
 
 

 

 
Energies 2025, 18, 5363 https://doi.org/10.3390/en18205363 

Article 

Forecasting the Power Generation of a Solar Power Plant  
Taking into Account the Statistical Characteristics of  
Meteorological Conditions 
Vitalii Kuznetsov 1,*, Valeriy Kuznetsov 2,*, Zbigniew Ciekanowski 3, Valeriy Druzhinin 4,*, Valerii Tytiuk 5,  
Artur Rojek 2, Tomasz Grudniewski 6 and Viktor Kovalenko 7 

1 Department of Electrical Engineering, Faculty of Electomechanic and Electrometallurgy, Dnipro  
Metallurgical Institute, Ukrainian State University of Science and Technologies, 2 Lazaryana Street,  
49000 Dnipro, DR, Ukraine 

2 Electric Energy Department, Railway Research Institute, 50 Józefa Chłopickiego Street, 04-275 Warsaw, 
Poland; arojek@ikolej.pl  

3 Department of Security Education, War Studies University, av. Chruściela 103, 00-910 Warsaw, Poland; 
zbigniew@ciekanowski.pl  

4 Department of Power Engineering, Faculty of Energy, Transport and Management Systems, Non-Profit Joint-
Stock Company «Karaganda Industrial University», Republic Ave., 30, Temirtau City 101400, KR, Kazakhstan 

5 Department of Electromechanics, Electrotechnical Faculty, Kryvyi Rih National University, Vitaly 
Matusevich, Street, 11, 50027 Kryvyi Rih, DR, Ukraine; tytiuk@knu.edu.ua  

6 John Paul II Academy in Biała Podlaska, Rector’s Office, Sidorska Street 95/97, 21-500 Biała Podlaska, 
Poland; t.grudniewski@dyd.akademiabialska.pl  

7 Department of Electrical Engineering and Cyber-Physical Systems, Y.M. Potebnia Engineering Educational 
and Scientific Institute, Zaporizhzhia National University, 66 Universytetska Street, 69600 Zaporizhzhia, 
ZR, Ukraine; victor.l.kovalenko@znu.edu.ua  

* Correspondence: v.v.kuznetsov@ust.edu.ua (V.K.); vkuznetsov@ikolej.pl (V.K.);  
v.druzhinin@tttu.edu.kz (V.D.) 

Abstract 

The integration of solar generation into national energy balances is associated with a wide 
range of technical, economic, and organizational challenges, the solution of which 
requires the adoption of innovative strategies for energy system management. The 
inherent variability of electricity production, driven by fluctuating climatic conditions, 
complicates system balancing processes and necessitates the reservation of capacities 
from conventional energy sources to ensure reliability. Under modern market conditions, 
the pricing of generated electricity is commonly based on day-ahead forecasts of day 
energy yield, which significantly affects the economic performance of solar power plants. 
Consequently, achieving high accuracy in day-ahead electricity production forecasting is 
a critical and highly relevant task. To address this challenge, a physico-statistical model 
has been developed, in which the analytical approximation of daily electricity generation 
is represented as a function of a random variable—cloud cover—modeled by a β-
distribution. Analytical expressions were derived for calculating the mathematical 
expectation and variance of daily electricity generation as functions of the β-distribution 
parameters of cloudiness. The analytical approximation of daily generation deviates from 
the exact value, obtained through hourly integration, by an average of 3.9%. The relative 
forecasting error of electricity production, when using the mathematical expectation of 
cloudiness compared to the analytical approximation of daily generation, reaches 15.2%. 
The proposed forecasting method, based on a β-parametric cloudiness model, enhances 
the accuracy of day-ahead production forecasts, improves the economic efficiency of solar 
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power plants, and contributes to strengthening the stability and reliability of power 
systems with a substantial share of solar generation. 

Keywords: solar energy integration; photovoltaic power plants; beta distribution; 
cloudiness modeling; probabilistic energy yield; power system stability 
 

1. Introduction 
The increasing share of solar energy in the structure of the energy balance of 

developed countries generates a number of specific challenges that require a 
comprehensive approach to their mitigation. One of the key factors is the instability of 
electricity generation, caused by the dependence of solar installations on climatic 
conditions and diurnal variations in solar radiation intensity. This necessitates capacity 
reservation based on conventional energy sources or the wide application of energy 
storage systems. Another important issue is the uneven distribution of generation over 
time, which complicates power system balancing processes and requires improvements 
in dispatch control mechanisms. At the same time, the growing share of solar generation 
calls for the modernization of grid infrastructure, primarily through the deployment of 
smart grids capable of flexibly responding to fluctuations in both demand and production. 
A significant challenge also arises from the reduced efficiency of conventional power 
plants, which are forced to operate in load-following modes, leading to shortened service 
life and increased electricity costs. The economic dimension is likewise of major 
importance, since the intensive financing of renewable energy requires state support and 
imposes an additional burden on public budgets. In the long term, the excessive 
concentration of solar power plants may result in local grid overloads and the 
deterioration of power quality indicators. 

Under current market conditions, a pricing practice has been established for the 
generated electricity, based on day energy yield forecasting, which has a significant 
impact on the economic efficiency of solar power plants. This further highlights the 
importance of developing methods that ensure accurate and timely forecasting of day 
energy yield. 

The authors have analyzed modern publications dedicated to the problems of short- 
and medium-term forecasting of solar energy production. The latest approaches based on 
artificial neural networks, deep learning, and other machine learning methods, such as 
Conv-GRU, NARX-GA, ARIMA, Grey Wolf Optimizer, Takagi–Sugeno–Kang neural 
networks, and Kohonen self-organizing maps, were considered. The use of statistical 
methods and deep learning models for processing satellite and meteorological data is also 
discussed, including models such as CNN, LSTM, GRU, CNN-LSTM, Extreme Learning 
Machine, and various hybrid approaches. 

In the paper, the authors proposed an approach based on the use of β-distribution to 
describe the random nature of cloudiness. It is shown that β-distribution is a universal 
and convenient tool for modeling cloudiness since it allows effective consideration of 
regional climatic features. Based on this distribution, a mathematical model was 
developed that allows for analytical calculation of the main statistical characteristics of 
day energy yield, such as expected value and variance, taking into account the random 
nature of cloudiness changes during the day. 

The paper provides analytical expressions for calculating day energy yield, taking 
into account the geographic location of the power plant, solar incidence angle, as well as 
atmospheric transmittance coefficients depending on cloudiness, humidity, and height 
above the sea level. A comparative analysis of the exact and approximate methods for 
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calculating daily electric power generation was carried out, showing satisfactory accuracy 
of the proposed analytical approach. 

The authors considered two main generation forecasting strategies: the first strategy 
is based on the use of the expected value of cloudiness provided by third-party 
meteorological services, while the second one takes into account cloudiness as a random 
variable with β-distribution. The analysis showed that taking into account the statistical 
nature of cloudiness significantly increases forecasting accuracy, while the relative error 
of calculations using the traditional method can exceed 15%. 

Thus, the proposed approach allows significantly improve the accuracy of 
forecasting the day energy yield of solar power plants, taking into account regional 
features of cloudiness and other meteorological conditions. The results obtained can be 
used in the operational activities of solar power plants and contribute to increasing the 
efficiency of integrating solar generation into energy systems. 

2. A Review of Modern Literature 
In contemporary electricity markets, the reliable forecasting of photovoltaic (PV) 

power generation has become a decisive factor for the efficient operation and financial 
performance of solar plants, as day-ahead production declarations must be aligned with 
grid requirements and influence market revenues. The inherent variability of solar 
irradiance, compounded by the limited accuracy of short- and medium-term 
meteorological forecasts, continues to pose significant challenges to operators and system 
planners. In recent years, considerable progress has been made in addressing these 
challenges through the development of advanced forecasting methodologies that exploit 
statistical analysis, artificial intelligence, and hybrid learning frameworks. To ensure a 
systematic and balanced representation of this progress, the present review focuses on 
peer-reviewed studies published between 2021 and 2025 in high-impact journals that 
reflect the main directions of methodological innovation. Rather than presenting the 
literature chronologically, the analysis is organized by classes of models to highlight both 
methodological distinctions and the incremental improvements introduced by each 
approach. Statistical baselines, including ARIMA and gray prediction models, continue to 
serve as important reference methods and are still competitive when enriched with high-
quality exogenous variables. Neural and deep learning architectures such as 
convolutional, recurrent, temporal convolutional, and transformer-based networks have 
demonstrated the ability to capture nonlinear and spatio-temporal dependencies, 
significantly reducing forecasting error across multiple horizons. Hybrid approaches that 
combine fuzzy logic, clustering, ensemble learning, wavelet decomposition, or bias 
correction modules with machine learning have emerged as particularly effective in 
leveraging complementary strengths and enhancing robustness under highly variable 
conditions. At the same time, probabilistic and physics-informed formulations, including 
generative and diffusion models, have gained increasing attention for their capacity to 
quantify forecast uncertainty and provide interpretable indicators of daily energy yield, 
thereby addressing the requirements of system operators and energy markets. 
Comparative and survey studies underscore that despite these advances, critical gaps 
remain in terms of interpretability and probabilistic performance, particularly for day-
ahead horizons. This structured synthesis of the literature establishes the basis for the 
subsequent class-by-class discussion of models and situates the present contribution 
within ongoing efforts to improve both the accuracy and transparency of solar power 
forecasting. 

Statistical models—such as autoregressive formulations, gray prediction methods, 
and related time-series techniques—constitute the traditional foundation of solar 
forecasting and remain a necessary reference point for assessing methodological progress. 
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Their analytical tractability, interpretability, and modest data requirements make them 
particularly valuable in contexts of limited data availability or when transparency is a 
priority. Despite the rapid proliferation of advanced machine learning and deep learning 
architectures, statistical approaches continue to demonstrate competitiveness when 
supplied with high-quality exogenous meteorological inputs and careful preprocessing. 
The studies reviewed here illustrate how these methods have been adapted and extended 
to meet contemporary challenges, including data scarcity, variability of meteorological 
drivers, and the demand for reliable day-ahead predictions. 

As a baseline statistical approach, Das [1] applied an ARIMA model for forecasting 
solar irradiance and the output of an 89.6 kWp PV plant, showing that even traditional 
time-series formulations can achieve competitive accuracy when sufficient historical data 
are available and exogenous variables are properly incorporated. Extending beyond 
classical autoregressive methods, He et al. [2] introduced a structurally adaptive gray 
prediction framework optimized with the Grey Wolf Algorithm, enabling the model to 
assign greater weight to new information and thereby improving adaptability in dynamic 
renewable energy contexts. This transition from conventional ARIMA to adaptive gray 
modeling illustrates how statistical paradigms have been modernized through 
algorithmic optimization. Further advancing this trajectory, Despotovic et al. [3] 
addressed the persistent challenge of limited historical data–particularly relevant for new 
PV installations—by combining autoregressive structures with extreme learning methods 
and implementing transfer learning across meteorological stations. The addition of 
clustering further enhanced model generalization, demonstrating how statistical 
approaches can be enriched with concepts from machine learning to mitigate data 
scarcity. A complementary perspective was offered by Gyeltshen et al. [4], who conducted 
a statistical evaluation of diversified irradiance repositories in Bhutan. Although their 
framework incorporated recurrent neural elements, the key contribution lay in 
underscoring the importance of high-quality and diverse statistical datasets as a 
foundation for robust forecasting performance. Completing this group of contributions, 
Benitez et al. [5] carried out a comparative study of SARIMAX, LSTM, and XGBoost for 
day-ahead photovoltaic output forecasting in the Philippines. Strikingly, their results 
revealed that SARIMAX, a classical statistical model, outperformed more advanced deep 
learning and gradient boosting methods when satellite-adjusted irradiance and other 
exogenous meteorological variables were carefully integrated. Taken together, these 
studies show that while statistical formulations remain essential benchmarks—and in 
specific contexts may even surpass more sophisticated methods –their inherent limitations 
in capturing nonlinear dynamics have ultimately motivated the transition toward neural 
and deep learning architectures. 

Consequently, the next line of research has focused on neural and deep learning 
approaches. These architectures—including recurrent, convolutional, and more recently 
transformer-based networks—are specifically designed to capture complex spatio-
temporal dependencies and to integrate heterogeneous input features such as irradiance, 
temperature, cloud cover, and satellite imagery. With the rapid expansion of 
computational resources and the increasing availability of large-scale datasets, deep 
learning has become one of the dominant directions of research in solar forecasting, 
demonstrating substantial improvements in predictive accuracy across a variety of 
temporal horizons. Against this background, a growing body of literature has explored 
deep learning techniques for solar forecasting, introducing diverse architectures and 
methodological refinements aimed at reducing forecast error and enhancing operational 
reliability. 

A number of recent contributions exemplify the growing role of deep learning in 
photovoltaic forecasting, each highlighting a different methodological strand and 
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collectively illustrating the evolution from early convolutional–recurrent hybrids to more 
specialized architectures and comparative evaluations against statistical baselines. 

Abdel-Basset et al. [6] propose PV-Net, a Conv-GRU architecture that integrates 
convolutional layers to capture local spatial features with gated recurrent units capable of 
learning temporal dependencies in photovoltaic generation data. The architecture is 
enhanced through bidirectional recurrence and residual connections, which improve 
information flow and reduce training instabilities such as vanishing gradients. The model 
was validated on Australian PV datasets and consistently outperformed classical 
statistical baselines and shallow machine learning models in short-term forecasting tasks, 
especially under conditions of high irradiance variability. The significance of this work 
lies not only in demonstrating the superiority of convolutional–recurrent hybrids over 
traditional time-series methods but also in setting a structural template that has been 
adopted in subsequent spatio-temporal forecasting research. 

Hassan et al. [7] extend the recurrent modeling paradigm by developing a genetically 
optimized nonlinear autoregressive recurrent neural network (NARX-GA). In this 
framework, the genetic algorithm is applied to optimize hyperparameters and network 
weights, thereby addressing the sensitivity of recurrent networks to parameter 
initialization and tuning. The study focused on ultra-short-term forecasting, where rapid 
irradiance fluctuations can cause significant challenges for standard recurrent models. 
Results demonstrated that the GA-enhanced NARX network achieved more stable and 
accurate predictions across diverse meteorological conditions, outperforming both 
unoptimized RNNs and statistical benchmarks. This contribution is important as it 
illustrates how evolutionary optimization techniques can complement deep learning, 
enhancing robustness and making recurrent models more reliable in real-world PV 
operation scenarios. 

Arias Velásquez [8] investigates NeuralProphet, a neural extension of the classical 
Prophet time-series model, applied to short-term PV power forecasting. NeuralProphet 
combines seasonality and trend decomposition with neural network components, 
enabling the model to handle both deterministic structures and nonlinear fluctuations in 
solar generation. The case study demonstrated that the approach can achieve competitive 
accuracy while offering greater interpretability than purely black-box deep learning 
models, an aspect highly valued in operational contexts where forecast transparency is 
required for grid integration. This work underscores the potential of hybrid frameworks 
that combine the interpretability of statistical models with the adaptability of deep 
learning, thereby bridging two methodological paradigms in solar forecasting. 

Khan et al. [9] present a dual-stream network augmented with an attention 
mechanism, explicitly designed for photovoltaic forecasting tasks. The architecture 
processes spatial and temporal information in parallel streams, while the attention layer 
adaptively assigns weights to the most informative features. This design allows the model 
to emphasize patterns most relevant to energy generation and to suppress noise or 
redundant inputs. Experimental validation showed that the dual-stream attention 
network outperformed standard CNN and RNN baselines, achieving lower forecast 
errors across several case studies. This contribution is significant in that it reflects the 
broader trend of incorporating attention mechanisms into PV forecasting, paralleling their 
transformative impact in natural language processing and computer vision. 

Azizi et al. [10] shift the focus from short-term horizons to long-term forecasting of 
global irradiance and temperature for a 20 MW PV plant in Iran. Their study employed a 
range of deep learning architectures–including MLP, LSTM, GRU, CNN, and CNN-
LSTM–to develop a multivariate, multi-step forecasting framework. By integrating 
multiple climatic variables and extending the forecasting horizon, the authors 
demonstrated that deep learning models can maintain predictive accuracy even in long-
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term settings where variability and uncertainty are higher. This work is important because 
it broadens the application of deep learning beyond the traditional short-term domain, 
showing its viability for long-range planning and operational decision-making in utility-
scale PV systems. 

Finally, Kim et al. [11] provide a comprehensive comparative study of statistical and 
deep learning methods using South Korean solar datasets from 2017 to 2021. The analysis 
included Holt–Winters, ARIMA, SARIMA, and LSTM models. Results indicated that 
LSTM consistently delivered the lowest forecast errors, particularly under conditions of 
rapidly fluctuating irradiance, outperforming traditional statistical approaches across 
multiple test scenarios. The study offers empirical justification for adopting LSTM in 
operational contexts where sufficient historical data are available, thereby reinforcing the 
practical advantage of deep learning models over conventional baselines. 

Viewed as a whole, these contributions demonstrate the maturation of deep learning 
in PV forecasting—beginning with convolutional–recurrent hybrids such as PV-Net, 
progressing through evolutionary-optimized recurrent designs like NARX-GA, and 
advancing to interpretable frameworks such as NeuralProphet and attention-based dual-
stream networks. More recent work extends the scope to multivariate long-term 
formulations and comparative evaluations that confirm the practical advantage of LSTM 
architectures over statistical baselines. Collectively, this progression highlights how deep 
learning has evolved toward solutions that are not only more accurate but also 
increasingly robust, interpretable, and operationally relevant across different forecasting 
horizons. 

Building on the advances of convolutional–recurrent hybrids, evolutionary 
optimization, and attention-based mechanisms, more recent research has expanded the 
scope of deep learning applications in solar forecasting. A distinctive feature of these 
contributions is the explicit integration of spatial–temporal correlations, the incorporation 
of satellite imagery and climate variables, and the development of hybrid and physics-
informed models that address the limitations of purely data-driven learning. This stream 
of studies not only extends deep learning to different forecasting horizons, from intra-
hour to day-ahead and long-term, but also demonstrates how combining neural 
architectures with clustering, ensemble methods, or domain knowledge can enhance 
robustness and interpretability. Within this context, the following works published 
between 2024 and 2025 [12–18] illustrate the methodological diversification of deep 
learning and its increasing alignment with practical forecasting challenges in distributed 
and large-scale PV systems. 

Cui et al. [12] exemplify the integration of novel input sources by employing 
geostationary satellite imagery in deep learning architectures such as DGMR-SO and 
UNet. Their framework moves beyond traditional ground-based observations by 
capturing cloud dynamics in near real time, substantially reducing errors in solar 
radiation nowcasting. The study illustrates how the inclusion of spatial image data 
complements temporal modeling, setting a precedent for multimodal approaches in ultra-
short-term forecasting. 

Building on the idea of capturing spatial structure, Lai et al. [13] extend deep learning 
forecasting to distributed PV networks by introducing a sub-region division method that 
explicitly accounts for spatio-temporal correlations among installations. Their results 
show that localized forecasting models outperform centralized approaches, especially in 
fragmented PV systems with heterogeneous characteristics. This contribution emphasizes 
the growing importance of geographically adaptive strategies in managing distributed 
renewable energy resources. 

While Lai et al. focus on distributed systems, Xu et al. [14] address the long-term 
horizon by proposing a complementary fusion of GRU and XGBoost. This hybrid 
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ensemble leverages the sequential modeling strengths of recurrent networks while 
harnessing the noise resilience and interpretability of gradient boosting. By 
demonstrating improved stability and accuracy over extended horizons, their work 
highlights the potential of combining deep learning with machine learning ensembles to 
overcome the degradation typically observed in long-term forecasts. 

A different innovation is introduced by Li et al. [15], who target ultra-short-term 
irradiance forecasting using a K-means-ELM model. Their approach applies clustering to 
identify characteristic weather patterns before using an Extreme Learning Machine for 
prediction. This preprocessing step improves adaptability to rapid fluctuations and 
ensures computational efficiency, making the method well suited for operational contexts 
that require near real-time forecasts. In this way, the study illustrates how the integration 
of unsupervised learning with fast neural algorithms can yield practical forecasting tools 
for grid operators. 

Further advancing the integration of meteorological information, Ma et al. [16] 
develop the D-Informer architecture, which combines attention mechanisms and 
differential transformations to explicitly embed climate variables such as temperature, 
humidity, and pressure into the forecasting process. By leveraging these atmospheric 
drivers, the model achieves superior accuracy under weather-sensitive conditions, 
underscoring the importance of climate-aware neural forecasting frameworks in 
operational planning. 

The shift from short-term and weather-driven designs to regional and market-
relevant horizons is represented by Perera et al. [17], who propose hierarchical temporal 
convolutional networks (HTCNN) for day-ahead regional forecasting. Their approach 
jointly processes aggregated and site-level data, thereby capturing multi-scale 
dependencies that flat models fail to represent. Experimental validation demonstrates that 
hierarchical learning enhances accuracy in large-scale forecasting tasks, reinforcing the 
operational value of day-ahead predictions for energy markets and system scheduling. 

Finally, Han et al. [18] contribute a hybrid approach for intra-hour forecasting that 
combines topological data analysis with physics-informed deep learning. This framework 
extracts structural features of irradiance variability while incorporating physical 
constraints of solar generation, producing forecasts that are not only accurate but also 
interpretable under highly stochastic conditions. Such physics-aware designs represent a 
promising direction for bridging the gap between purely data-driven models and the 
operational transparency required by grid operators. 

As the evidence accumulates, a pattern emerges in deep learning–based solar 
forecasting: the transition moves from the incorporation of new data modalities (satellite 
imagery, distributed PV correlations) to hybridizations with clustering and boosting 
methods, and finally toward climate-aware and physics-informed architectures. This 
trajectory not only delivers consistent improvements in accuracy across different horizons 
but also enhances robustness, scalability, and interpretability–qualities that are 
increasingly critical for integrating PV generation into modern electricity markets. 

In parallel with earlier advances in spatial–temporal modeling and climate-aware 
neural designs, the latest body of research increasingly emphasizes multimodal, hybrid, 
and probabilistic frameworks. These approaches aim to exploit heterogeneous data 
inputs–such as ground-based cloud imagery, meteorological time series, and contextual 
climate variables–while simultaneously addressing two critical challenges: ensuring 
scalability across diverse PV systems and providing explicit quantification of forecast 
uncertainty. The most recent works published in 2025 [19–23] exemplify this orientation, 
introducing deep clustering strategies, advanced hybrid learning schemes, multimodal 
fusion architectures, transformer-based feature enhancements, and probabilistic 
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forecasting formulations that together represent the current research frontier in 
photovoltaic power prediction. 

Within this line of work, Dou et al. [19] foreground multimodality for day-ahead 
irradiance forecasting by coupling ground-based cloud imagery with meteorological 
time-series through a deep clustering framework. The approach first structures 
heterogeneous inputs via representation learning and cluster assignment, then fuses 
image- and sequence-derived features for prediction. This design addresses two persistent 
issues–noisy visual inputs and regime heterogeneity–by letting the model discover 
weather regimes that mediate how visual and temporal cues should be combined. The 
study is retained because it establishes a principled route for regime-aware multimodal 
fusion at a day-ahead horizon, a setting where image information is often underexploited. 

Extending the emphasis on complementarity, Song et al. [20] present an advanced 
hybrid deep-learning pipeline aimed at improving point accuracy for PV power 
prediction. Rather than relying on a single architecture, the method stages feature 
extraction, temporal modeling, and fusion/ensembling to capture interactions among 
meteorological drivers and historical power signals. The value of this contribution lies in 
demonstrating how carefully engineered hybrid stacks can translate into consistent error 
reductions across datasets, thereby offering a practical blueprint for utilities seeking 
accuracy gains without committing to a single “all-purpose” network. 

Abad-Alcaraz et al. [21] reinforce the case for multimodal learning in solar radiation 
forecasting by formalizing feature-level and/or decision-level fusion within a unified deep 
model. By treating radiation-relevant covariates (e.g., irradiance proxies, meteorology, 
image or contextual signals) as complementary views, the architecture learns cross-modal 
dependencies that single-stream models tend to miss. This paper is included because it 
provides a clear, generalizable template for multimodal fusion, helping explain when and 
why heterogeneous inputs yield measurable accuracy gains. 

On the architectural frontier, Liu et al. [22] refine transformer-based forecasting with 
targeted feature enhancement for short-term PV power prediction. The model augments 
attention with learnable feature refinement (e.g., gating/selection or cross-feature 
interactions), improving the network’s ability to prioritize informative signals under 
rapidly changing conditions. This work is representative of a broader movement to adapt 
transformers to energy time-series by controlling feature noise and improving data 
efficiency–an essential step toward robust deployment beyond image or text domains. 

Finally, Song et al. [23] move from pure point prediction to probabilistic ultra-short-
term forecasting by combining attention-enhanced neural representations with natural-
gradient boosting. The hybrid yields calibrated predictive distributions–rather than single 
values–thus addressing the operational need to quantify uncertainty for reserve 
scheduling and risk-aware bidding. We retain this study because it exemplifies how 
modern DL can be integrated with probabilistic learners to deliver both accuracy and 
well-behaved uncertainty, closing a gap identified in earlier literature. 

Overall, the reviewed contributions trace a coherent methodological arc in deep 
learning–based solar forecasting—beginning with multimodal fusion strategies that 
integrate diverse data sources such as cloud imagery and meteorological time series, 
advancing through hybrid pipelines and generalized multimodal architectures that 
strengthen cross-modal representation and accuracy, and culminating in transformer-
based refinements and probabilistic formulations that deliver calibrated uncertainty 
estimates.While these advances have significantly improved predictive accuracy, 
scalability, and robustness, purely deep learning–based approaches continue to face 
persistent challenges, particularly in terms of interpretability, adaptability across 
heterogeneous PV systems, and reliance on large-scale training datasets. To address these 
gaps, a complementary research stream has emerged around hybrid models that integrate 
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neural architectures with fuzzy logic, statistical formulations, ensemble methods, 
predictive control, or physics-based corrections. By combining the nonlinear 
representation capacity of machine and deep learning with the robustness, transparency, 
and domain-awareness of traditional approaches, hybrid frameworks aim to deliver 
forecasts that are not only accurate but also interpretable, adaptive, and operationally 
reliable across diverse climatic and market contexts. 

The trajectory of this research begins with efforts to explicitly model uncertainty and 
interpretability. Li and Liu [24] introduce interval type-2 Takagi–Sugeno–Kang fuzzy 
systems for short-term PV power prediction, where fuzzy logic captures uncertainty while 
neural components approximate nonlinear patterns. This design provides interval 
forecasts rather than point estimates, offering decision-makers confidence bounds better 
suited for grid operations under variable irradiance. Building on the goal of 
interpretability, Sehrawat et al. [25] combine digital twin technology with machine 
learning to forecast solar irradiance. By creating virtual replicas of PV systems that are 
continuously updated with real data, the framework ensures forecasts remain system-
specific and adaptive, representing a shift toward hybrid digital environments where 
physical system knowledge is directly embedded in predictive workflows. 

Moving from interpretability to ensemble stabilization, Abumohsen et al. [26] 
propose a CNN–LSTM–RF model, in which convolutional and recurrent networks extract 
spatio-temporal patterns, while a Random Forest ensemble improves generalization and 
reduces overfitting. Their study demonstrates how blending deep and tree-based learners 
can achieve more robust predictions than either family of methods alone. A different 
hybrid pathway is illustrated by Mbungu et al. [27], who frame solar forecasting within a 
predictive control paradigm. Here, forecasts are continuously refined in response to 
deviations between expected and actual outputs, highlighting the operational role of 
hybrid forecasting not only in accuracy improvement but also in real-time 
responsiveness–a critical attribute for grid management. 

The importance of weather regime adaptation is emphasized by Dai et al. [28]. Their 
method combines credibility prediction for weather types with a dynamic ensemble of 
forecasting models, assigning higher weights to those models best suited for current 
meteorological conditions. This approach reflects an evolution toward adaptive 
hybridization, where models are not fixed but context-sensitive to the prevailing weather 
regime. Extending to signal decomposition and enriched feature design, Bai et al. [29] 
introduce a hybrid model that incorporates wavelet packet decomposition and an 
improved similar-day method before feeding data into an LSTM predictor. By 
disentangling multi-scale frequency components and enhancing input selection, their 
model achieves superior day-ahead forecasts, particularly under fluctuating irradiance 
conditions. 

At a larger scale, Dou et al. [30] demonstrate how numerical weather prediction 
(NWP) data can be effectively hybridized with machine learning. Their framework 
disentangles seasonal and trend components of NWP outputs and corrects them with a 
mixture-of-experts (MoE) model, bridging the gap between meteorological physics and 
data-driven refinement. Finally, Pereira et al. [31] present one of the most comprehensive 
physics-informed hybrid frameworks, combining deterministic solar radiation models 
with data-driven predictors. By embedding physical laws into the learning process, their 
approach prevents unrealistic outputs, reduces error propagation, and strengthens 
interpretability–an attribute increasingly demanded by system operators. 

These contributions outline a clear evolutionary path in hybrid solar forecasting 
research. The trajectory begins with fuzzy and digital twin frameworks designed to 
enhance interpretability, progresses through ensemble- and control-based hybrids that 
improve robustness and adaptability, and culminates in physics-informed and NWP-



Energies 2025, 18, 5363 10 of 32 
 

 

enhanced architectures that integrate domain knowledge with machine intelligence. This 
progression highlights the pivotal role of hybrid models as a bridge between purely data-
driven deep learning and operationally transparent forecasting systems, providing 
solutions that are not only accurate but also robust, interpretable, and practical for 
deployment in modern electricity markets. 

Alongside the advances in hybrid and deep learning frameworks, a further strand of 
research has increasingly focused on physico-statistical and probabilistic models, 
reflecting the growing importance of uncertainty quantification and interpretability in PV 
forecasting. Unlike purely deterministic approaches, these models explicitly characterize 
the stochastic nature of solar irradiance and power generation, often combining statistical 
formulations with physical insights or probabilistic inference. Their value lies not only in 
providing point forecasts but also in generating confidence intervals, probability 
distributions, or scenario sets that can be directly incorporated into grid operation, reserve 
scheduling, and market bidding strategies. 

This research stream has gained momentum in recent years, particularly as system 
operators and market regulators place greater emphasis on risk-aware decision-making 
and the reliable integration of high shares of variable renewable energy. The selected 
contributions [32–37] illustrate the breadth of methodological innovation in this area, 
spanning diffusion-based generative models, weather-informed probabilistic forecasting, 
hidden Markov formulations, copula-based temporal decomposition, and ensemble-
based Gaussian mixture networks. Together, these studies exemplify how probabilistic 
and physico-statistical approaches complement machine and deep learning by enhancing 
transparency, capturing uncertainty, and aligning forecasting outcomes with the 
operational requirements of modern electricity markets. 

Huang et al. [32] advance the state of probabilistic forecasting by introducing an 
enhanced conditional diffusion model tailored for net load prediction in grids with high 
renewable penetration. Diffusion-based generative modeling, widely adopted in 
computer vision, is here adapted to the energy domain, enabling the model to capture 
complex probability distributions of load and PV generation under uncertainty. Unlike 
deterministic predictors, the diffusion framework produces diverse, calibrated scenarios 
that can inform reserve planning and reliability assessment. This contribution is 
significant as it marks one of the first attempts to apply conditional diffusion techniques 
to renewable-heavy power systems, showing how generative models can be leveraged to 
improve both accuracy and probabilistic calibration. 

Zhang et al. [33] complement this direction with a weather-informed probabilistic 
framework that integrates scenario generation into day-ahead system operation. By 
coupling meteorological forecasts with probabilistic learning, their approach not only 
predicts PV output but also generates scenario sets consistent with weather uncertainty, 
directly usable in stochastic optimization for unit commitment and market bidding. This 
work is notable because it bridges the gap between forecasting and operational decision-
making, highlighting how scenario-based probabilistic outputs can enhance system 
flexibility and resilience in high-VRE environments. 

Ahmad et al. [34] propose a hybrid strategy that combines deterministic forecasts 
with the NB-DST probabilistic enhancement method. Their framework integrates Neural 
Bayesian (NB) inference with a Deterministic–Stochastic Transformation (DST), yielding 
both accurate point forecasts and well-calibrated probability distributions. The results 
demonstrate that augmenting deterministic predictors with probabilistic layers 
substantially improves reliability, especially under volatile irradiance. This study 
illustrates how deterministic deep learning models can be extended into the probabilistic 
domain without compromising accuracy, offering a pragmatic pathway for operators 
accustomed to conventional forecasting tools. 
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Zhang and Shang [35] take a different route, focusing on interpretability through a 
multi-observation non-homogeneous Hidden Markov Model (HMM). By modeling solar 
power generation as a sequence of hidden states influenced by exogenous meteorological 
variables, their approach delivers fast and interpretable probabilistic forecasts. Unlike 
black-box neural models, the HMM structure allows operators to directly associate hidden 
states with physical regimes (e.g., clear sky, partial cloud, overcast), thereby enhancing 
transparency while maintaining competitive predictive performance. This contribution is 
particularly relevant in regulatory and operational contexts where explainability is as 
critical as accuracy. 

Wang et al. [36] present a copula-based approach, combining temporal 
decomposition with vine copula functions to model dependency structures in solar power 
time series. By first decomposing the PV output into trend and fluctuation components, 
and then capturing nonlinear dependencies via vine copulas, the method generates 
probabilistic forecasts that respect temporal correlations across different horizons. Their 
results show improved calibration and sharpness compared to traditional Gaussian-based 
approaches, underscoring the importance of advanced statistical tools for capturing joint 
variability in renewable energy time series. 

Doelle et al. [37] extend the probabilistic forecasting paradigm by leveraging 
ensembles of deep Gaussian mixture density networks (GMDNs) for intraday PV 
prediction. Unlike classical probabilistic regressors, GMDNs directly estimate conditional 
probability densities, allowing the generation of full predictive distributions rather than 
single-point estimates. The ensemble design further improves robustness by reducing 
variance and mitigating overfitting, while the mixture density formulation captures 
multimodal uncertainty inherent in rapidly changing irradiance conditions. Their 
findings demonstrate that deep probabilistic ensembles can achieve high calibration 
quality and sharpness, making them particularly suitable for intraday horizons where 
uncertainty quantification is most critical for grid balancing and reserve allocation. 

The evidence from [32–37] underscores the distinctive role of probabilistic and 
physics–statistical approaches in advancing photovoltaic forecasting. Diffusion-based 
generative models enable calibrated scenario generation, weather-informed and 
Bayesian–deterministic hybrids enhance operational usability, hidden Markov structures 
provide transparent links between statistical states and physical regimes, copula-based 
formulations capture nonlinear temporal dependencies, and deep Gaussian mixture 
ensembles demonstrate how probabilistic learning can be embedded into neural 
architectures. What unites these methods is their explicit capacity to quantify uncertainty 
and produce scenario-based outputs that are both interpretable and operationally 
relevant. In this way, probabilistic and physics–statistical frameworks complement neural 
and hybrid deep learning models by addressing the challenges of calibration, robustness, 
and transparency, thereby offering tools that are increasingly indispensable for reliable 
system operation in renewable-dominated power grids. 

A distinct stream of research is represented by survey and comparative studies, 
which provide meta-analyses of methodological progress and consolidate lessons from 
the diverse body of work reviewed above. Rather than focusing on single architectures, 
these contributions synthesize statistical, machine learning, hybrid, and probabilistic 
approaches, while also mapping their operational implications for modern energy 
systems. 

Di Leo et al. [38] present a comprehensive review of advancements and challenges in 
PV forecasting, offering a structured analysis of statistical, machine learning, deep 
learning, and hybrid methodologies. Their findings emphasize that forecasting 
performance depends not only on algorithmic sophistication but also on the quality of 
meteorological inputs, preprocessing strategies, and horizon-specific model adaptation. 
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Importantly, the authors argue that future improvements will require integrated 
frameworks that couple forecasting accuracy with practical constraints of grid operation, 
market bidding, and reserve scheduling. 

Yu et al. [39] focus specifically on deep learning models, providing one of the most 
detailed reviews of convolutional, recurrent, attention-based, and hybrid neural networks 
for PV power forecasting. Their analysis demonstrates that deep learning has rapidly 
become the dominant paradigm due to its superior capacity for capturing spatio-temporal 
dependencies and handling heterogeneous data. However, they also stress unresolved 
challenges, including limited interpretability, difficulties in generalizing across 
heterogeneous PV systems, and the high computational cost of training advanced 
architectures. 

Blazakis et al. [40] extend the discussion by conducting an empirical evaluation of 
one-day-ahead solar irradiation and wind speed forecasting using state-of-the-art deep 
learning techniques. Their results confirm the competitive advantage of advanced neural 
models over traditional statistical methods but also reveal vulnerability to performance 
degradation under extreme weather variability. This underscores the importance of 
integrating deep learning with hybrid and probabilistic refinements to achieve consistent 
reliability across diverse operating conditions. 

Delgado et al. [41] examine the integration of Hidden Markov Models (HMM) with 
Long Short-Term Memory (LSTM) networks under both single-input and multiple-input 
configurations. Their study illustrates how combining interpretable statistical state-space 
representations with recurrent neural architectures can improve both robustness and 
transparency. This line of work points to the potential of hybrid architectures that 
preserve interpretability while retaining the nonlinear representation capacity of deep 
learning. 

Beyond PV-specific applications, Lim et al. [42] provide a broader review of deep 
learning in power system decision-making. Their study situates PV forecasting within the 
larger ecosystem of energy management, unit commitment, and reliability assessment, 
stressing that forecasting models must ultimately be evaluated by their capacity to inform 
operational and market-level decisions. The authors highlight the growing need for 
explainable artificial intelligence (XAI) and risk-aware frameworks, which can bridge the 
gap between black-box predictors and decision-making requirements in regulated energy 
markets. 

Kousounadis-Knousen et al. [43] complement this perspective by focusing on 
scenario generation methods for solar forecasting, with particular attention to weather 
classifications, temporal horizons, and the application of deep generative models. Their 
review highlights how scenario-based forecasting enables stochastic optimization and 
robust decision-making under uncertainty, offering practical pathways for integrating 
probabilistic forecasts into energy market operations and grid reliability assessments. 

Viewed collectively, the survey and comparative contributions [38–43] show that 
while methodological innovations—ranging from statistical baselines to advanced neural 
and hybrid models–have substantially improved forecasting accuracy, persistent gaps 
remain at the interface between algorithms and operational practice. These reviews 
converge on several key points: the necessity of high-quality and diverse input data; the 
value of hybridization to balance accuracy, interpretability, and robustness; and the 
importance of probabilistic and scenario-based outputs for risk-aware system 
management. In this way, meta-analyses provide not only a synthesis of methodological 
evolution but also a roadmap for future research directions, linking algorithmic advances 
to the practical demands of modern electricity markets. 

As highlighted by the reviewed literature, reliable forecasting of solar power 
generation remains especially critical for short-term resource planning, power 
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dispatching, and ensuring the operational safety of energy systems. While most research 
efforts concentrate on improving short-term prediction methods–primarily through 
weather-informed deep learning architectures–existing approaches still fall short in 
effectively addressing the problem of forecasting the average daily energy yield of PV 
plants. This gap is of particular importance for operational interaction with the power grid 
and for maximizing plant revenues under market conditions. 

To address this challenge, the present research aims to develop methods for 
estimating statistical indicators of daily energy yield based on the probabilistic 
characterization of meteorological conditions. Specifically, the objectives include: 
developing a mathematical model of hourly PV generation that accounts for geographical 
location and key meteorological drivers; constructing a model of daily energy yield 
derived from hourly generation; justifying the appropriate probability density law for 
meteorological inputs as random variables; and deriving analytical expressions for the 
main statistical indicators of daily yield as functions of the probability density parameters. 

3. Research Materials 
3.1. Calculation of the Day Energy Yield of a Solar Panel 

The expression for calculating the daily solar panel generation, considering the 
geographical location and meteorological conditions of the atmosphere, is described by 
the well-known expression [44]: 𝐸 = 𝑆 ∙ ׬ 𝐼଴ሺ𝑡ሻ ∙ 𝑓௔௧௠ሺ𝐻,ℎ, 𝑐ሻ௧ೞೠ೙ೞ೐೟௧ೞೠ೙ೝ೔ೞ೐ ∙ cos൫𝜃ሺ𝑡, 𝐿𝐴𝑇, 𝐿𝑂𝑁ሻ൯𝑑𝑡, (1) 

where 𝐸 is a day energy yield (W·h); 𝑆 is a solar panel area (m2); 𝑡௦௨௡௥௜௦௘ , 𝑡௦௨௡௥௜௦௘  are moments of sunrise and sunset (hours); 𝐼଴ሺ𝑡ሻ is the solar constant (~1361 W/m2), adjusted for the time of day and day of the 
year; 𝑓௔௧௠ሺ𝐻,ℎ, 𝑐ሻ is an atmospheric transmittance coefficient, depending on the altitude 𝐻, humidity ℎ and cloudiness 𝑐; 𝜃ሺ𝑡, 𝐿𝐴𝑇, 𝐿𝑂𝑁ሻ is the angle of incidence of sun rays on the horizontal surface, which 
depends on the time of the day, latitude, and longitude of the location. 

Let us give formulas for calculating the components of Equation (1). 

3.1.1. Atmospheric Transmittance Coefficient 

Atmospheric conditions including humidity, cloudiness and solar panel altitude 
above sea level are approximately taken into account as follows [44,45]: 𝑓௔௧௠ሺ𝐻,ℎ, 𝑐ሻ = ሺ1 − 0.75 ∙ сଷ.ସሻ ∙ ሺ1 −  0.1 ∙ ℎሻ ∙ ሺ1 + 0.0001 ∙ 𝐻ሻ (2) 

At low altitude of solar panel installation above sea level H (up to 500 m) the last 
factor in Equation (2) can be neglected. We also neglect the effect of humidity h. 𝑓௔௧௠ሺℎ, 𝑐ሻ =  ሺ1 − 0.75 ∙ сଷ.ସሻ ∙ ሺ1 −  0.1 ∙ ℎሻ ≈ ሺ1 − 0.75 ∙ сଷ.ସሻ (3) 

As can be seen from Figure 1, the value of the atmospheric transmittance coefficient 
is decisively influenced by the “Cloudiness” parameter. Later, Humidity’s influence can 
be neglected. 
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Figure 1. Dependence of the atmospheric transmittance coefficient on Humidity and Cloudiness. 

3.1.2. Angle of Incidence of Solar Rays (𝜃) 

cosሺ𝜃ሻ = sinሺ𝛿ሻ ∙ sinሺ𝜑ሻ + cosሺ𝛿ሻ ∙ cosሺ𝜑ሻ ∙ cosሺ𝜔ሻ, (4) 

where 𝛿 is declination of the Sun (calculated depending on the date); 𝜑 is latitude of the location (LAT); 𝜔 is an hour angle (depends on the time of day and longitude LON). 

3.1.3. Solar Constant 𝐼଴ 

The value of the solar constant Isc ≈ 1361 W/m2 is used with a correction for the Earth-
Sun distance, depending on the day of the year: 𝐼଴ = 𝐼ௌ஼ ቆ1 + 0.034 ∙ cosቆ൬ 2𝜋365 ∙ 𝑁൰ቇቇ (5) 

where 𝑁 is the day number of the year. 
This expression takes into account the main factors that influence the daily generation 

of solar panels, allowing for accurate calculations taking into account climatic and 
geographical features. 

3.1.4. Sunrise and Sunset Times (𝑡௦௨௡௥௜௦௘, 𝑡௦௨௡௦௘௧) 

The hourly sunrise/sunset angle (ωs) is determined by the formula: cosሺ𝜔௦) = − tanሺ𝜑) ∙ tanሺ𝛿) (6) 

Then 

• 𝑡௦௨௡௥௜௦௘ = 12 −𝜔௦/15, hourly time of sunrise; 
• 𝑡௦௨௡௦௘௧ = 12 + 𝜔௦/15, hourly time of sunset. 

Here 𝜑 is the latitude, 𝛿 is the declination of the Sun. 
The declination of the Sun (𝛿) is calculated as follows: 𝛿 = 23.45° sinቆ360365 ∙ ሺ284 + 𝑁)ቇ (7) 

Let us present the results of calculations of hourly power generation by a solar panel 
throughout the day, under the following conditions: area of the panel—1 m2; humidity 
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ℎ = 0.1; cloudiness с = 0.1; panel tilt angle 30°; panel efficiency 18%. The results of the 
performed calculations are illustrated in Figure 2, which shows the hourly distribution of 
solar panel electricity production for two representative days of the year. 

  
(a) (b) 

Figure 2. Result of the calculation of the solar panel’s hourly electricity production over a day: (a) 7 
November 2024; (b) 7 May 2025. 

These results were obtained under constant cloud cover and atmospheric humidity. 
Below are the results of experimental studies of solar radiation carried out using the 

meteorological station instruments at the solar power plant in Saran, Kazakhstan [46]. The 
solar power plant occupies an area of 160 ha in the northeastern part of the city of Saran, 
at geographic coordinates (49.8138, 72.8256). The site elevation is 491 m above sea level, 
and the official time zone is UTC+5. The panel tilt angle is 30°. Measurements were 
performed with a Kipp & Zonen SMP10-V spectrally flat Class A pyranometer (Figure 3), 
configured for GHI (Global Horizontal Irradiance). The data logging interval is 1 hour. 

 

Figure 3. Pyranometer Kipp & Zonen SMP10-V. 

Main technical characteristics of Kipp & Zonen SMP10-V pyranometer: analog 
outputs—0–1 V; directional desponse—˂15 W/m2; irradiance saturation—4000 W/m2; 
operating temperature range—−40 to +80 °C; spectral accuracy—285 to 2800 nm. 

As the initial data, the company’s management provided access only to information 
on solar radiation registration. 

For the approximate pipeline GHI → DNI/DHI → POA → DC → AC, based on the 
hourly GHI profile, we make the following assumptions: the Sun’s position is calculated 
according to standard astronomy (e.g., NREL SPA) [47]; for the decomposition GHI → 
DNI/DHI, the Erbs model is used, [48]; for transposition onto the module plane (POA), 
the isotropic sky model [49] is chosen; albedo is used (0.15 for soil/vegetation); the DC 
module model is assumed to be linear with respect to irradiance and temperature; 
cable/connector losses are considered as constant DC losses; and the inverter efficiency 
and DC/AC ratio are assumed constant. 
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The complete MATLAB 2025b program for calculating the actual daily energy of a 
solar panel, implementing the specified calculations, is given in Appendix A. 

Figure 4 shows the results of the experimental study of hourly solar radiation during 
the day, as well as the results of calculating the actual daily energy of a solar panel. 

  
(a) (b) 

Figure 4. Experimental studies of hourly solar radiation during the day: (a) 7 November 2024; (b) 7 
May 2025. 

Attention is drawn to the asymmetry of the GHI solar radiation histograms, Figure 
4. In addition, the analytical results of the hourly solar panel output calculation, Figure 2, 
do not coincide with the results of the experimental study, Figure 4. This can be explained 
by changes in cloudiness during the day. 

The following discussion is devoted to the development of methods for accounting 
for cloudiness as a probabilistic process in the calculations of solar panel power 
generation. 

3.2. Analytical Determination of Daily Energy Yield 

Analytical integration of the given expression (1) is possible if we accept some 
simplifications: 
• The solar constant 𝐼଴ by (5) is considered constant throughout the day (for a specific 

day 𝑁). 
• To consider the symmetry of the sun’s position relative to solar noon. 
• The atmospheric transmittance coefficient 𝑓௔௧௠ሺ𝑐)  can be considered constant 

throughout the day. 
Last assumption can be reasonably substantiated as follows. In the present study, our 

primary concern is the value of the definite integral over a prescribed time interval. The 
parameters of the β-distribution may likewise be interpreted as integral descriptors of 
cloudiness. Accordingly, it is permissible to approximate the atmospheric transmittance 
coefficient not as a time-dependent function, but rather as a constant defined by the β-
distribution parameters corresponding to the specified calculation date. 

Let us transform the Formula (1) under the assumption of a constant atmospheric 
transmittance coefficient and taking into account (3): 𝐸 = 𝑆 ∙ 𝐼଴ሺ𝑡) ∙ 𝑓௔௧௠ሺ 𝑐) ∙ න cos൫𝜃ሺ𝑡, 𝐿𝐴𝑇, 𝐿𝑂𝑁)൯𝑑𝑡௧ೞೠ೙ೞ೐೟௧ೞೠ೙ೝ೔ೞ೐  (8) 

Since the function cosሺ𝜃)  changes sinusoidally during the day, the integral can be 
simplified to the following analytical expression. 
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The final formula after integration of (8): 𝐸 = 𝛼 ∙ 𝑆 ∙ 𝐼଴ሺ𝑡) ∙ 𝑓௔௧௠ሺ 𝑐) ∙ 24𝜋 ሾ𝑠𝑖𝑛ሺ𝛿) ∙ 𝑠𝑖𝑛ሺ𝜑) ∙ 𝜔௦ + 𝑐𝑜𝑠ሺ𝛿) ∙ 𝑐𝑜𝑠ሺ𝜑) ∙ 𝑠𝑖𝑛ሺ𝜔௦)ሿ (9) 

where 𝑆 is the area of the panel, m2; 𝐼଴ is an extraterrestrial solar constant for day 𝑁; 𝑓௔௧௠ሺ ℎ, 𝑐) is an average daily atmospheric transmittance; 𝜑 is the latitude of the location; 𝛿 is the declination of the Sun; 𝜔௦ is an angle of sunrise (sunset) in radians. 𝛼 is the coefficient accounting for panel soiling and degradation. 
Thus, with the indicated simplifications, it is possible to make analytical integration 

and obtain the final formula that can be used for an approximate calculation of the daily 
generation of a solar panel. 

Let us compare the results of the exact (1) and approximate (9) formulas for 
calculating daily solar generation. 

From the analysis of the graphs in Figure 5, we can conclude that the approximate 
model for calculating solar generation has satisfactory accuracy. The mean relational error 
value in the calculation using the approximate model (9) was 3.9%. 

 

Figure 5. Comparison of the exact (1) and approximate (9) methods for calculating daily solar 
generation. 

The main reason for the calculated data deviation according to Equation (9) is that 
the calculations according to (1) consider the daily movement of the Sun and the change 
in the solar panel’s illumination level more accurately. 

3.3. Physical and Statistical Nature of the Variable “Cloudiness” 

Cloudiness (c) is a continuous random variable taking values in the interval [0, 1], 
where 

c = 0—absolutely clear; 
c = 1—fully cloudy. 
This makes it a typical candidate for modeling using random variable distributions 

on the interval [0, 1], where the β-distribution is the most universal [50]. 
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𝛽-distribution of a random variable X is given by the probability density 𝑓௑, which 
has the following form: 𝑓௑ሺ𝑥) = 1𝐵ሺ𝛼,𝛽) 𝑥ఈିଵሺ1 − 𝑥)ఉିଵ, (10) 

where 𝛼 and 𝛽 are distribution parameters. 𝐵ሺ𝛼,𝛽) = ׬  𝑥ఈିଵሺ1 − 𝑥)ఉିଵ𝑑𝑥ଵ଴ —beta-function. 
In this case, the random variable X has a 𝛽-distribution. Formally, this fact is written 

by the expression X~𝐵ሺ𝛼,𝛽). 
The beta-distribution depends on the values of the distribution parameters α and β, 

and can take various forms: 

• Unimodal (bell-shaped), 
• U-shaped (often clear or often cloudy), Figure 6a, 
• Uniform (when 𝛼 = 𝛽 = 1), 
• Shifted to the left/right (if the weather is often clear or cloudy), Figure 6b. 

  
(a) (b) 

Figure 6. Examples of β-distribution for different values of distribution parameters: (a)—U-shaped 
distribution; (b)—shifted to the left (often clear weather). 

This makes it easy to adjust the distribution to the climatic features of the region. 
As an alternative to the 𝛽 -distribution, the probability density function of the 

Kumaraswamy distribution can be applied to model a random variable taking values in 
the interval [0, 1]. It is an analog of the 𝛽-distribution but is simpler for analytical work 
due to the closed-form expression of its distribution function. 

If a random variable X follows the Kumaraswamy distribution with parameters 𝑎 ൐0, 𝑏 ൐ 0, its probability density function (PDF) is given by: 𝑓ሺ𝑥; 𝑎, 𝑏) = 𝑎𝑏𝑥௔ିଵሺ1 − 𝑥௔)௕ିଵ, 0 ൏ 𝑥 ൏ 1 

where 𝑎 − shape parameter; 𝑏 − shape parameter. 
Similarly to the β-distribution, it flexibly describes various density shapes on [0, 1] 

(U-shaped, increasing, decreasing, bell-shaped). 
The main advantage is the simple closed form of the cumulative distribution function 

(CDF), which is convenient for generating random numbers using the inverse transform 
method. 

In the case of bimodal weather with sharply variable cloudiness during the day, the 
β-distribution may be insufficient to describe multi-peaked probability density functions. 
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In such cases, a Beta Mixture Distribution (BMD) can be used. The main areas of 
application of BMD include: 

• Bayesian statistics (approximation of complex posterior distributions on [0, 1]); 
• models for fractions, probabilities, and proportions (for example, the share of 

renewable energy in the energy balance, distribution of humidity, etc.). 

In the further discussion, we will use the β-distribution, since integration with the β-
function is relatively straightforward. The importance of this property will become 
evident when deriving the formulas for the statistical characteristics of the daily energy 
yield. 

3.4. The Statistical Nature of Solar Panel Generation 

The statistical nature of the variable “Cloudiness” which is a part of the expressions 
for the atmospheric transmittance coefficient, Equations (2) and (3), leads to the fact that 
the value of the atmospheric transmittance coefficient will also be a random variable. Since 
the variable “Cloudiness” is a part of expressions (2) and (3) in the form of a power 
dependence, the statistical characteristics of the atmospheric transmittance coefficient as 
a random variable will differ significantly from the characteristics of the β-distribution of 
the variable “Cloudiness”. The same applies to the daily power generation of the solar 
panel, calculated according to (9). 

Determining the statistical characteristics of daily generation, which is formally a 
function of the random argument “Cloudiness”, is a non-trivial mathematical problem, 
the solution to which we will try to obtain below. 

Let us consider the process of electric power 𝐸ሺ𝑡)  generation as a random function, 
that is, a function of its argument whose value for any value of the argument t is a random 
variable. If the argument of the random function 𝑡 takes any values in a given interval, 
then the random function will also be a random process. 

For conducting a statistical analysis of the daily energy yield of a solar power plant, 
it is necessary to address two interrelated research tasks. The first task is associated with 
determining the actual probability distribution law of the random variable “Cloudiness,” 
which has a decisive influence on the transmission of solar radiation through the 
atmosphere and, consequently, on the operation of photovoltaic modules. To achieve this 
goal, it is essential to establish the form of the probability density function describing 
cloudiness, identify the distribution parameters, and calculate its statistical characteristics, 
including the mean, variance, skewness, and kurtosis. 

The second task concerns the investigation of the statistical distribution of the daily 
energy yield, considered as a random function of the parameter “Cloudiness.” Since 
cloudiness varies within the interval [0, 1] and is described by a specific probability 
distribution, the resulting value of the daily energy yield also acquires a stochastic nature. 
In this regard, it becomes necessary to determine the probability distribution function and 
statistical characteristics of this random variable, including the mean value, variance, and 
the possible range of fluctuations. 

Solving these tasks makes it possible to form a substantiated understanding of the 
statistical nature of electricity generation by solar power plants. This approach provides 
an opportunity for a more accurate description of uncertainties associated with the 
variability of meteorological conditions and establishes a basis for developing reliable 
probabilistic models for forecasting the daily energy yield of photovoltaic systems. 

To address this problem, methods of mathematical statistics can be applied to 
determine the numerical characteristics of functions of random variables [50]. In the 
present case, the random variable 𝐸(𝑐)  is a function of a single random variable. 
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Therefore, the task reduces to estimating the statistical characteristics of this random 
variable, provided that the distribution law of the random argument is known. 

The general method for solving the problem is to find the distribution law of the 
function of a random argument when the distribution law of the argument is known. 

The problem of finding the distribution law of the function 𝐸(𝑐) often turns out to 
be quite complex. However, for practical purposes it is quite sufficient to know only the 
numerical characteristics of this distribution, which significantly simplifies the solution of 
the problem. 

Let us consider the problem of determining the numerical characteristics of a function 
of one random argument with a known law of its distribution. 

There is a random variable 𝛾 with a known distribution law 𝜑(𝛾); another random 
variable, 𝑒, is related to 𝛾 by a functional dependence 𝑒 = 𝜑(𝛾). Then, according to [50], 
the expected value of a function of one random argument can be determined by the 
formula: 

𝑀ሾ𝑒ሿ = න 𝜑(𝛾)ାஶ
ିஶ ∙ 𝑓(𝛾)𝑑𝛾, (11) 

The variance of a function of one random argument can be determined by the 
formula: 

𝐷ሾ𝑒ሿ = න (𝜑(𝛾)ାஶ
ିஶ −𝑀ሾ𝑒ሿ)ଶ𝑓(𝛾)𝑑𝛾, (12) 

3.5. Statistical Characteristics of Daily Energy Yield by a Solar Panel 

In the considered case, the random argument is the “Cloudiness” parameter, denoted 
by the symbol c. 

As it was justified above, the random variable c has a β-distribution with a probability 
density 𝑓(𝑐)  of the form: 𝑓(𝑐) = 1𝐵(𝛼,𝛽) 𝑐ఈିଵ(1 − 𝑐)ఉିଵ. (13) 

Let us write down the functional dependence of the daily power generation by a solar 
panel on the “Cloudiness” parameter in expanded form. 

Substituting the simplified expression for the atmospheric transmittance coefficient 
(3) into the expression for calculating the daily power generation by a solar panel (9), we 
obtain: 𝐸 = 𝐴 ∙ 𝑓௔௧௠(𝑐), (14) 

where 𝐴 = 𝛼 ∙ 𝑆 ∙ 𝐼଴(𝑡) ∙ ଶସగ ሾsin(𝛿) ∙ sin(𝜑) ∙ 𝜔௦ + cos(𝛿) ∙ cos(𝜑) ∙ sin(𝜔௦)ሿ  is a constant 
depending on the day number of the year for the date of forecasting the daily generation. 

Substituting Equation (3) into (14), we obtain 𝐸 = 𝐴 ∙ (1 − 0.75 ∙ сଷ.ସ). (15) 

Then, according to Equations (3) and (11), the expected value of daily generation can 
be determined by the formula: 

𝑀 = 𝐴 ∙ 1𝐵(𝛼,𝛽) ∙ න(1 − 0.75 ∙ сଷ.ସ) ∙ଵ
଴ 𝑐ఈିଵ(1 − 𝑐)ఉିଵ𝑑𝑐. (16) 

When deriving Formula (16), it was taken into account that the “Cloudiness” 
parameter varies within the range from 0 to 1. 
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Let us calculate the definite integral (16). We expand the integrand as follows: (1 − 0.75 ∙ сଷ.ସ) × × 𝑐ఈିଵ(1 − 𝑐)ఉିଵ = 𝑐ఈିଵ(1 − 𝑐)ఉିଵ − 0.75 ∙ сଷ.ସ ∙ 𝑐ఈିଵ(1 − 𝑐)ఉିଵ. 
(17) 

Let us integrate each term of (17): 

න𝑐ఈିଵ(1 − 𝑐)ఉିଵ𝑑𝑐 = 𝐵(𝛼,𝛽)ଵ
଴ ,
න0.75 ∙ сଷ.ସ ∙ 𝑐ఈିଵ(1 − 𝑐)ఉିଵ = 0.75 ∙ 𝐵(𝛼 + 3.4,𝛽).ଵ
଴

 (18) 

Combining the results, we obtain 𝑀 = 𝐴 ∙ 1𝐵(𝛼,𝛽) ∙ (𝐵(𝛼,𝛽) − 0.75 ∙ 𝐵(𝛼 + 3.4,𝛽) ). (19) 

or in an alternative form 𝑀 = 𝐴 ∙ ቆ1 − 0.75 ∙ 𝐵(𝛼 + 3.4,𝛽) 𝐵(𝛼,𝛽) ቇ. (20) 

According to Equations (3) and (12), the variance of daily generation can be 
determined by the formula: 𝐷 = ଵ஻(ఈ,ఉ) ∙ ׬ (𝐴 ∙ (1 − 0.75 ∙ сଷ.ସ) −𝑀)ଶଵ଴ ∙ 𝑐ఈିଵ(1 − 𝑐)ఉିଵ𝑑𝑐. (21) 

By expanding the square in the integrand, we get (𝐴 ∙ (1 − 0.75 ∙ сଷ.ସ) −𝑀)ଶ = 𝐴ଶ(1 − 0.75 ∙ сଷ.ସ)ଶ − 2 ∙ 𝐴 ∙ 𝑀(1 − 0.75 ∙ сଷ.ସ) + 𝑀ଶ. (22) 

and (1 − 0.75 ∙ сଷ.ସ)ଶ = 1 − 1.5 ∙ 𝑐ଷ.ସ + 0.5625 ∙ 𝑐଺.଼. (23) 

Let us represent the integral (21) as the sum of three integrals: 

𝐼 = න(𝐴 ∙ (1 − 0.75 ∙ сଷ,ସ) −𝑀)ଶଵ
଴ ∙ 𝑐ఈିଵ(1 − 𝑐)ఉିଵ𝑑𝑐 =

= 𝐴ଶ න(1 − 1.5 ∙ 𝑐ଷ.ସ + 0.5625 ∙ 𝑐଺.଼)ଵ
଴ ∙ 𝑐ఈିଵ(1 − 𝑐)ఉିଵ𝑑𝑐
−2𝐴𝑀න(1 − 0.75 ∙ сଷ.ସ) ∙ 𝑐ఈିଵ(1 − 𝑐)ఉିଵ𝑑𝑐 +ଵ

଴+𝑀ଶන𝑐ఈିଵ(1 − 𝑐)ఉିଵ𝑑𝑐ଵ
଴

 (24) 

We use the following equality. For any 𝑘 ≥ 0 

න𝑐ఈା௞ିଵ(1 − 𝑐)ఉିଵ𝑑𝑐ଵ
଴ = 𝐵(𝛼 + 𝑘,𝛽) (25) 

Then from (24) we obtain the following: 
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න𝑐ఈିଵ(1 − 𝑐)ఉିଵ𝑑𝑐 = 𝐵(𝛼,𝛽)ଵ
଴න 𝑐ఈାଷ.ସିଵ(1 − 𝑐)ఉିଵ𝑑𝑐 = 𝐵(𝛼 + 3.4,𝛽)ଵ

଴න 𝑐ఈା଺.଼ିଵ(1 − 𝑐)ఉିଵ𝑑𝑐 = 𝐵(𝛼 + 6.8,𝛽)ଵ
଴

 (26) 

By combining (21), (24) and (26) we finally obtain the following: 𝐷 = 1𝐵(𝛼,𝛽) ∙ ∙ ൫(𝐴 −𝑀)ଶ𝐵(𝛼,𝛽) − 1.5 ∙ 𝐴 ∙ (𝐴 −𝑀)𝐵(𝛼 + 3.4,𝛽) + 0.5625𝐴ଶ𝐵(𝛼 + 6.8,𝛽)൯ (27) 

or in an alternative form 𝐷 = (𝐴 −𝑀)ଶ − 1.5 ∙ 𝐴 ∙ (𝐴 −𝑀)𝐵(𝛼 + 3.4,𝛽)𝐵(𝛼,𝛽) + 0.5625𝐴ଶ 𝐵(𝛼 + 6.8,𝛽)𝐵(𝛼,𝛽)  (28) 

Expressions (20) and (28) allow us to calculate the main statistical characteristics of 
the daily power generation by a solar panel based on the given parameters of the β-
distribution of cloudiness. The proposed approach considers the statistical nature of 
cloudiness and allows us to more accurately predict power generation by a solar panel. 

Currently, in order to forecast the power generation by a solar panel, the personnel 
of a solar power plant is forced to rely on forecast values of meteorological conditions 
provided by third-party meteorological services. Thus, the expected value of the 
cloudiness parameter is used to forecast generation, and the statistical nature of the 
change in cloudiness throughout the day is not taken into account. 

Let us consider two main strategies for forecasting solar panel power generation: 

• Strategy “Baseline А”. The influence of the “Cloudiness” parameter is taken into 
account in the form of a constant, which is equal to the mathematical expectation of 
the β-distribution of cloudiness. This value is provided by third-party meteorological 
services. The forecast of power generation is calculated according to expression (9) 
for the specified constant value of the cloudiness parameter; 

• Strategy “Probabilistic В”. The influence of the “Cloudiness” parameter is taken into 
account as a random variable with β-distribution. The forecast of power generation 
is calculated using expression (20) for the given values of the parameters of the β-
distribution of cloudiness. 

Below, in Figure 7, the dependence of the relative error of power generation forecasts 
is given from the parameters of the β-distribution of cloudiness, calculated using the fore-
casting strategies “Baseline А” and “Probabilistic В”. 
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Figure 7. Dependence of the relative error between the values of daily power generation forecast 
calculated by Baseline A and Probabilistic B forecasting strategies on the parameters of the β-
distribution of cloudiness. 

Below, Figure 7 shows the dependence of the relative error between the values of 
daily forecast of power generation calculated by Baseline A and Probabilistic B forecasting 
strategies on the parameters of β-distribution of cloudiness. 

As the analysis of the obtained results shows, in a fairly wide area of determining the 
parameters of the β-distribution of cloudiness, the relative error in calculating the forecast 
of solar generation exceeds 5%, and the maximum value of this error reaches 15.2%. The 
forecast of solar generation calculated taking into account the statistical nature of 
cloudiness according to strategy “Probabilistic В” turns out to be less than the forecast 
calculated based on the average value of cloudiness according to strategy “Baseline А”. 

4. Discussion 
The study shows that the β-distribution can be applied for the description of 

cloudiness and for the estimation of its impact on the daily energy yield of photovoltaic 
(PV) systems. The analytical model gave an average error of less than 4%, which confirms 
the possibility of using this approach in practice. This result also shows that simple 
probabilistic models can be more effective than methods based only on average 
meteorological parameters. 

The comparison of analytical and experimental data indicates that the model is able 
to reproduce the main shape of the GHI histograms and also their asymmetry, which is 
connected with the random nature of cloudiness. Similar conclusions are given in 
previous studies, where probabilistic models of cloud cover were used to improve the 
accuracy of PV energy yield forecasts. This confirms that probabilistic methods are more 
suitable than deterministic ones when day-ahead forecasts are needed under variable 
weather conditions. 

Some restrictions of the model must also be mentioned. The influence of humidity is 
not taken into account, which may limit the scope of application of the results to areas 
with arid or specific climatic conditions. The paper also considers only β-distribution does 
not allow describing multimodal or extreme cases of cloudiness. This can reduce the 
accuracy in regions with strong seasonal changes or with unstable weather. Future 
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research should also include additional meteorological factors, such as humidity, to 
improve the applicability of the model. Another direction for future research is to utilize 
Beta Mixture Model as a more flexible and powerful cloudiness distribution law. 

The use of hybrid models can be one more way to increase accuracy. The combination 
of the proposed probabilistic framework with machine learning can give both 
interpretability and predictive performance. Such development can make the method 
more universal for different climate zones and improve the reliability of PV energy yield 
forecasting for practical tasks in power systems. 

From a practical perspective, prediction of instantaneous values of solar power 
generation using machine learning and ANN-based methods can be important for 
ensuring the stability of the power grid. However, in practice, data on instantaneous 
values of power generation are often redundant. Much more valuable is information 
about the predicted value of daily solar generation. Based on these data, the economic 
relationship between the solar power plant and the state power system is formed. For 
example, in the Republic of Kazakhstan, insufficient power generation is the basis for 
penalties, and excessive power generation is paid for at reduced tariffs, which also reduces 
the technical and economic performance of the solar power plant. Therefore, accurate 
probabilistic forecasting of daily PV yield is of particular importance not only for technical 
stability but also for the economic sustainability of solar energy projects. 

A quantitative comparison of the proposed β-distribution model with methods based 
on the application of machine learning and ANN is not performed within the framework 
of this study due to the limited scope of the publication. It should be noted that the 
application of machine learning methods is actually an alternative method to account for 
the nonstationarity of meteorological conditions. Estimation of the statistical 
characteristics of the β-distribution of cloudiness on the basis of analytical methods for 
calculating meteorological conditions is, in our opinion, a more accurate approach. 

5. Conclusions 
This research solves the current scientific and practical problem of forecasting daily 

power generation by solar power plants based on statistical characteristics of 
meteorological conditions, in particular, random variation in cloudiness. The importance 
of the topic considered is due to the need to ensure the high accuracy of generation 
forecasts for coordinating production plans of power plants with dispatch control of 
energy systems, as well as optimizing the financial performance of power plants. 

The analysis conducted of the modern scientific literature has shown that the 
problem of forecasting power generation by solar installations is actively studied using 
various methods of artificial intelligence, deep learning, genetic algorithms and statistical 
models. The authors of the research have proposed a methodological approach based on 
the use of β-distribution to describe the statistical characteristics of cloudiness as a random 
variable. This favorable approach differs in terms of universality and the ability to adapt 
to regional climatic conditions, which allows to significantly increase the accuracy of 
power generation forecasts. 

An analytical model has been developed during research. This model considers main 
factors affecting daily generation, such as the power plant’s geographic location, the angle 
of incidence of solar rays, and atmospheric characteristics. The resulting analytical 
expressions for calculating daily power generation made it possible to estimate statistical 
indicators, including the expected value and variance of power generation, taking into 
account random changes in cloudiness throughout the day. 

As a result of comparing the exact and approximate analytical calculation of daily 
power generation, it was found that the proposed approach provides satisfactory 
forecasting accuracy, with the average calculation error not exceeding 4%. It was also 
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demonstrated that taking into account the statistical characteristics of cloudiness, 
expressed through the β-distribution, allows reducing the maximum relative forecasting 
error to a level of less than 5%, which is significantly better than the traditional forecasting 
method based on the average cloudiness value. 

Despite the high level of elaboration of the proposed approach, the research revealed 
certain drawbacks that limit the application of the obtained results in practice. 

The first drawback is the simplified consideration of the influence of humidity on the 
atmospheric transmittance coefficient. During the research, it was assumed that at low 
altitudes of solar panels placement, the influence of humidity can be ignored. However, 
in real conditions, humidity can significantly affect the transmission of solar radiation, 
especially in regions with high variability of atmospheric humidity during the year. The 
underestimation of this factor can lead to inaccuracies in the calculation of energy 
production. 

The second drawback is related to the limitation of the research to one type of 
distribution (β-distribution) for cloudiness modeling. Although the β-distribution is quite 
universal, it cannot always accurately reflect the statistical features of cloudiness in 
different climatic zones, especially in the presence of extreme meteorological conditions 
and rapid changes in weather conditions throughout the day. 

The authors see the following potential areas for further research: 

- Comprehensive research of the influence of humidity and other meteorological 
parameters on solar power generation: It is advisable to develop and test an extended 
mathematical model that takes into account the variability of humidity and its 
statistical distribution along with cloudiness, which will improve the accuracy of 
power generation forecasting. 

- Development and research of hybrid forecasting models that combine different types 
of distributions (for example, combinations of β-distribution with other statistical 
models) to more accurately account for regional and seasonal features of cloudiness 
changes: It is also possible to use machine learning and deep learning methods for 
adaptive adjustment of models based on operational weather data, which will further 
improve the quality of short-term forecasts of solar power generation. 

Thus, the implementation of the proposed directions will significantly improve the 
accuracy and efficiency of solar power plants power generation forecasting, which is an 
important task for the further development and integration of renewable energy sources 
into energy systems. 
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Abbreviations 
The following abbreviations are used in this manuscript: 

GHI Global Horizontal Irradiance  
DNI Direct Normal Irradiance W/m2 
DHI Diffuse Horizontal Irradiance W/m2 
POA Plane of Array Irradiance  
NWP Numerical Weather Prediction  
Conv-GRU Convolutional Gated Recurrent Unit  

NARX-GA 
Nonlinear AutoRegressive model with eXogenous inputs 
optimized by Genetic Algorith 

 

ARIMA AutoRegressive Integrated Moving Average  
CNN Convolutional Neural Network  
LSTM Long Short-Term Memory  
GRU Gated Recurrent Unit  
CNN-LSTM Convolutional Long Short-Term Memory  𝐼଴ 

extraterrestrial solar irradiance on a plane normal to the radiation 
direction 

W/m2 𝐼ௌ஼ solar constant ~1361 W/m2 𝐸଴ eccentricity correction factor of the Earth’s orbit (dimensionless)  𝜑 site latitude ° 𝛿 solar declination ° 𝜔 hour angle ° 

Appendix A 
Program Listing Implementing the GHI → DNI/DHI → POA → DC → AC Pipeline Using the 
Hourly GHI Profile 

%% pv_daily_energy_from_GHI.m 
% Calculation of daily AC-energy PV (1 m2) from hourly GHI. 
 
clear; clc; 
 
%% ------------------------- INPUT DATA ------------------------------ 
% 1) Hourly GHI (W/m2), local standard time (no summer transitions) 
%    There must be N=24 values for a day. 
GHI = [... % 2025/05/07 
    0 0 0 0 0 5.917 55.833 205.083 362.25 409.167 580.167 816.5 874.75 ... 
    804.417 684 671.25 542.25 448.75 246.083 101.583 6.75 0 0 0]ʹ; 
 
GHI = [... % 2024/11/07 
    0 0 0 0 0 0 0 0.083 8.583 55.833 72.917 147.667 186.5 ... 
    326.75 210.25 131.083 74.667 8.417 0 0 0 0 0 0]ʹ; 
 
% 2) Date and sampling 
year = 2025; month = 5; day = 7;                  % <- enter your 24 hours 
t = datetime(year,month,day,0:23,0,0);            % 24 points per hour, local time 

(without DST) 
 
% 3) Location and time zone (offset relative to UTC, hours) 
%    Example: Saran, Kazakhstan ≈ 49.80°N, 72.86°E; from 2024 the country is in 

UTC+5 
lat = 49.80;           % [deg] latitude (+N) 
lon = 72.86;           % [deg] longitude (+E) 
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tz  = +5;              % [h]   time zone is relative UTC 
 
% 4) Panel installation 
tilt_deg   = 30;       % [deg] slope β from the horizontal (0= flat, 90= vertical) 
azm_deg    = 180;      % [deg] panel azimuth γp (0= North, 90= East, 180= South, 

270= West) 
albedo     = 0.15;     % [-]   ground reflectivity (grass/ground) 0.15–0.25) 
 
% 5) Meteo for thermal model (can be scalars or vector for 24 hours) 
Tamb_C     = 20*ones(size(GHI));  % [°C] air temperature 
 
% 6) ʺPassportʺ module parameters (typical mono-Si) 
eta_STC    = 0.20;     % [-]   Efficiency at STC(1000 W/m², 25°C) 
gamma_P    = -0.0045;  % [1/°C] temperature power factor (approx −0.4…−0.5 

%/°C) 
NOCT_C = 45; % [°C] NOCT (800 W/m2, 20 °C, 1 m/s) 
Area_m2 = 1.0; % [m2] panel area = 1 m2 
 
% 7) Inverter parameters (simplified efficiency + power limitation) 
Pinv_AC_rated_W = eta_STC*1000*Area_m2;  % [W] rated AC ~ peak STC DC (≈200 

W/m²*m²) 
inv_eff_nom     = 0.96;                   
 
%% ------------------------- CALCULATION BLOCKS ----------------------------- 
% Solar position (zenith/azimuth) and extraterrestrial radiation 
[theta_z, gamma_s, I0n, G0h] = sunpos_and_extrat(t, lat, lon, tz); 
 
% GHI -> (DHI, DNI) decomposition by Erbs + overnight/low angle protection 
[DHI, DNI] = erbs_decomp(GHI, G0h, theta_z); 
 
% Transpose to array plane: POA = beam + sky(diffuse) + ground 
POA = transpose_to_POA(DNI, DHI, GHI, theta_z, gamma_s, tilt_deg, azm_deg, 

albedo); 
 
% NOCT cell temperature 
Tcell_C = tcell_NOCT(POA, Tamb_C, NOCT_C); 

 
% DC-module capacity (at 1 m2) 
Pdc_W = max(0, POA * eta_STC .* (1 + gamma_P * (Tcell_C − 25))) * Area_m^2; 
 
% AC power of the inverter (simplified) 
Pac_W = min(inv_eff_nom * Pdc_W, Pinv_AC_rated_W); 
Pac_W(Pac_W < 1) = 0; % we cut the “creeping” power below 1 W 
 
% Time integration (kWh) 
dt_h = hours(diff(t)); dt_h(end+1) = dt_h(end); % last interval = previous interval 
Eac_kWh = sum(Pac_W./1000 .* dt_h′); 
 
% Total 
fprintf(�Daily AC energy (1 m2): %.3f kWh\n’, Eac_kWh); 
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%% ------------------------- PLOTS ----------------------- 
figure; 
subplot(3,1,1); bar(t, GHI); grid on; 
ylabel(�GHI, W/m2’); title(�GHI by hour’); 
 
subplot(3,1,2); 
%plot(t, POA, �LineWidth’, 1.2); grid on; 
bar(t, POA); grid on; 
ylabel(�POA, W/m2’); title(�POA by hour’); 
 
subplot(3,1,3); 
plot(t, Pdc_W, �LineWidth’, 1.2); hold on; 
plot(t, Pac_W, �—’, �LineWidth’, 1.2); grid on; 
ylabel(�Power, W’); legend(�P_{DC}’,�P_{AC}’); 
title(sprintf(�Energy per day: %.3f kW·h (AC)’, Eac_kWh(1))); 
xlabel(�Time’); 
 
%% ======================= LOCAL FUNCTIONS 

============================ 
function [theta_z, gamma_s, I0n, G0h] = sunpos_and_extrat(t, lat, lon, tz) 
% Approximate astronomy: zenith θz, azimuth γs (0 = C, 90 = B, 180 = S, 270 = Z). 
% Extraterrestrial normal I0n and horizontal G0h radiation. 
% All angles in radians / degrees as specified, output theta_z, gamma_s [rad]. 
    deg2rad = pi/180; 
    N = numel(t); 
    theta_z = zeros(N,1); gamma_s = zeros(N,1); 
     
    % Day of the year 
    n = day(t,’dayofyear’); 
    % Declination (simple) 
    delta = 23.45 * deg2rad . * sin(deg2rad*(360*(284 + n)/365)); 
    % Time equation (min), approximate 
    B = 2 * pi * (n − 81)/364; 
    EoT_min = 9.87 * sin(2 * B) − 7.53 * cos(B) − 1.5 * sin(B); 
    % Longitude/hour zone correction: true solar time 
    Lst = tz * 15; % reference meridian of time zone, degrees 
    % Local time in hours 
    hour_local = hour(t) + minute(t)/60 + second(t)/3600; 
    TC_min = 4 * (Lst − lon) + EoT_min; % min 
    solar_time_h = hour_local + TC_min/60; 
    % Clock angle 
    H_deg = 15 * (solar_time_h − 12); 
    H = H_deg * deg2rad; 
    % Altitude and zenith 
    phi = lat * deg2rad; 
    cos_tz = sin(phi). * sin(delta) + cos(phi). * cos(delta). * cos(H); 
    cos_tz = max(cos_tz, 0); % -> 0 
    cos_tz(cos_tz > 1.5) = 0; 
    theta_z = acos(cos_tz); 
    sin_tz = sqrt(max(0,1 − cos_tz.^2)); 
    % Azimuth of the sun (0 = C, clockwise) 
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    num = cos(delta). * sin(H); 
    den = cos(phi). * sin(delta) − sin(phi). * cos(delta). * cos(H); 
    gamma_s = atan2(num, den); % [−pi..pi], 0= North, + East 
    gamma_s(gamma_s<0) = gamma_s(gamma_s<0) + 2 * pi; % [0..2π) 
     
    % Extraterrestrial normal radiation I0n 
    % Eccentricity factor (simplified) 
    E0 = 1 + 0.033 * cos(2 * pi * n/365); 
    I_sc = 1367; % W/m2 (solar constant, classical value) 
    I0n = I_sc . * E0; 
    G0h = I0n . * cos_tz; 
end 
 
function [DHI, DNI] = erbs_decomp(GHI, G0h, theta_z) 
% Erbs: kd = DHI/GHI as a function of Kt = GHI/G0h 
% Overnight protection and low cos(theta_z) 
    eps = 1×10−6; 
    cos_tz = cos(theta_z); 
    N = numel(GHI); 
    DHI = zeros(N,1); DNI = zeros(N,1); 
    for i = 1:N 
        if GHI(i) <= 1 || G0h(i) <= eps || cos_tz(i) <= eps 
            DHI(i) = GHI(i); 
            DNI(i) = 0; 
        else 
            Kt = max(0, min(1.2, GHI(i)/G0h(i))); 
            if Kt <= 0.22 
                kd = 1 − 0.09 * Kt; 
            elseif Kt <= 0.80 
                kd = 0.9511 − 0.1604 * Kt + 4.388 * Kt^2 − 16.638 * Kt^3 + 12.336 * Kt^4; 
            else 
                kd = 0.165; 
            end 
                kd = max(0, min(1, kd)); 
                DHI(i) = kd * GHI(i); 
                DNI(i) = max(0, (GHI(i) − DHI(i))/cos_tz(i)); 
        end 
    end 
end 
 
function POA = transpose_to_POA(DNI, DHI, GHI, theta_z, gamma_s, tilt_deg, 

azm_deg, albedo) 
% Simple transposition: direct beam + isotropic diffusion + ground reflection 
% Azimuths: 0 = C, 90 = B, 180 = S, 270 = Z. Angle θz in radians. 
    deg2rad = pi/180; 
    beta = tilt_deg * deg2rad; 
    gamma_p = azm_deg * deg2rad; 
    cos_tz = cos(theta_z); 
    sin_tz = sin(theta_z); 
    % Cosine of the angle of incidence on the plane 
    cos_i = cos_tz. * cos(beta) + sin_tz. * sin(beta). * cos(gamma_s − gamma_p); 
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    cos_i = max(cos_i, 0); 
    % Constituents 
    I_beam = DNI . * cos_i′; 
    I_sky = DHI . * (1 + cos(beta))/2; % isotropic sky model 
    I_grnd = albedo . * GHI . * (1 − cos(beta))/2; 
    POA = max(0, I_beam + I_sky + I_grnd); 
end 
 
function Tcell = tcell_NOCT(POA, Tamb, NOCT_C) 
% NOCT-model: Tcell = Tamb + (POA/800) * (NOCT-20) 
    Tcell = Tamb + (POA/800) . * (NOCT_C − 20); 
end 
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