared with the method proposed in this
paper. Furthermore, as this study does, none of the examined publications investigate
a two-stage optimization strategy that combines a GA and a GBM while also carefully
confirming that all constraints are satisfied. Moreover, none of the papers include the
addition of low-level controllers for the validation of the obtained operation set-points after
performing optimization.

In light of the above literature review, the work undertaken in this paper can be
summarized using the following points:

e  The proposed VPP employs a two-stage optimization framework that integrates eco-
nomic objectives while satisfying the operational constraints. Specifically, the opti-
mization problem incorporates the optimal scheduling of EV charging and discharging
during off-peak (valley) hours to minimize electricity bills, as well as the strategic
dispatch of ESS power to the grid either by supplying energy during peak hours or
drawing energy during valley hours.

e In the first stage, a GA is used to explore the solution space, recognizing the stochastic
nature of GA results; therefore, the algorithm is executed several times to ensure the
robustness of the solution.

e In the second stage, a GBM—specifically, the Fyincon solver from MATLAB—is ap-
plied to refine the solution due to computational efficiency. Any remaining unmet
constraints are subsequently resolved using analogous corrections in the last hour
of operation.

e Tovalidate the proposed approach, a real-world case study is conducted, demonstrat-
ing the effectiveness of the method in achieving economic objectives while satisfying
all the defined operational constraints. The functionality of the proposed VPP is
evaluated using a detailed system model that incorporates PECs, along with their
associated low-level controllers.

The paper is structured as follows: Section 2 consists of the case study, followed by
the optimization methodology in Section 3. Section 4 consists of optimization results and
Section 5 includes the validation of the proposed algorithm using low-level controllers.
Finally, Section 6 consists of the conclusions.

2. Case Study

The main ideas and elements of the case study are described in this section. An EV,
a PV power plant, a battery-based ESS, and a collection of residential houses comprise
the VPP under study, as shown in Figure 1. The model includes a household with an
hourly load profile forecasted for a full day. Based on recent studies, the household reflects
electricity consumption levels typical of medium voltages [30]. This consumption profile
was selected due to the availability of reliable consumption data for medium-demand
households and to introduce demand variability within the system. Even though a VPP
consists of more than one microgrid, this case study only considers one microgrid due to its
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simplicity. The main objective of the VPP is to obtain an optimized price and decrease the
optimization time by exchanging data with the microgrid, where it sends new set-points of
operation to the ESS and EV.
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Figure 1. Elements of the VPP under study.

Using a generating profile based on the one in [31], the communal PV power plant
taken into consideration in the study has an installed capacity of 10 kWp. This size is in
line with common self-consumption practices seen in Spain, where peak installed capacity
is frequently constrained to prevent excessive contracted power tariffs linked to higher
levels of grid connection [32].

A collection of lithium-ion batteries under central supervision and controlled by PECs
makes up the ESS. The system enables a maximum charge/discharge rate of 2.5 kW and
has a total storage capacity of 10 kWh. According to [33], its operation is limited to a state
of charge (50C) range of 20% to 90% to increase the lifespan of the ESS [34]. An EV with
a 7.5 kWh battery and an average energy consumption rate of 20 kWh per 100 km with a
microgrid is used. Conventional domestic single-phase outlets of 230 V and 32 A comprise
the charging infrastructure. It is expected that each EV’s initial SoC is 50%. According
to the Spanish energy market, charging is planned for the first eight hours of the day in
order to take advantage of the lower electricity rates that apply during off-peak hours on
workdays [35]. The information above is presented as a summary below in Table 1.

Table 1. Case study parameters.

Parameters Values
ESS charge/discharge rate +2.5 kW
ESS storage capacity 10 kWh
ESS SoC range 20% to 90%
EV storage capacity 7.5 kWh
EV initial SoC 50%

This study’s main goal is to reduce the cost of electricity. As a result, the optimization
framework incorporates the previously described charging schedule. The baseline scenario,
in which no optimization is used, shows the total power generation and consumption
over 24 h intervals in Figure 2. The total power generation is the energy that is produced
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by the PV and the total demand comprises the household loads and EV. The total power
transferred between the grid and the EMS is also displayed in Figure 2. Due to the EV
being charged at full capacity, there is a discernible spike in demand between hours 0 and
1. As the EV is fully charged, it is no longer demanding any power, and the demand is
mostly from the household loads after this hour. To lower total energy costs, the main goal

is to lessen this peak and spread the charging load more efficiently. In Section 3, a more
thorough examination is presented.

IS

©

Power (kW)

= Total Generation

== Total Demand with EV/

s ——Power Interchange

-10

Hours (1-24)

Figure 2. Total generation of the PV (in green) and total demand of the household and EV (in red),
excluding the ESS and power interchange (in blue), with distribution grid in initial condition.

As previously stated, one of the main goals of the optimization process is to reduce
electricity costs by planning EV charging for off-peak hours. The objective function must,
therefore, be developed using electricity prices over a 24 h period. Different types of
contracts control the price of power in the Spanish energy market. In contrast to variable-
rate contracts, which have time-dependent tariffs that fluctuate hourly, fixed-rate contracts
keep a constant price throughout the day, regardless of changes in demand. The current
study focuses on a variable pricing system with the goal of lowering operating costs. Based
on statistics from the Iberian energy market, Figure 3 shows the prices for buying and
selling power as of 3 February 2025 [36]. The VPP’s daily energy costs, under the initial,
non-optimized conditions, are EUR 3.1366.

0.4

0.35 — Buying Price
Selling Price

— Price Difference

0.2 b —|
0.15

——

Prices (€/kWh)

L

012 3 456 7 8 9 1011121314151617 18192021 22 2324
Hours (1-24)

Figure 3. Energy prices for prosumers under the Spanish regulatory framework as of 3 February
2025 [36].

3. Optimization Methodology

The VPP is economically optimized in this study using a GA, which integrates an
objective function and a set of operational restrictions [37]. The optimization framework’s
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main goal is to lower electricity costs while abiding by several technological restrictions.
These include the rated capabilities of the EV chargers and ESS converter as well as the
ESS’s SoC limitations. The most optimal hourly charging and discharging schedules for the
ESS and EVs are produced by the optimization. Current published research acknowledges
the use of a GA as a reliable and efficient method to manage these nonlinear, limited
optimization issues in VPPs [38,39]. Furthermore, the MATLAB-based Fpincon solver,
which is based on GBM, has proved to be dependable in VPP optimization applications [40].
The various stages of the optimization process are depicted in the flowchart presented in
Figure 4.
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Figure 4. Strategy of two-stage optimization procedure.

As previously stated, the central objective of the optimization problem is to minimize
the electricity cost incurred by the consumer. To achieve this, it is first necessary to establish
the power balance within the VPP, as formulated in Equation (1).

Peyig(h) = Ppy(h) — Prp(h) — Pess(h) — Ppy () 1

fi= iil [(Ipur(h)'ppur(h) - Isel(h)'psel(h)) . ‘Pgrid(h) H @

Here, Pgi3(h) represents power interchanged with the grid at hour h; Ppy(h), Prp(h),
Prss(h), and Py (h) represent PV generation power at hour h in kW, load demand power
at hour h in kW, ESS power at hour h (positive when charging) in kW, and EV power at
hour h (positive when charging) in kW, respectively. The objective function f; in (2) aims
to minimize the electricity bill by discharging power from the ESS to the grid when the
selling price is high and drawing power from the grid when the purchasing price is low.
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The optimization follows the ESS constraints outlined in (3)—(5). Here, I,,,(h) and
Lsi(h) represent a binary index of 1 when Pg,;3(h) < 0 and Pg3(h) > 0, respectively, where
pur stands for purchasing and sel represents selling. pp,,(h) defines the price for purchased
energy at hour & in EUR/kWh and p,;(h) the price for sold energy at hour # in EUR/kWh.
The ESS is required to operate within the predefined upper and lower bounds set by the
converter capacity, the physical limitations of the system components, and grid-related
constraints. Accordingly, the power limits for ESS charging and discharging are formally
expressed in Equation (3).

To ensure adequate energy availability for the following day, Equations (4) and (5)
impose restrictions on the permissible deviation in the SoC between the start and end of
the 24 h period. In this context, Prss;qx denotes the maximum allowable ESS power during
both charging and discharging, measured in kW, while SoC(h) represents the ESS’s SoC at
hour &, expressed as a percentage. The symbol #, refers to the charging efficiency of the
ESS expressed per unit (pu). Pgss(h) represents ESS power during a specific hour, h. SoCy,
and SoCy;, represent the lowest and highest allowable limits for the SoC of the ESS.

—PEssmax < Pess(h) < Pessmax (©)
S0Cj, < SoC(h) < S0Cu, @)
90% < |S0C;y — SoC(24)] < 20% 5)

where .
SoC(h) = SoCi, + Z?:l <1E55ch(i)'PEss(i)'71ch + Iessai(i): PE;;(l)) (6)

The constraints related to the EVs are shown in (7)—(9).

—Pevmax-nev(hev) < Pev(hev) < Pevmaxnev(hev), hev € nhey (7)
Pey(h) = 0,h & nhgy (8)
Y i, Pev(iev) = Eeviotal )

In order to save electricity costs, EV charging and discharging must only take place
during off-peak, or valley, hours, i.e., 00:00 to 8:00. According to Equation (9), each EV must
reach a complete SoC of 100% during this time. Equation (7) establishes the maximum
EV charging power limit by multiplying the number of EVs connected to the system by
the rated capacity of each individual charger, which is equal to 1 in this case. Equation (8)
states that the power allotted to EVs is limited to zero outside of this specified time range.
The number of EVs connected at hour h is indicated by ngy(h). nhgy is the total number
of hours that at least one EV is connected. Here, Pry;,,, denotes the maximum allowable
EV power during both charging and discharging, measured in kW, while #gy refers to the
charging efficiency of the EV expressed per unit (pu).

The objective function and its constraints related to the second-stage optimization of
the GBM is based on Equations (10)—(13).

ol

min fp(x) = f1(h)] (10)

The function to be minimized is the objective function f,, which usually represents
a cost objective and receives input from the GA'’s first stage of optimization. For this
optimization issue, the limitations related to the SoC of the EV and ESS are regarded as
being the same as earlier. In this case, x can be described as follows:
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Xgp1 = xx — aVF(xg) (11)

Here, x; is the decision variable at iteration k, representing power dispatch decisions; «
is the step size (learning rate); and V F(xy) is the gradient of the objective function, given by

oF (x)
VF(x) = —~/ "
( ) apgrid(h) (12)
For each time step h,
oF
W - Ipur(h)'r)pw(h) - Isel (h)'psgl (h) (13)

Ultimately, following the second optimization stage, it is evident that the EV’s SoC
constraint is not entirely met. To analogously satisfy the necessary constraint of EVs,
Equation (14) is utilized.

EEVtotal = EEVtotal + max(7500 - EEVtotal) (14)

Here, the remaining power is provided from the grid to fully charge the EVs during
the final hour (7 to 8 h) if their total SoC does not reach 7.5 kWh at the end of 8 h.

4. Optimization Results

Three different types of scenarios are examined in the case study. For the base case
scenario, when no optimization algorithm is considered, the price during the day is deter-
mined in the first scenario. Figure 5 serves as the case study’s starting point, where the
electric cars are charged during the first hour of the night (from 0:00 to 1:00) and the ESS
does not participate in this case. It is evident that the initial state has a high peak in demand.
Therefore, the base price in the starting condition, 3.1366 EUR/day, is the reference price to
be improved upon.

4.1. Analysis of the Random Effect and Justification of the Optimization Process in Three Steps

The default GA of MATLAB uses membership functions like Creation, Crossover,
Fitness Scaling, Hybrid, Mutation, Output, Plot, and Selection. The GA is programmed
with a maximum of 2000 generations and a tolerance of 10~2. Population size is considered
to be 48, in which the first 24 are allocated to the ESS without EVs and the other 24 are
allocated with EVs, and these are combined to obtain a profile for 24 h. Function tolerance
and Max generations are considered to be 1 and infinite, respectively. The Max time
parameter is not considered in this case; hence, the optimization time could be greatly
decreased by using this method.

The research in [26,27,41] provide the parameters considered for this case study. In
MATLAB, the GBM optimization is defined as Fpincon, and, in this instance, the default
parameters are also taken into account. Given the random nature of the optimization, the
GA optimization process is run 1000 times to achieve the lowest cost, followed by the GBM.

The outcomes are shown in Figure 6. It can be concluded that after 1000 rounds, it is
evident that the EV’s SoC limitation is not satisfied, not even once. Therefore, during the
final hour of the EV’s charging time, the SoC must be adjusted. The primary significance
of obtaining this result lies in the observation that although the lowest cost achieved
through optimization occurs at the 969th iteration when only the GA is applied, this value
decreases to the 671st iteration when the combined GA-Fyincon approach is implemented.
Furthermore, after incorporating the third-stage manual adjustment, the minimum cost
is attained at the 64th iteration. This progression clearly demonstrates that increasing the
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number of optimization stages effectively reduces the number of iterations required to reach
the minimum cost, thereby enhancing the overall efficiency of the optimization process as
well as minimizing the computation time. Following these attempts, the minimum prices
listed below are achieved:

e  Before (only GA): EUR 1.8930 (on iteration 969).
e  After the first stage (GA + Fiincon): EUR 1.5235 (on iteration 671).
e  After the second stage (GA + Frincon + SoC adjustment): EUR 1.5620 (on iteration 64).

De{gand (red), Generation (green) in kW ESS: 10*Power (kW,red), SoC (%,blue)
100 +

0 5 10 15 20 0 5 10 15 20

(@) (d)
P6'i4ces: Buy (red), Sell (green)in € kWh EVC: 10*Power (kW,red), SoC (%,blue)

100¢
’—I_LL / SoC: 100%
0.2} W ] 50 1

[—————

0 " s " s s " s s
0 5 10 15 20 0 5 10 15 20
(b) (e)
100*Prices dif (red), Net (green) 100*Prices dif (red), Net (green)
20l Cost: 3.1366 €/day | 20 Cost: 3.1366 €/day |
. nISERENSS e B ) nIEISE s I
=201 ; -20
0 5 10 15 20 0 5 10 15 20
() )
Hours (1—24) Hours (1—24)

Figure 5. References without optimization in the initial condition. The graphs on the left from top
to bottom show (a) demand and generation, (b) buying and selling prices, and (c) cost per day. The
graphs on the right from top to bottom show the (d) power and SoC of the ESS, (e) power and SoC of
the EVC, and (f) cost per day.

As the cost is lowest after satisfying the SoC constraint of the EV in this instance,
as shown in Figure 6, iteration 64 is regarded as the best-case option for the case study.
Figure 7 displays the reference solution (attempt 64).

4.2. Analysis of the Optimized Results Based on the Number of Iterations

Building upon the previous findings, this section presents an analysis of the minimum
electricity cost attainable given a predefined number of optimization attempts. Figure 8a
illustrates the resulting trends, highlighting both the best- and worst-case scenarios as a
function of the number of iterations. The results indicate a significant reduction in cost
variability with an increasing number of attempts, with uncertainty becoming almost negli-
gible beyond approximately 450 iterations. This behavior suggests an almost exponential
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convergence pattern, which is consistent with the expected dynamics of stochastic opti-
mization processes. Figure 8b displays the reduction curve, which further supports the
idea that costs decrease as the number of iterations increases by taking into account the
cost reduction as a percentage.
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Figure 6. The first diagram shows the number of iterations versus change in cost in which the cost
before optimization after using only a GA and using both a GA and GBM are highlighted. The second
diagram shows the SoC of the EV during the three scenarios with respect to the number of iterations.

4.3. Findings of the Results

After the second stage, the EV’s SoC must equal 7.5 kWh at the end of the final hour
of charging, i.e., 8 h in this case. In the first stage of optimization, in which only the GA is
considered (Before), it is possible to reduce the cost from the base case scenario in 983 out
of 1000 cases, which accounts for 98.3%. The maximum price that can be reduced after the
two-stage optimizations and by fulfilling all the constraints from the base case is EUR 1.5746
(50.2%). A few optimization iterations yield electricity costs that surpass the established
reference benchmark. These instances are deemed suboptimal and, therefore, are excluded
from the set of valid or feasible solutions. The optimization results are achieved in a
randomized pattern; hence, it is necessary to complete the overall process including the
three stages. Only the minimum price of the final stage should be considered as the final
result. After the first and second stages, the EVs are charged on average at 7.28 kWh
and 7.44 kWh, respectively; hence, the manual adjustment is necessary. The efficiency
discrepancies between charging and discharging seem to be the cause of this phenomenon.
The second stage manages to reduce the cost in 100% of the cases whereas the third stage
reduces the cost in 999 out of 1000 cases. This is due to the excess purchase of power
in the final hour to comply with the total charging constraint of the EV. After applying
the “MaxTime” parameter within the GA to ensure full compliance with the EV charging
constraint, the simulation time ranges between 35 and 40 min. In contrast, the proposed
method—when executed without the “MaxTime” constraint—requires approximately 3 h
to complete 1000 iterations. However, it has been observed that satisfactory results can
be achieved with just 65 iterations, requiring only about 8 min and 13 s. This represents
a reduction in simulation time of over 95%, highlighting the improved computational
efficiency of the proposed approach.
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Figure 7. References for the optimal solution where the SoC of the ESS and EV, along with the cost per
day, is shown. The graphs starting on the left from top to bottom show (a) demand and generation,
(b) buying and selling prices, and (c) cost per day in initial condition. The next graphs to the right
from top to bottom show (d) the power and SoC of the ESS, (e) the power and SoC of the EV, and (f)
cost per day after using only GA. Then, the next graphs to the right from top to bottom show (g) the
power and SoC of the ESS, (h) the power and SoC of the EV, and (i) cost per day, after using both GA
and Fpincon- The graphs on the far right from top to bottom show (j) the power and SoC of the ESS,
(k) the power and SoC of the EV, and (1) cost per day, after performing the manual adjustment.
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Figure 8. (a) Higher (blue) and lower (red) costs, depending on the number of iterations. (b) Cost
reduction (percentage in blue), depending on the number of iterations (maximum reduction after
1000 iterations in red).
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5. Validation Using a PLECS Simulation Model

This section consists of the validation of the obtained set-points of operation after
performing the optimization by using a detailed system model that incorporates PECs,
along with their associated low-level controllers. The simplified diagram of the developed
model is shown in Figure 9a. Figure 9b depicts a residential grid-connected system with PV
generation and a lithium-ion battery serving as the ES device for this study. A bidirectional
converter connects the battery to the DC bus and a boost converter interfaces the PV module
with the system. Operationally, both DC-DC converters are interleaved. This topology was
selected because of its capacity to lessen the current load on semiconductor components.
Additionally, interleaving enables a fourfold reduction in filter size while preserving the
same input current ripple compared with traditional converter arrangements [42—44].

i PV System L
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Figure 9. (a) Simplified diagram of the residential system under study; (b) schematic diagram of the
residential system under study.

Depending on the specific load characteristics and operational needs, either three-leg
or four-leg two-level converters can be used for the DC-AC conversion step. Increased
flexibility is crucial in residential applications, where electricity is usually supplied via
low-voltage distribution networks that can handle several single-phase or unbalanced
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three-phase loads. A four-leg two-level converter with an LCL filter is used to facilitate
future standalone operations and efficiently handle zero-sequence current components.
Compared with a traditional three-leg converter, which can only control positive and
negative sequence components, this arrangement has advantages [45]. A programmable
three-phase voltage source connected in series with lumped impedance is used to model
the grid impedance, which represents the electrical properties of the distribution line
between the closest transformer and the PCC. Table 2 lists all the system parameters used
in this investigation.

Table 2. System parameters.

Parameters Symbol Values Parameters Symbol Values
PV System Maximum Power ~ Ppy, MPPT 10 kW PV Voltage atpll)/[ii’fmum Power g op 450 V
PV Short Circuit Current Isc 185 A Battery Total Energy Cess 10 kWh
. Grid Nominal Voltage
Battery Nominal Voltage VB 450 V (Line-Neutral) VG 230 Vrms
Grid Nominal Frequency fg 50 Hz Grid Inductance Lg 100 pH
Grid Resistance R8s 120 mQ) Switching Frequency fow 40 kHz
DC Bus Nominal Voltage Ve 750 V DC Bus Capacitor Cyc 1 mF
Filter Grid Side Inductor L, 300 uH Filter Converter Side Inductor Li, Ly 2mH
Capacitor Filter C 3 uF PV Capacitor Cpv 5 uF
Boost Converter Inductance Ly 4mH PV Capacitor Cpv 5 uF
Battery Converter Inductance Ly 4mH - - -

The Ly, L, internal resistor (Rq, Ry), Cq4. internal resistor (Ry.), Ly internal resistor (Ry),
Ct internal resistor (Ry), Ly, internal resistor (Ry,), Cpy internal resistor (Rpy), and G, internal
resistor (Ry,) are all considered to be 10 mQ). The power of the various energy exchange
units in the system is determined by the following measurements, which are also utilized
for the controllers:
vpp—PV voltage;
iy—PV converter input current;
vess—battery voltage;
ip—Dbattery converter input current;
v3.—DC bus voltage;
ic abe—DC-AC converter current;
ir ape—load currents;
06 qbc—grid phase voltages at the PCC.

5.1. Local Controllers

The configuration of the local controllers for each system component is depicted
in Figure 10. The controller of the PV system is tasked with ensuring the extraction of
the maximum available power. To this end, a Maximum Power Point Tracking (MPPT)
algorithm is employed to determine the optimal reference voltage v*,,, which corresponds
with the maximum power output [35]. This reference voltage is subsequently processed by
an outer Proportional-Integral (PI) controller to generate the reference current i*,, which is
used as the input for the inner PI control loop. The resulting control signal is then scaled by
the DC bus voltage v, to produce the modulation signal for the converter.
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Figure 10. Local controllers of the converter.

The controller for the DC-AC converter is responsible for regulating the DC bus
voltage v, while ensuring the generation of sinusoidal output currents. Voltage regulation
is achieved through an outer PI controller. The controller’s output, along with the measured
grid voltages vg 41, is utilized to compute the reference currents ic 4., which are designed
to maintain operation at a unity power factor. To accurately track these reference currents,
a Proportional-Resonant (PR) controller is implemented for each phase. The output of each
PR controller is divided by the DC bus voltage v, to derive the modulation signals for the
inverter stage.

The ESS controller receives the reference power P*B as the input, which is subsequently
converted into the corresponding battery reference current i*b by dividing it by the battery
voltage v.ss. A PI controller processes this reference current, and its output is appropriately
scaled to generate the modulation signal required for the bidirectional converter. This
mechanism facilitates precise control of the battery’s charging and discharging cycles ac-
cording to the reference power P*B provided by the VPP. The specific controller parameters
and implementation details are presented in Table 3. The PI and PR controllers are defined
by their respective transfer functions, GPI(s), and GPR(s), with the resonant frequency

wq = 27fg.

Table 3. Controller parameters.

Parameters Equation Proportional Integral

Battery current controller Ky iy =32 Kiip=5
PV current controller Ky ipp =10.5 Ki ipn = 640
PV voltage controller Gpi(s) = Kp x + Kgix/s Kp,opo = 0.03 Kiopo =720
DC bus voltage controller Kp vdc = 0.59 Kivde =72

DC-AC current controller Gpr(S) = Kpr + Kys/ (s% + w?p) Kyr = 80.4 K, =600

5.2. Results from the PLECS Simulation Model

The proposed control strategies must be computed in advance to define the battery’s
scheduled power profile. This involves determining an hourly reference power P*g ¢, which
is updated on an hourly basis and transmitted to the ESS controller. The battery’s SoC is
estimated by using the Coulomb counting method.

The acquisition of power profile data is enabled by the widespread deployment of
smart meters. This study adopts an hourly resolution for both load and generation profiles.
Notably, the proposed methodology is adaptable and can be extended to finer time intervals
by modifying the relevant constraints and providing appropriately resolved input data.
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Here, the constraints are selected according to the previous case, and the inputs are taken
from the final optimal output as shown in Figure 7 and fed into the PLECS simulation model.
For simplicity, the EV is considered to be a current source in the model during simulation
that supplies or demands power according to the references from the optimal results.

It can be observed from Figure 11 that after taking the references of operation of the
ESS and EV from the optimal solution, the model behaves in an ideal way and the reference
set-points are followed. The total cost of energy obtained in this way is 1.62 EUR/day,
which deviates by only 3.85%.
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Figure 11. Results from PLECS simulation model: (a) power; (b) SoC.

6. Conclusions

This study introduces an enhanced VPP for an MG by incorporating the optimal
scheduling of EV charging and discharging during valley hours in conjunction with tra-
ditional DERs and household loads. The proposed VPP employs a novel two-stage opti-
mization approach combining a GA and GBM, followed by a post-optimization adjustment
phase to ensure that critical constraints—particularly the SoC of EVs—are satisfied, which
represents a key innovation of this work. The validation of the VPP using local controllers
is also performed.

According to the results, the combined optimization of a GA and GMB has proved to be
a reliable optimization method for VPPs. The optimization outcomes are evaluated across
multiple scenarios, demonstrating that, after 1000 iterations, electricity costs can be reduced
by up to 50.2% compared with the base case. The convergence trend exhibits approximately
exponential behavior, which is consistent with the characteristics of stochastic optimization
processes. The simulation time is also significantly reduced by over 95% compared with
traditional methods by performing 65 iterations. After performing first- and second-
stage optimization, the EV has a SoC of 97.01% and 99.18%, respectively. Hence, the SoC
constraint of the EV and ESS are manually fulfilled in the third stage.

In the final step, the results are validated by using a detailed model consisting of
power electronics-based local controllers. The operation set-points from the optimal case
are selected to be fed into the model and the output is observed. It can be observed that the
results are almost identical, with a price deviation of only 3.85%.
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In future work, grid congestion constraints such as peak shaving can be included
to avoid any penalty. Moreover, environmental and social parameters can be considered
together with economic benefits. The optimization problem can be implemented by using
Python programming instead of MATLAB to make the program more accessible to the
market. The algorithm can be applied to a more complex system composed of many energy
communities to compute the optimization time and decrease the overall cost.
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