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Abstract

The paper presents a hybrid intelligent expert diagnostic system (HIESD) of power trans-
former (PT) subsystems realized on the basis of integration of measuring and computing
hardware and software complexes into a single functional architecture. HIESD performs
online diagnostics of four main subsystems of PT: 1—insulating (liquid and solid insu-
lation); 2—electromagnetic (windings, magnetic conductor); 3—voltage regulation; and
4—high-voltage inputs. Computational complexes and modules of the system are con-
nected with the real object of power grids, 110/10 kV substation, which interact with each
other and contain a relational database of retrospective offline data of the PT “life cycle”
(including test and measurement results), supplemented by online monitoring data of
the main subsystems, corrected by high-precision test measurements; analytical complex,
in which the work of calculation modules of the operational state of PT subsystems is
supplemented by predictive analytics and machine learning modules; and a knowledge
base, sections of which are regularly updated and supplemented. The system architecture is
tested at industrial facilities in terms of online transformer diagnostics based on dissolved
gas analysis (DGA) data. Additionally, a theoretical model of diagnostics based on the
electromagnetic characteristics of the transformer, which takes into account distorted and
nonlinear modes of its operation, is presented. The scientific significance of the work
consists of the presentation of the following new provisions: Methodology and algorithm
for diagnostics of electromagnetic parameters of ST, taking into account nonlinearity and
non-sinusoidality of winding currents and voltages; formation of optimal client–service
architecture of training models of hybrid system based on the processes of data storage and
management; and modification of the moth–flame algorithm to optimize the smoothing
coefficient in the process of training a probabilistic neural network

Keywords: power transformer; subsystems diagnostics; offline and online monitoring;
hardware–software complex; relational database; expert system; artificial intelligence
methods

Energies 2025, 18, 5360 https://doi.org/10.3390/en18205360

https://doi.org/10.3390/en18205360
https://doi.org/10.3390/en18205360
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-2014-1970
https://orcid.org/0000-0003-4443-5113
https://doi.org/10.3390/en18205360
https://www.mdpi.com/article/10.3390/en18205360?type=check_update&version=1


Energies 2025, 18, 5360 2 of 32

1. Introduction
1.1. Relevance of the Problem

Power oil-filled transformer is the most expensive asset in the electric power system.
Up to 60% of the cost of all substation equipment is accounted for by PTs [1], so maintaining
their trouble-free operation is an important economic task and a key factor in ensuring
reliable supply of electric energy (EE) to consumers.

The average age of the power grid PTs fleet is about 30 years and continues to increase,
so the problem of ensuring their reliable operation from year to year is becoming more
and more urgent. Taking into account the impossibility of full-fledged replacement of
equipment that has served its normal service life, the most correct strategy to ensure reliable
operation of power grids is to increase the efficiency of diagnostics of their condition.

The high rate of digitalization of the power industry has created new opportunities for
improving the reliability of electrical equipment and, in particular, PTs. The opportunities
are based on continuous monitoring and diagnostics of the state of PT subsystems [2],
which makes it possible to

- Supplement the possibilities of integral assessment of the PT state as a whole and
to forecast the change in the state of its subsystems with determination of their
residual resource;

- Ensure the formation of more adequate diagnostic models for forecasting and pre-
dictive analysis of the technical condition of PT on the basis of both deterministic
approach and machine learning methods;

- Develop a system of optimal decision-making when selecting effective operational
impacts on the object (creation of a “digital twin” of the PT).

To successfully solve the above tasks, it is necessary to provide multicomponent
diagnostics of PT in the online monitoring mode [3]. Numerous works on this topic
imply the development of and improvement in mathematical models for operational and
predictive assessment of equipment condition (diagnostic models) and decision support
systems to ensure reliable operation, which determines their relevance.

1.2. Experience of the Team of Authors

Over the past 10 years, the authors of this article have developed and implemented on-
line subsystems for commercial and technical accounting of electrical energy [4], diagnostics
of the condition of transformer on-load tap changers (OLTC) [5], Figure 1, and circuit break-
ers [6], Figure 2; and a device for testing electromagnetic parameters (EMPs) [7] (low-power
transformers, laboratory transformers—physical models of transformers), Figure 3.

 

Figure 1. OLTC diagnostic system server.
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Figure 2. Circuit breaker diagnostic system server.

 

Figure 3. Device for diagnosing electromagnetic parameters of a power transformer.

In addition to the above, analytical software modules have been developed: models for
optimizing voltages in power centers (PCs) [8]; models for deviation of current waveforms
of OLTC device drives and circuit breakers; determination of load losses under asymmetri-
cal load [9]; methods for determining the degree of degradation of transformer oils [10];
and an adaptive model for diagnosing liquid insulation based on a probabilistic neural
network [11]. Based on the results of their work, the authors have formed and structured a
server relational database based on the PostgreSQL database management system (DBMS)
containing information on the “life cycle” of several dozen 110/10 kV transformers of the
same type.

The experience gained from the work performed allows us to conclude that trans-
former diagnostic systems should be “personalized”, i.e., based on the passport data of
a specific transformer, which increases their effectiveness. In the modern “classical” di-
agnostic system (program) [12], an important role is assigned to the analysis of gases
dissolved in oil, which theoretically allows for the detection of many developing defects.
However, almost half a century of using this method has not allowed for the formation of
an unambiguous library of defect images. One of the reasons for this is the failure to take
into account the physical and chemical characteristics of the oil.

Electromagnetic parameters have historically played an important role in transformer
diagnostics [13,14]. At the present stage, highly sensitive frequency analysis (FRA) methods
are in particular demand, as they allow for the effective monitoring of the condition of the
active part of the transformer, including the windings and magnetic circuit [15], as well



Energies 2025, 18, 5360 4 of 32

as methods for diagnosing such critical structural elements as high-voltage bushings and
on-load tap changers.

Thus, the set of diagnostic information represents an array of heterogeneous data,
the combination of which within a single diagnostic object is a complex task. It is solved
by methods of recognition theory and requires special in-depth consideration. At the
same time, no less complex sub-tasks arise within the main task, caused by the need to
compare variable diagnostic parameters that depend on a variety of influencing factors.
For example, the values of EMP in test and operating modes can differ significantly (due
to their nonlinearity, frequency dependence, etc.). Methods and algorithms need to be
developed to reconcile the diagnostic parameters being compared. Obviously, this aspect
largely determines the effectiveness of practical PT diagnostics.

Recently, many researchers have linked the improvement in operational control and
diagnostics of PTs to the use of artificial intelligence (AI) [1]. In this case, not only the
selection of optimal machine learning algorithms becomes important but also the volume
and accuracy of the measurement results of various diagnostic features, parameters, and
quality indicators. At the same time, it is obvious that the use of traditional measurement
methods alone is no longer sufficient. The modern approach to diagnostics provides
for continuous (quasi-continuous) monitoring of the condition of its components and
subsystems. It should be noted that there is often a certain degree of “voluntarism” in the
construction of monitoring systems—in each specific case, a unique set of sensors, detectors,
and systems from different manufacturers is used to collect diagnostic parameters. In this
regard, obtaining (measuring and processing) the necessary amount of diagnostic data is a
non-trivial and creative task.

Therefore, the main objective of this study is to justify, develop, and implement (test) a
prototype of an intelligent computing complex and information and measurement system
based on a minimum number of controlled diagnostic parameters of the transformer, which,
in turn, minimizes the cost of the system as a whole.

An analysis of the causes of emergency shutdowns of the PT shows that its most
frequently damaged components are high-voltage bushings and on-load tap changers—
OLTC devices. According to the operating data of Hydro-Québec, which services more
than 2000 transformers, damage to these devices accounts for up to 50% of the total number
of failures [16]. The importance of monitoring traditional diagnostic objects, insulation
and electromagnetic systems, is obvious: the former determines the resource; the latter
determines the functional performance of the transformer.

Based on this, the following transformer subsystems were selected for online diagnostics:
1—Insulation (liquid and solid insulation);
2—Electromagnetic (windings and magnetic circuit);
3—Voltage regulation;
4—High-voltage bushings.

1.3. Overview of Diagnostic Methods for Selected Subsystems of the PT

The insulation subsystem of a PT is divided into liquid and solid insulation. In the
vast majority of cases, the former is based on mineral transformer oil, in which the active
part is immersed [17]. Solid insulation is based on insulating paper and cardboard obtained
from cellulose raw materials. Solid insulation of a transformer is a non-recoverable element
in case of damage. Liquid oil can be replaced or regenerated even without disconnecting
the transformer [18].

Defects in the transformer lead to the occurrence of local thermal and discharge
processes, resulting in the decomposition of the insulation system with the release of
various degradation products of the hydrocarbon base of the paper–oil insulation into the
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oil. This served as the basis for the development of methods for identifying defects in
oil-filled transformers by analyzing characteristic gases dissolved in oil—DGA. For more
than half a century, such analysis has been one of the most effective diagnostic tools [19].
A detailed overview of existing methods for processing and interpreting DGA results is
given in [20]. The most well-known of these are the Dornburg method, the Duval triangle,
and the Rogers ratio method [21], among others.

Despite such methodological diversity, interpreting gas content in transformer oil is a
complex task, the solution to which depends on many often contradictory factors (shielding
of defects). Even a combination of different methods [22,23] does not allow for the reliable
diagnosis of many developing defects.

In the mid-2000s, studies appeared that proposed the use of genetic algorithms for
analysis [24,25]. This was an initial attempt to formalize the process of diagnosing gas
content in oil. With the advent of machine learning methods, mathematical methods
replaced the heuristic approach to interpreting DGA data. Nowadays, this approach
seems to be the most productive for analyzing results [26–30]. However, the stochastic
nature of the information and the complexity of reproducing the results obtained by other
researchers make it difficult to create a universal tool for such analysis [20]. The prospect
for the development of this area lies in the combined efforts of specialists, in particular,
in the exchange of data from numerous studies. Positive examples of openness to such
cooperation include the DGA data repository, which is freely accessible [31], and the
work [32], which used data collected from 16 different sources.

Today, it is generally accepted that when interpreting DGA results, it is necessary to
take into account the structural-group and physicochemical composition of transformer
oil, which have a significant impact on gas formation [33,34]. It has been established that
changes in the moisture content of oil affect the diffusion of gases dissolved in it [35]. It
follows that in the process of machine learning, DGA data and data on various physical
and chemical parameters and oil quality indicators must be simultaneously fed as input
data. Here, it is necessary to take full advantage of modern sensors and detectors [36] for
online monitoring of transformer oil characteristics. It seems very promising to supplement
the input information with spectral research data obtained, in particular, by methods of
optical spectroscopy in the UV, visible, and IR ranges.

Other factors that influence the interpretation of DGA results are the design character-
istics of a particular transformer and its operating modes.

Thus, the development of effective algorithms for interpreting DGA results, taking
into account additional parameters (temperature inside the transformer, its load factor,
insulation moisture content, etc.), remains an important and relevant task, the solution
of which will allow us to move to a qualitatively new level of diagnostic examination of
oil-filled transformers [37].

The electromagnetic parameters (EMP) of a transformer primarily refer to no-load
parameters: no-load losses (P0) and no-load current (i0), and short-circuit parameters:
short-circuit losses (Pк) and short-circuit resistance (Zк). These values, as state character-
istics, “accompany” the PT throughout its entire “life cycle” and are the most important
indicators of the presence or absence of defects in it. They are the “products” of test
(offline) diagnostics and imply removing the transformer from its operating state and
creating conditions for special modes: complete disconnection or “dead” connection of one
of the windings. Monitoring EMPs under operating (online) diagnostics conditions is a
non-trivial task.

However, attempts to determine Zк based on operating currents and voltages
have been made repeatedly. The theoretical foundations of this online method include
works [38,39] and some others. The logical reasoning underlying these proposals seems
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quite consistent and even flawless but attempts to implement them in practice have resulted
in a significant (30–40%) methodological error.

An analysis of the causes of this negative situation, carried out by the authors of
the proposed methods, led them to independent but practically identical conclusions that
the main cause of errors is due to instrumental errors of current and voltage measuring
transformers (to a greater extent the former). In other words, the main difficulty of online
diagnostics of Zк (any electromagnetic parameter) lies in the errors in measuring the
operating currents and voltages of PTs. Attempts have been made to overcome this
difficulty by complicating the measuring circuit, but these have not yielded positive results.

Starting in 1986, a number of works [40–42] and others proposed a theoretical scheme
for operational diagnosis of EMP, which was based on modeling the PT with an electrical
multipole and using the achievements of electrical circuit theory. The proposal was also
published in the form of an invention and patent application [7,43].

At the same time, in order to confirm the feasibility and improve this method, a
number of studies were conducted on physical models. In [44], the following results
were obtained:

(1) The nonlinearity of the scattering field parameters was established (this conclusion
is of great importance for transformer theory in general and also explains the main
causes of errors in methods [38,39]);

(2) The concept of EMP as possible combinations of coefficients at operating parameters
(currents and voltages of windings) of power transformers has been clarified and
expanded [41];

(3) Methods and algorithms for diagnosing EMP of power transformers in conditions of
insufficient information have been developed;

(4) Methods and algorithms have been developed to solve the diagnostic tasks set in
conditions of PT nonlinearity and non-sinusoidal operating parameters [45];

(5) The feasibility of the approach has been confirmed in relation to a four-pole circuit
(the case of a single-phase two-winding transformer);

(6) A method has been developed for matching the parameters of test and operating
modes to solve diagnostic problems [40–42,46].

The methodology for operational diagnostics of transformer EMPs is described in
detail in monograph [47].

It should be noted that most researchers who have proposed alternative options for
EMP control do not take into account the nonlinearity of PTs [48–50], as well as the poor
conditionality of their mathematical models, which leads to large methodological errors.

There are also well-known methods described in [51–54], which, however, relate to
test diagnostics.

Let us consider issues related to the diagnostics of transformer voltage regulation
devices, on-load tap changers (OLTCs), which, according to [16], account for up to 50%
of all transformer failures. The on-load tap changer is the only node containing moving
parts (i.e., the most mechanically complex) and, at the same time, the most expensive part
of the transformer [55]. The high susceptibility to damage and functional responsibility
of on-load tap changers significantly complicate the methods and equipment used for
their diagnostics.

The generally accepted approach to diagnosing OLTC devices is to measure the motor
load current and vibration signal while the device is in operation [56–59]. Vibroacoustic
measurements are a fairly simple but diagnostically valuable way to detect changes in
the mechanical condition of the OLTC at different stages of its operation. The use of vi-
broacoustic signals in the form of standard vibration parameters (displacement, velocity,
acceleration) is, as practice shows, insufficiently informative. For a more in-depth extraction
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of diagnostic information, it is necessary to use more sophisticated tools—various algo-
rithms for converting measured vibration signals. In particular, the algorithms proposed
at the beginning of this century [60], based on wavelet analysis [61,62], have shown high
efficiency. However, as noted in [63], despite certain achievements, there are still problems
with interpreting these data. To improve the reliability of diagnostics, the authors propose
supplementing vibration studies with measurements of electromagnetic signals from mi-
croarcs that occur when OLTC contacts switch. For this purpose, high-frequency current
transducers are used, which are installed on the PT grounding cables. The development of
the methodology for such diagnostic analysis is presented in [64].

It has also been shown that temperature has a significant effect on the OLTC vibroa-
coustic signal [16]. To compensate for this effect, the authors propose using a method of
averaging and time alignment. An original approach based on detecting changes in the
envelopes of the vibroacoustic signal is proposed in [65].

The modern approach to building diagnostic models based on the results of vibroa-
coustic analysis is based on machine learning technologies. Practical implementation
options for this approach are presented in numerous works, for example, in [66,67].

To improve the accuracy of diagnostic models, it will probably be necessary to take
into account a greater number of parameters characterizing the state of various trans-
former components and systems. Modern sensor technologies for online monitoring of the
transformer state [68] should play an important role in this.

Another important element of substations are high-voltage bushings. As operational
practice has shown [16], defects in high-voltage bushings account for a significant propor-
tion of all substation damage. Currently, bushings with RIP insulation are most commonly
used for substations with a voltage of 110–500 kV. Operational practice has shown that up
to 60% of developing defects in bushings can be detected at an early stage by monitoring
key diagnostic indicators. The following methods and parameters are used to monitor
the technical condition of bushings: visual inspection, measurement of the dielectric loss
tangent tgδ, measurement of capacitance C, and recording of partial discharges (PD) [69,70],
since major damage is almost always accompanied by internal or surface discharges [70].
The PD recording method is used in acceptance tests [71]. Thus, online recording and analy-
sis of PD in bushing insulation is one of the promising methods for continuous monitoring
of their technical condition.

The main methods for measuring PD are:

• Electrical method. Principle: measurement of electrical signals from partial discharges,
followed by interpretation of these signals in terms of apparent charge units [72].
Advantages of the method: high sensitivity, accuracy, and reliability of apparent charge
characteristics assessment. The disadvantages are the need to tune out interference,
the complexity of the calibration procedure, and the conversion to apparent charge
units under operating conditions [73].

• Registration of electromagnetic radiation from corona discharges. The advantage
of the method is its noise immunity, but the complexity of interpreting the results
severely limits the possible implementation of the method [74]. The method has found
its main application in the control of overhead and cable lines.

• Optical method based on the registration of CR radiation in the IR and UV ranges. The
method has been widely used to monitor contact connections and external insulation
of equipment nodes [75–77].

• Acoustic method based on the recording of mechanical vibrations arising from the
pressure of the expanding discharge channel. The advantages of acoustic monitoring
include the ability to diagnose equipment without disrupting its normal operating
mode. The disadvantages of the acoustic method of PD detection include the difficulty
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of locating the PD source in complex equipment structures, low sensitivity to PD
compared to the electrical method, the inability to calibrate measurements in units of
apparent PD charge according to the IEC 60270 standard, and, as a result, difficulties
in comparing results obtained with different equipment, etc. [78,79].

Based on the above, the most effective method for recording partial discharges in
RIP insulation of high-voltage bushings and their subsequent analysis appears to be the
electrical method.

2. Concept of the Hardware–Software Complex
Earlier, the structure and functionality of the integrated expert diagnostic system

(IEDS) for power transformers (PTs) were presented. The system consisted of three main
components: the Executive Complex (EC), the Analytical Complex (AC), and the Knowl-
edge Base (KB) [80].

At present, the hardware and software capabilities of the system have been signifi-
cantly expanded, primarily due to the development of EC instrumentation (online mea-
surement subsystems), as well as the enhancement of the entire information–analytical
complex encompassing the AC and KB.

The conceptual framework of the system is as follows. The Executive Complex
includes online monitoring subsystems, which collectively form the Information Layer (IL)
of the Knowledge Base, designed to support multi-component diagnostics of PTs:

• Liquid and solid insulation (dissolved gas analysis and moisture content), external
and internal temperature monitoring—Module 1;

• Electromagnetic diagnostics (operating currents and voltages of windings)—Module 2;
• Voltage regulation devices (phase currents and voltages, drive motor current, vibration

levels during tap changes, ambient and cabinet temperatures, number of operations)—
Module 3;

• High-voltage bushings (internal partial discharges, surface discharges, bushing leak-
age currents)—Module 4.

Thus, the monitoring subsystems of the EC supply information that is transmitted,
processed, and stored within the IL of the KB in the form of discrete datasets, tables,
or deviation models. Figure 4 shows the overall structure of the ETL processes (Extract,
Transform, Load), which ensure data integration and preparation within the hybrid intelligent
expert diagnostic system (HIESD).

Figure 4. Structure of the ETL processes of the system.
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Knowledge Base
As illustrated in Figure 4, the Information Layer (IL) of the Knowledge Base

also includes offline data concerning power transformers in the form of electronic
documents, including:

• Parameters of seasonal loads and operating modes;
• Parameters and models of PT subsystems and adjacent equipment, derived from both

offline and online data sources;
• Indicators of reliability and power quality at the power center (PC);
• Diagnostic reports, testing protocols, and maintenance diagnostics (identified defects,

control parameters).

The IL of the Knowledge Base is connected to the Analytical Complex (AC) via the
Computation Comparison Module (CCM).

The Conceptual Layer (CL) of the Knowledge Base comprises the following modules:

• Normative characteristics of subsystems;
• “Reference models” of subsystem parameters and characteristics recorded at the start

of operation;
• Normative and reference information (NRI) concerning substation equipment

in operation;
• Tables of permissible parameter thresholds and decision-making matrices;
• Condition-based maintenance and repair schedules.

Analytical Complex
The primary function of the Analytical Complex is to perform diagnostics of PT

subsystems and optimize their operating conditions through a graphical user interface
(workstation, WS), utilizing the following modules:

• Predictive analytics, aimed at recognizing the current state of a subsystem at any
given time by comparing it with a reference model and forecasting the evolution of its
technical condition;

• Residual life estimation, based on the analysis of key characteristics and parameters
of PT components (e.g., voltage and load levels, PT electromagnetic field properties
including no-load and short-circuit losses, gas concentrations, etc.).

Client–Server Architecture
Figure 5 illustrates the client–server architecture, component management structure,

and client interaction mechanisms. The advantages of this architecture include:

• Management and scalability: The architecture employs modern orchestration and
containerization methods, enabling efficient management and scalability of the system.

• Availability and reliability: Load balancing and container-based deployment ensure
high availability and fault tolerance, as local installations tend to be less reliable and
more prone to failures.

• Client interaction: Communication with clients is facilitated via an API, streamlining
integration and enabling seamless network-based interaction.

In [11], a structured platform was introduced, deployed within a unified PostgreSQL-
based DBMS resource. This platform stores, complements, and contextualizes the parame-
ters and hyperparameters of neural networks, forming an efficient cluster in which each
object is allocated a dedicated container. This ensures data isolation and efficient storage of
all associated parameters.
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Figure 5. Client–server architecture of the GIESD.

The digital platform is integrated with the database system and employs a variety of
algorithms and methods for data storage, retrieval, transformation, and loading, as well as
for interaction with artificial intelligence (AI) models.

Many algorithms that undergo successful laboratory testing often prove unsuitable
for real-world deployment. This is largely because developers frequently overlook critical
integration details. Industrial environments demand a far more rigorous integration
approach due to their operation with large volumes of data and strict requirements for
reliability, security, and performance. While certain algorithms may function adequately
in test environments, their application in production often reveals serious issues—such as
incompatibility with existing information systems, incorrect data handling, or inefficiency
at scale.

The approach proposed in this study is distinguished by its proactive consideration of
integration with actual IT infrastructures. Specifically, it ensures correct interaction between
algorithms and database systems, data storage and processing layers, and model metadata
and artifact management. As a result, the developed strategy avoids common errors and
enables smooth integration into existing IT systems. This provides a clear advantage, as
the proposed neural network (NN) model is designed to function effectively not only in
test environments but also under real-world conditions—demonstrating both reliability
and performance. This is especially critical for sectors such as electric power engineering.

To this end, a dedicated platform for integrating AI models with databases was
developed. This platform simplifies and automates the processes of training, retraining, and
deploying neural networks in complex systems. Its primary goal is to optimize work with
large volumes of system-generated data and to make AI deployment more flexible, scalable,
and efficient. This is essential for fault prediction, improved equipment maintenance,
workflow optimization, and overall system efficiency—particularly in environments where
decision-making speed and data accuracy are of paramount importance.
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The core elements of the platform include:

1. Artifacts—These are data elements generated and stored during the training and
operation of AI models. Artifacts include neural network weight coefficients, training
parameters, training results, and configuration files. They are essential for model
reproducibility and proper deployment, allowing retraining or fine-tuning processes
to be accelerated without restarting from scratch.

2. Metadata—Special data that describes the characteristics of models and their com-
ponents. Metadata may include training parameters, artifact locations, and other
important attributes. This information facilitates the tracking of model performance
and supports full lifecycle management.

3. Datalayer—A key component that governs the interaction between AI models, data,
and system logic. Its responsibilities include:

# Database queries—A module responsible for retrieving data needed for AI model
operation, such as training datasets or input data for inference;

# Artifact storage and retrieval—This component ensures the storage of artifacts
(e.g., model weights) and their retrieval when needed, expediting model deploy-
ment and reuse;

# Metadata management—This ensures effective control over model lifecycle and
performance tracking.

4. Artifact storage—An infrastructure designed for the centralized storage of large vol-
umes of data associated with AI models. It provides secure and efficient management
of critical model data, which can be stored locally or via MongoDB-based solutions
(e.g., GridFS), depending on system requirements. This storage is essential for pre-
serving all artifacts used by the models and streamlining scalable data management.

5. Metadata storage—This component serves as a repository for critical information
associated with AI models, such as training parameters, data locations, and the
components and artifacts used during training. The metadata storage plays a key role
in optimizing model selection, performance monitoring, and retraining processes. It
also supports compliance with security and auditing requirements.

6. API layer—An interface facilitating interaction between AI models and the database.
The API supports tools such as pymongo for MongoDB and ibis for SQL-based
data. This interface enables efficient database querying, vector search operations,
and the execution of more complex queries. By providing a unified access layer, the
API integrates AI model functionality with database systems, thereby accelerating
training, testing, and optimization workflows.

The developed platform brings together all the necessary components to enable seam-
less integration of AI models and database systems within a unified framework. This
approach significantly accelerates the development and deployment of neural networks for
solving tasks such as fault prediction, equipment maintenance optimization, and workflow
enhancement in power systems—domains where high demands on data processing speed
and accuracy are critical.

A structural diagram (framework) of the operational platform for storing and organiz-
ing multiple neural network models is presented in Figure 6.

The step-by-step development process of the system, along with its key features, is
presented in a tabular format (Table 1).
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Figure 6. Platform for storing and organizing multiple neural network models.

Table 1. Stages of information system development.

Development Stage and
Property Standard Approach Author’s Approach

Data extraction via API Standard invocation using arbitrary
programmatic means Invocation within a local microservice

Noise removal in data
Missing values are approximated;

anomalies and noise are addressed
using robust statistical estimators

Missing values are approximated. Noise and
anomalies are detected using an autoregressive

model tailored to data characteristics and
tuned to specific time discretization or

frequency [81], offering greater effectiveness
than Z-score or other direct methods

Transformation of raw data
into fact and dimension

tables

Typically not performed; rarely
implemented as an optimization

technique

Algorithm splits a raw data table into two
structured tables representing facts and

dimensions respectively

Re-training countdown
mechanism

Rarely used in practice; neural
networks are often not retrained or

fine-tuned

The countdown to the next stage of
pre-training is underway

Vector search, transformation,
and storage

No separation of numeric values,
vectors, and other data types

An additional layer significantly accelerates
vector search in PostgreSQL compared to

built-in VectorSearch, while saving disk space

Prediction and defect
classification result

generation

Model weights are loaded; input is
passed through the pre-trained model

to produce an output

Due to a custom NN architecture, results are
obtained significantly faster since most
parameters reside in RAM, optimizing

computational resource usage
Storage of prediction results Simply added to the database Identical approach

System integrity Monolithic solution, difficult to scale
and extend

Flexible microservice-based architecture that
can be easily scaled up or down based on
hardware constraints and requirements

Availability Standalone enterprise application for
desktop systems

Web application accessible from any device
(phone, tablet, PC); supports service delivery
models such as Software as a Service (SaaS)
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Let us now describe the logic of operation of the Analytical Complex (AC) modules
using Module 1 and Module 2 as examples.

Module 1 is responsible for solving one of the most complex tasks: the classification
of fault types in a power transformer based on data from the insulation subsystem. This
involves the analysis of a large volume of input data, including retrospective dissolved gas
analysis (DGA) records and data from online gas analyzers.

As previously noted, contemporary diagnostic studies primarily rely on machine learn-
ing techniques. Among the most effective tools in this domain are neural
networks (NNs).

We begin by focusing on an important property of diagnostic algorithms: computa-
tional efficiency. In many publications, authors propose highly accurate yet computationally
inefficient algorithms, particularly problematic under high-load conditions. For instance,
algorithms based on Radial Basis Functions (RBF) [82] demonstrate excellent performance
in solving differential equations [83]; however, they exhibit a notable weakness due to the
computational overhead associated with dense linear systems. As stated in the literature,
“. . .for global RBF methods, one of the main disadvantages is the computational cost linked
to dense linear systems. . .”.

This issue is also evident in numerous studies involving neural networks. Typically,
a model is trained on a given dataset; however, the trained model is seldom validated
under real-world information conditions, where extremely high volumes of online data
may be encountered. Developers frequently overlook data stream scalability—a critical
factor given that the data volumes in operational environments may far exceed those used
for model training or benchmarking.

A classical example that illustrates this problem is the traveling salesman
problem [84–86]. With a small number of cities (e.g., 10), a brute-force algorithm can
enumerate all permutations to find the optimal route. However, when the number of
cities increases to 50 or 100, exhaustive search becomes computationally infeasible. This
challenge led to the emergence of discrete mathematics and operations research, disciplines
that introduced the trade-off between solution accuracy and computational feasibility. In
practice, a slight reduction in accuracy is often acceptable in exchange for significant gains
in processing time and resource efficiency.

The advancement of technologies such as neural networks has sparked growing inter-
est among specialists and research teams in applying these methods to complex industrial
tasks. However, these technologies are often adopted without appropriate adaptation to
the characteristics of existing diagnostic data. In many cases, models are deployed “out
of the box” without accounting for domain-specific constraints. Consequently, the results
obtained through such practices are not always reproducible, verifiable, or suitable for
practical implementation.

In general, it can be concluded that many existing approaches to diagnostic data
processing lack universality. As a result, each research group often “reinvents” original
methods that do not always reach the stage of practical implementation.

The authors of the present study share their experience in solving the problem of
interpreting dissolved gas analysis (DGA) data obtained from online chromatographs in-
stalled on a fleet of power transformers. During early experimentation, feedforward neural
networks (perceptrons) were employed. Several configurations with varying numbers
of neurons and layer arrangements were tested in order to identify the optimal network
structure. Key factors in selecting the neural network architecture included the volume of
the training dataset and the model’s generalization capability on unseen data. Training was
typically carried out using the backpropagation algorithm with a validation set.
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Although the developed models were initially ready for deployment, integration
into real-time data streams revealed that the processing time for a single iteration was
approximately 30–40 s. Given the large number of monitored assets and limited computa-
tional resources, it became clear that traditional approaches could not deliver the required
performance and were therefore unsuitable for practical use.

As a result, both the training algorithm and neural network architecture had to be opti-
mized. Additionally, improvements were made to the formats for storing hyperparameters
and data values, and computational load balancing strategies were introduced—utilizing
data lakes and message brokers, which are essential components of any high-load system.

Following a series of tests, Probabilistic Neural Networks (PNNs) [87] were selected
as the preferred solution. Compared to multilayer perceptrons (MLPs), PNNs offer several
notable advantages:

• Significantly faster operation than MLPs;
• Potentially higher classification accuracy;
• High robustness to noisy data;
• Precise probabilistic estimation of target values;
• Approximate implementation of Bayes-optimal classification.

The primary disadvantages of PNNs include:

• Slower classification of new inputs compared to perceptrons;
• Increased memory requirements to store the trained model.

In the context of the task at hand, the first drawback is not critical, since classification
is performed over a closed set of states (specifically, four “standard” DGA-based defect
categories), with no requirement to adapt to novel classes.

The second limitation relates more to IT architecture than to the machine learning
algorithms themselves. It can be effectively mitigated through proper database organization
and system scaling—both vertical and horizontal.

Based on the considerations outlined above, the authors undertook the development of
a hybrid intelligent expert system for oil-filled power transformers featuring an optimized
architecture. It is anticipated that the adoption of this conceptual framework will enable
the timely detection of transformer defects, prevent critical failures, and extend the actual
service life of the equipment.

Next, let us consider several practical aspects of using Probabilistic Neural
Networks (PNNs).

PNNs are a type of neural network designed for classification tasks, where class mem-
bership probability densities are estimated through kernel approximation techniques.
These networks are particularly effective in handling uncertainty and noise in data—
a crucial feature when analyzing defects, as the input data may often be incomplete
or corrupted.

Another important advantage of PNNs is their flexibility and scalability. They can be
constructed in a modular fashion and expanded easily to incorporate new defect types or
additional data sources without requiring a complete system redesign. Moreover, PNNs
can interact with expert systems to improve decision-making accuracy and even forecast
defect progression, which is especially relevant given that all models will ultimately be
integrated into a unified expert system.

In our implementation, the PNN consists of three layers: an input layer, a radial
(hidden) layer, and an output layer. At the radial layer, a separate unit (kernel) is created
for each training sample, represented by a Gaussian function centered on that sample. Each
class is associated with a dedicated output neuron, which connects exclusively to the radial
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units corresponding to samples of that class. The output neuron computes the sum of the
responses from all its class-specific radial units.

A significant enhancement was introduced by adding an additional layer incorporating
a loss matrix. This layer multiplies the vector of class probabilities produced by the previous
layer by coefficients that reflect the relative importance of different types of classification
errors. This adjustment enabled recalibration of class probabilities (corresponding to the
four DGA defect states) to minimize the risk of critical misclassifications—particularly vital
in scenarios where overlooking a transformer fault could lead to severe consequences.

The integration of this loss matrix layer substantially improved the reliability of our
diagnostic system. Now, the network not only classifies samples correctly but also considers
the potential impact of errors, reducing the likelihood of failures and optimizing costs by
avoiding unnecessary inspections of healthy equipment. Furthermore, this loss matrix
approach can be generalized and applied to other classification problems, enhancing the
adaptability and flexibility of our method.

PNNs are governed by a single key training parameter—the smoothing factor σ (the
standard deviation of the Gaussian kernel)—which must be selected by the user. The
following formula is used to calculate its value:

g(x) =
n

∑
i=1

exp

(
−∥x − xi∥2

σ2

)

where g(x)—output function of the probabilistic neural network;
σ—smoothing parameter (standard deviation of the Gaussian kernel);
xi—the i-th training example;
x—input vector (new observation);
∥x − xi∥—Euclidean distance between the input vector x and the training example.
Extremely small values of the smoothing parameter σ lead to the creation of “sharp”

approximating functions, which reduce the network’s ability to generalize. Such sharp
approximations cause overfitting, wherein the model reproduces the training data too
precisely, losing its capacity to generalize to new data. Conversely, excessively large σ

values may result in the loss of important data details.
Determining an appropriate value for σ by trial and error is challenging because it

requires minimizing error on a validation dataset. PNNs are highly sensitive to the choice
of this smoothing parameter, which motivated the development of a dedicated optimization
algorithm described in [88]—the Moth Flame Optimization (MFO) algorithm.

We improved the original MFO algorithm by replacing traditional spiral trajectories
with linear ones and by introducing a chaotic operator to enhance global search capabili-
ties [11,89]. These modifications enabled the algorithm to more effectively avoid getting
trapped in local minima, thus improving its ability to find global optima. Consequently,
this approach ensures more accurate tuning of the smoothing parameter, minimizes model
errors, and enhances the model’s generalization capacity.

The enhanced MFO algorithm has become more flexible and robust for solving com-
plex optimization problems where conventional methods may fail. The overall workflow
of the algorithm is illustrated in Figure 7.

Thanks to this methodology, it becomes possible to identify the optimal relationship
between algorithm parameters while accounting for their permissible levels of seasonality
and the presence of various noise outliers.
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Figure 7. Combined PNN algorithm.

As a result, an original configuration of the Probabilistic Neural Network (PNN)
was constructed. The primary distinction of the developed diagnostic process—or model
creation approach—from the other methods described above lies in the high efficiency
of the implemented algorithms relative to the computational resources they require and
the accuracy they achieve. In other words, the diagnostic accuracy obtained per unit of
computational power is acceptable or even notably high, as demonstrated in our case.

Earlier, in Table 1, comparative characteristics of the hardware implementation pro-
cesses for these algorithms were presented.

The stages of the neural network development process, along with their key features,
are summarized in Table 2.

Specific aspects of the author’s solution within the software framework are presented
in Table 3.
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Table 2. Stages of neural network development.

Time Series Forecasting
Process Stage Standard Approach Proposed (Author’s) Approach

Data preprocessing, outlier
and noise removal

Selection of autoregression level
based on predefined periodicity

(e.g., lags 1, 2, 3)

Selection of autoregressive order.
To move beyond the constraints of a Markovian

process, a specific case of the coefficient is derived.
Its suitability is verified using the Ordinary Least

Squares (OLS) criterion.
The nearest integer value is then determined. A

deliberate and data-informed choice of the
autoregressive coefficient is regarded as a step

toward increased predictive accuracy.
Classification Model Training

Process Stage Standard Approach Proposed (Author’s) Approach

Architecture selection

Typically receives little attention in
terms of resource allocation and

hardware communication
efficiency

Architecture selection accounts not only for model
accuracy, but also for efficient utilization of

computational and switching resources

Batch preparation

Standard partitioning into:
- Training set
- Testing set
- Validation set

Same procedure applied

Neural network algorithm
implementation

Often lacks fine-tuning or
algorithmic precision;

architectures are frequently
selected arbitrarily or

approximated.

The algorithm is designed to ensure that each
retraining phase includes iterative subsampling,
allowing the model to continuously refine itself

using segmented training batches

Predictive Model Training
Recurrent neural networks (RNN),

convolutional neural networks
(CNN), and LSTM are

commonly used

LSTM networks are employed exclusively due to
their capacity to retain relevant information across

long temporal dependencies, making them
especially well-suited for sequential diagnostics

and forecasting

Table 3. Software specifics of the developed solution.

Compared Aspects Standard Solution Proposed Solution

Efficiency relative to
computational units

Not evaluated in terms of computational
efficiency, which complicates scaling

and/or deployment on
real-world systems

The architectures of both neural networks
were selected with regard to relative

accuracy and efficiency of
computational resources

Preparedness for retraining

It is generally assumed that neural
network solutions function without

retraining or require manual supervision,
which limits the autonomy and scalability

of the developed models

The framework described in the
hardware section allows for efficient
storage, retraining, or fine-tuning of

models, while the Moth–Flame
Optimization algorithm used in the

classification model enables accurate
parameter estimation at each iteration

Module 2. Algorithm for Diagnosing the Electromagnetic Parameters of the Transformer

1. Nominal transformer parameters are entered:

1.1. Nominal voltages and currents: U1nom, I1nom, U2nom, I2nom.
1.2. No-load parameters (current and losses): i0, P0.
1.3. Short-circuit parameters (impedance and losses): Zk, Pk.
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2. Measurement and accumulation of instantaneous values of operating currents and
voltages of the windings are performed:

(u1)1, (u1)2 . . . (u1)m;

(i1)1, (i1)2 . . . (i1)m;

(u2)1, (u2)2 . . . (u2)m;

(i2)1, (i2)2 . . . (i2)m,

where m = T
∆t , T = 2π—period, ∆t = 10−6 − 10−5.

3. Vectors of instantaneous values are formed:

us = [(us)1, (us)2 . . . (us)m]t

is = [(is)1, (is)2 . . . (is)m]t,

where s = 1, 2.
4. The root-mean-square (RMS) values and phase shifts in the operating currents and

voltages are calculated:
Us = m−1/2[(us)t, (us)]1/2

Is = m−1/2[(is)t, (is)]1/2,

ϕU1 = 0.

ϕAS = arccos

[
[(u1)

′, (as)]

[(u1)′, (u1)]
0.5 · [(as)′, (as)]

0.5

]
where As = U2, I1, I2; as = u2, i1, i2; [(u1)′, (as)], [(u1)′, (u1)]0.5, and [(as)′, (as)]0.5—denote
scalar products of the corresponding vectors.

5. The electromagnetic parameters are calculated based on simplified modeling:

(Y11)
0 =

I1ei−ϕI1

U1 − krU2ei−ϕU2
(Y22)

0 =
I2ei−ϕI2

U2 − (kr)
−1U1ei−ϕU1

where kr =
I2e

i−ϕI2

I1e
i−ϕI1

(Z11)
0 =

U1ei−ϕU1

I1 − kz I2ei−ϕI2
(Z22)

0 =
U2ei−ϕU1

I2 − (kz)
−1 I1ei−ϕI1

where kz =
U2e

i−ϕU2

U1e
i−ϕU1

6. Based on the calculated values (Y11)0, (Y22)0, (Z11)0, (Z22)0, all possible diagnostic
parameters are determined (Table 4).

7. Steps 2–5 are repeated for the next measurement cycle, and the data from different
cycles are assigned an additional superscript corresponding to the cycle number:
(U1)2 . . . (Z22)02

8. Matrices of variables are formed:

U =

[
(U1)

1 (U1)
2

(U2)
1 (U2)

2

]
I =

[
(I1)

1 (I1)
2

(I2)
1 (I2)

2

]

V1 =

[
(U1)

1 (U1)
2

(I1)
1 (I1)

2

]
V2 =

[
(U2)

1 (U2)
2

(I2)
1 (I2)

2

]
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Table 4. Diagnostic parameters.

№ Diagnostic Parameter Parameter Designation Expression

1 No-load current from the j-th winding i0j,% i0j =
Uj

|Zjj| ·
100
Ij

2 No-load losses from the j-th winding P0j P0j =

(
Uj

|Zjj|

)2
· ReZjj

3 Short-circuit impedance from the j-th winding Zкj Zj =
1

|Yjj| ·
Ij

Uj
· 100

4 Short-circuit losses from the j-th winding Pкj Pj =
(

Ij
)2 · ReY−1

jj

5 Transformation ratio (voltage transfer ratio) kZ kZ = Z11
Z12

6 Current transfer ratio kY kY = −Y12
Y11

7 Mutual active resistance between windings Rm Rm = ReZij

8
Mutual inductive reactance between windings

(mutual inductance) Xm (M)
Xm = ImZij(

M = ω−1 · ImZij
)

9 Active component of short-circuit impedance Rкj Rj = ReY−1
jj

10 Inductive component of short-circuit impedance
(short-circuit inductance)

Xкj (Lкj)
Xj = ImY−1

jj(
Lj = ω−1 · ImY−1

jj

)
11 Active resistance of the j-th winding Rj Rj = Re

(
Zjj − k ji · Zji

)
12 Leakage inductive reactance of the j-th winding

(leakage inductance of the j-th winding) Lσj Lσj = Im
(
Zjj − k ji · Zji

)

9. The matrices of Z, Y, and A parameters are calculated:

9.1. ZI = UI−1 YI = (ZI)−1

9.2. YU = IU−1 ZU = (YU)−1

9.3. H1V1 = V2(V1)−1

H1V1 =

[
AV1 BV1

CV1 DV1

]

ZV1 =
1

CV1

[
AV1 1

1 DV1

]
YV1 =

1
BV1

[
DV1 1

1 −AV1

]

9.4. H2V2 = V1(V2)−1

H2V1 =

[
−DV2 BV2

CV2 −AV2

]

ZV2 =
1

CV2

[
AV2 1

1 −DV2

]
YV2 =

1
BV2

[
DV2 1

1 −AV2

]

10. Diagnostic parameters are calculated (see Table 4 [47]).
11. Graphs showing the temporal dependence of the diagnostic parameters being

determined are constructed, as well as other options for presenting (processing)
diagnostic information.

Accounting for Transformer Nonlinearity and Nonsinusoidal Currents and Voltages

1. Accounting for nonsinusoidality. Nonlinearity, external influences, and the nature of
the load cause distortions of the sinusoidal shape of voltages and currents, which
complicates the use of the phasor method for the mathematical description of elec-
tromagnetic processes and requires adjustments to the developed transformer mod-
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els. To overcome these difficulties, the method of equivalent sinusoids is usually
applied; however, this method has certain peculiarities, neglecting which leads to
calculation errors.

In the present work, the method of “orthogonal time coordinates” developed by Aca-
demician K. S. Demirchyan [45] is used—a method that is both physically well-grounded
and mathematically convenient. In this method, the time functions (currents and voltages)
are represented as vectors in a linear space, where each time instant serves as an inde-
pendent coordinate of a multidimensional orthogonal Euclidean coordinate system. In
this representation, the instantaneous values of currents and voltages are treated as the
projections of these vectors. Accordingly, the root-mean-square values of currents and
voltages are given by:

I =

√
1
T

∫ T

0
i2dt =

√√√√ 1
m

m

∑
j=1

i2 = m−1/2(it, i)1/2,

U =

√
1
T

∫ T

0
u2dt =

√√√√ 1
m

m

∑
j=1

u2 = m−1/2(ut, u)1/2,

where u = [u(t1), . . . , u(tm)]
t; i = [i(t1), . . . , i(tm)]

t;m = T/∆t (∆t is the discretization step
of the time interval T); (it, i), (ut, u)—denotes the scalar product of vectors; t—denotes
transposition. The active power is calculated as

P =
1
T

∫ T

0
u · i · dt =

1
m

m

∑
j=1

u · i = m−1(ut, i) = m−1(it, u)

Phase shift between the voltage and current vectors:

φ = ∠(u, i) = arccos
P

U · I
= arccos

m−1 · (ut, i)

m−1/2(ut, u)1/2 · m−1/2(i, i)1/2 = arccos
(ut, i)

(ut, u)1/2 · (it, i)1/2

Thus, all complex expressions become applicable, which is utilized in the algorithm
presented above.

2. Accounting for nonlinearity. The transformer’s nonlinearity leads to difficulties in com-
paring data from different operating modes. In particular, the no-load and short-circuit
parameters of a real transformer correspond to different linear models and therefore
are not mutually consistent. This also results in a mismatch between the transformer
impedance measured under load conditions and in a short-circuit test. Therefore,
an essential task is to develop a methodology for reconciling the different modes
(modes with different levels of core magnetization). A practical implementation of
this approach is presented below.

3. Results and Discussion
Below, we present examples of the interaction between the executable files and the

analytical models of the HIESD complex in solving specific tasks of state identification and
parameter calculation for transformer subsystems.

Module 1. An example of time series analysis of dissolved gases in oil is presented
(Figure 8).
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Figure 8. Table file containing time series of dissolved gases in oil.

The first column—Index—contains transformed data reflecting the chronology of
measurements from the beginning to the end of the observation period. The subsequent
columns represent the concentrations of gases, which serve as input indicators for the
built-in defect classification algorithm within the model.

The initial training data were labeled according to the following condition categories:

• Normal Operation (NW): The system operates without any anomalies or signs
of malfunction. This state is characterized by stable and correct functioning of
the equipment.

• Partial Discharge (PD): This condition indicates the presence of a partial electrical
discharge within the system, which may serve as an early indicator of wear or im-
pending failure. Timely detection of such conditions is crucial for preventing serious
faults, as outlined in [90] (see Table 2, Item 1—“Typical Defects in Power Transformers
and Reactors”).

• Low-Temperature Overheating (LT): This state implies that the system is experiencing
overheating, albeit at relatively low temperatures. It may signal the onset of insulation
degradation—a thermal defect with temperatures below 300 ◦C, as specified in Table 2,
Item 4 [90].

• Combined Partial Discharge and Low-Temperature Overheating (LPD): This state
reflects the simultaneous occurrence of partial discharge and low-temperature over-
heating. It is a complex condition that may indicate more severe underlying issues
within the system—representing a combination of Items 4 and 1 in Table 2 [90].

A concept termed the “Condition Index” was introduced, with discrete values ranging
from 1 to 5. Table 5 presents the Condition Indices of the transformer as determined from
DGA results. The proposed classification is conditional and was developed to facilitate
interpretation and analysis of transformer condition within the context of the task at hand.
Depending on the specific system and diagnostic methodologies applied, this classification
may be adapted or revised. Other approaches to defect classification exist, employing
different criteria or boundaries between condition categories. This ensures flexibility and
enables the system to be tailored to various operational and maintenance scenarios.
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Table 5. Transformer Condition Indices Based on DGA Results.

Condition Index State Mapping Interpretation
1 NW Normal Working
2 NW on the verge Normal Working (borderline)
3 LT Low-Temperature Overheating
4 PD Partial Discharge
5 LPD Combined overheating and partial discharge

Figure 9 presents an example demonstrating how the trained model was able to predict
in advance states 4 and 5, i.e., approximately between LPD and PD, which are considered
deviations from the norm. It can be observed that the model enables the early forecasting
of a potential failure scenario.

Figure 9. Example of transformer fault state prediction using a probabilistic neural network.

Let us now consider the performance metrics for both models:

(1) The DGA data prediction model based on the current time series (LSTM network);
(2) The defect classification model (Probabilistic Neural Network—PNN).

To evaluate the prediction accuracy of LSTM networks, various metrics are typically
used. The most commonly applied ones, as used in our developed LSTM network, are
shown in Figure 10.

The diagram demonstrates three key metrics for evaluating the LSTM model that
predicts time series data:

MAE (Mean Absolute Error)—a value around 0.8 indicates reasonably accurate model
performance, especially for time series where small errors may be acceptable depending on
the nature of the data.

MSE (Mean Squared Error)—also close to 0.8, which is a positive sign as it demon-
strates the model’s robustness against large errors. This means the model avoids significant
mistakes, which is important for time series where large errors can greatly affect forecasts.

RMSE (Root Mean Squared Error)—slightly above 0.8, which is a good result for the
task at hand.
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Figure 10. Performance Metrics of the Developed and Trained LSTM Network for Time
Series Prediction.

Overall, the LSTM model shows stable performance by minimizing both average and
large errors. Low MSE and RMSE values indicate that the model is not prone to serious
deviations, which is crucial when working with time series data where such deviations
could significantly distort long-term forecasts. MAE and MSE values below 1 confirm
the model’s high prediction accuracy, which is especially useful in real-world forecasting
scenarios, particularly if the data contain regular trends or seasonal components.

The advantages of the developed system include simplifying and automating AI-
related processes, enhancing existing database capabilities, saving time and resources
required for integration and data processing, and ensuring flexibility and scalability when
working with neural network models and data.

To evaluate the quality of the Probabilistic Neural Network (PNN) model in practice,
a confusion matrix obtained from testing on real data is typically used. Figure 11 presents
the confusion matrix for the developed Naive Bayes model, which classifies the condition
states of diagnosed transformers into four classes originally labeled in the DGA data:

• NW (Normal Operation);
• PD (Partial Discharge);
• LPD (Combination of Partial Discharge and Low-Temperature Overheating);
• LT (Low-Temperature Overheating).

Figure 11. Confusion matrix for the probabilistic neural network.
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The confusion matrix shows that the model classifies the NW state very accurately,
which is reflected by the dark cell in the (NW, NW) position. The other classes contain
almost no errors, indicating the model’s confident performance in classifying all states.

Table 6 presents a summary of various quality metrics for prediction using the proba-
bilistic neural network (PNN).

Table 6. Quality Metrics of the Developed Probabilistic Neural Network.

Class Precision Recall F1-Score Support
NW 0.94 0.95 0.95 357,801
PD 0.59 0.99 0.74 18,745

LPD 0.57 0.46 0.51 23,644
LT 0.61 0.43 0.50 40,810

Accuracy 0.88
Macro avg 0.68 0.71 0.67 441,000

Weighted avg 0.87 0.88 0.87 441,000

The Naive Bayes-based model demonstrates very strong results in classifying the
normal operation state (NW), showing high precision (0.94), recall (0.95), and F1-score
(0.95). This means the system effectively recognizes normal operating conditions, which is
especially important for monitoring the stability of the electrical network.

For the partial discharge state (PD), the model exhibits exceptional ability to detect
nearly all occurrences of these events, as evidenced by a high recall value (0.99). This
indicates that the model rarely misses critical partial discharge conditions, which is key for
preventing failures and maintaining system safety.

Despite difficulties in classifying weak discharges (LPD) and low-temperature over-
heating (LT), the model still shows fairly good performance for the multi-class task, with
an overall accuracy of 0.88, considering the complexity and heterogeneity of the data.

The weighted average F1-score (0.87) indicates that the model works steadily and
reliably across most classes, demonstrating its applicability in real diagnostic scenarios.
Thus:

• The model successfully recognizes normal operating conditions, which is critical
for monitoring;

• Nearly all cases of partial discharges are accurately detected, ensuring a high level
of safety;

• The overall accuracy of 0.88 shows that the model handles the multi-level classification
task well, even with complex classes.

The model’s high accuracy (0.88) means it correctly classifies almost 88% of all observa-
tions, which is especially important when processing large datasets (441,000 observations).
This indicates the model generalizes well based on the training data.

As an additional performance evaluation, the developed classification model was
compared to traditional offline diagnostic methods—specifically, the Duval and Dornen-
burg methods. These widely used approaches represent classical diagnostic techniques
for transformer condition assessment, based on empirical rules and charts derived from
long-term observations. Tables 7 and 8 present the classification quality metrics for defects.
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Table 7. Quality Metrics of Classification Using the Duval Method.

Class Precision Recall F1-Score Support
NW 0.84 0.80 0.82 357,801
PD 0.29 0.26 0.23 18,745

LPD 0.00 0.00 0.00 23,644
LT 0.16 0.05 0.09 40,810

Accuracy 0.67
Macro avg 0.32 0.28 0.28 441,000

Weighted avg 0.70 0.67 0.68 441,000

Table 8. Quality Metrics of Classification Using the Dornenburg Method.

Class Precision Recall F1-Score Support
NW 0.93 0.13 0.23 357,801
PD 0.18 0.17 0.17 18,745

LPD 0.01 0.93 0.01 23,644
LT 0.07 0.00 0.01 40,810

Accuracy 0.16
Macro avg 0.30 0.31 0.10 441,000

Weighted avg 0.84 0.16 0.19 441,000

The results of the comparative analysis showed that the developed model significantly
outperforms the classical methods across all key quality metrics. In particular, it achieves
an overall accuracy of 0.88, whereas the Duval and Dornenburg methods reach only 0.67
and 0.16, respectively. The developed model’s macro-average F1 score is 0.67, which is
more than twice as high as Duval’s method (0.28) and nearly seven times higher than
Dornenburg’s method (0.10). The weighted F1-score of the developed model is 0.87,
compared to 0.68 (Duval) and 0.19 (Dornenburg).

Class-wise analysis also demonstrates the advantage of the developed model. For the
dominant NW class, it achieves an F1-score of 0.95 versus 0.82 (Duval) and 0.23 (Dornen-
burg). For the PD class, it reaches 0.74 compared to 0.23 and 0.17, respectively. The LPD
and LT classes, which are poorly recognized by classical methods (with F1 scores close to
zero), show significantly higher values in the developed model, indicating its ability to
detect rare and complex defects.

Thus, the proposed model provides higher accuracy, better balance between recall and
precision, and sensitivity to all defect classes compared to classical methods, confirming its
practical applicability for transformer condition diagnostics based on gas analysis data.

Module 2.
An essential task in diagnosing the electromagnetic parameters is the development of

a methodology for reconciling operating modes with different levels of core magnetization.
As shown in [47], such normalization can be performed by multiplying the corresponding
parameter by a certain nonlinearity coefficient χ. The nonlinearity coefficient can be
determined in various ways, for example, from the instantaneous values of currents and
voltages. The sequence of steps for such normalization is as follows:

1. Based on the measurement data (Figure 12), a looped volt-ampere characteristic (VAC)
is plotted for one period of current and voltage variation (Figure 13).

2. The single-valued (non-looped) volt-ampere characteristic for instantaneous values is
determined computationally (see Figure 14).
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Figure 12. Results of electrical quantity measurements.

Figure 13. Looped VAC corresponding to one period of current and voltage variation.

Figure 14. Computed (single-valued) VAC for instantaneous values.
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3. The volt-ampere characteristic (VAC) for root-mean-square values is computed.
4. From two points on the VAC for root-mean-square values, the amplitude and phase

of the complex nonlinearity coefficient χ are calculated.

It should be noted that this method allows not only determining the parameter Zk
and its variation, but also other electromagnetic parameters required for a comprehensive
assessment of the transformer condition.

As an illustration of the specific features (and challenges) of online diagnostics of
transformer electromagnetic parameters, some results of experimental studies conducted
using a physical transformer model are presented (Table 9).

Table 9. Some results of laboratory experiments on a physical transformer model.

Mode № Mode Parameters Measured Voltages, V Measured Currents, A Z-Parameter Matrix, Ohm

1

Sampling frequency:
8 kHz

1—load 100% 208.95 223.26 −26.96–104.78i −12.21–97.45i 46.44 + 232.75i 38.50 + 185.20i
2—load 61.5% 228.52 + 19.63i 231.24 + 24.45i 33.00 + 130.65i 14.58 + 121.23i 39.09 + 185.47i 32.61 + 147.17i

2
8 kHz

1—100% 208.946 211.483 5.529–1.20i 5.99–1.19i −87.22 + 66.56i −78.52 + 52.49i
2—97.3% 228.52 + 19.63i 237.40 + 19.79i −8.162 + 0.56i −8.725 + 0.575i −59.10 + 27.34i −65.41 + 20.29i

3
8 kHz

1—100% 208.946 220 5.53–1.20i 0.18–0.91i 47.09 + 232.76i 29.96 + 152.82i
2—no-load 228.52 + 19.63i 275.45 + 2.96i −8.16 + 0.56i 0 55.83 + 292.06i 39.63 + 189.97i

4
8 kHz

1—no-load 220 32.89 0.18–0.91i 4.29–2.48i 47.09 + 232.77i 30.98 + 156.11i
2—short-circuit 275.45 + 2.96i 15.55 + 8.66i 0 −6.35 + 3.525i 55.83 + 292.07i 40.33 + 196.6i

5

Sampling frequency: 50
kHz

1—100% 211.94 212.5 −3.59 + 0.04i −3.68 + 0.06i 72.94 + 210.76i 48.46 + 163.94i
2—97.5% 235.00 + 20.21i 236.68 + 20.56i 5.03–1.45i 5.14–1.49i 59.72 + 177.42i 48.99 + 144.41i

6
50 kHz

1—100% 211.936 216.497 5.894–1.162i 0.249–0.944i 56.56 + 214.42i 33.23 + 144.84i
2—no-load 235.00 + 20.21i 265.97 + 2.04i −8.416 + 0.628 0 67.46 + 263.95i 42.61 + 176.32i

7
50 kHz

1—no-load 216.497 35.253 0.25–0.94i 4.47–2.25i 56.56 + 214.42i 33.49 + 135.87i
2—short-circuit 265.97 + 2.04i 16.89 + 8.27i 0 −6.96 + 3.43i 67.46 + 263.95i 43.37 + 167.82i

For further discussion, we note the following circumstances:

(1) The experimental setup was far from perfect—the measurement of circuit parameters
was carried out with significant errors (up to 10%), especially with regard to winding
voltages (the “imperfection” of the voltage divider).

(2) It was not possible to accurately reproduce various modes, which also prevented the
achievement of the necessary efficiency in solving the task at hand.

The manifestation of these “imperfections” may be noticeable in the presented mea-
surement and calculation results, but we believe that there is no need to dwell on them
in detail.

The main questions that needed to be answered were as follows:

(a) The fundamental feasibility of the method;
(b) The influence of the accuracy of circuit parameter measurements (currents and volt-

ages) on the solution of the EMP diagnostic task (including the influence of the
sampling frequency of the measured signals);

(c) The influence of load fluctuation levels on the conditionality of the diagnostic model;
(d) The influence of transformer nonlinearity on the accuracy of diagnostics.

Let us analyze the work performed in terms of the stated requirements. As noted
above, some of its results are given in Table 9. Let us draw conclusions based on them and
accompany them with explanatory comments.

1. The method is workable, as evidenced by the comparison of the obtained matrices
with the results of test diagnostics (no-load tests and, partially, short-circuit tests).
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2. The difference in winding currents in different modes is important, as it affects the
conditionality of the current and voltage matrices (used in the solution). Preliminary
conclusion: the specified deviation must be at least 10% (as an illustration, compare
the data for modes 1, 2, 3, and 5, 6 in Table 9).

3. The signal sampling frequency (SSF) has a significant impact on the accuracy of the
solution. Thus, an SSF of 50 kHz compared to an SSF of 8 kHz increases the accuracy
of the solution by approximately (5–7)%.

4. The calculation of short-circuit conductivity based on operational diagnostics data
(e.g., based on mode 1) differs significantly from the data obtained from direct test
measurements (mode 4): by a factor of 3.33 in terms of modulus. This shows that
the modulus of the complex nonlinearity coefficient, which can be used to make
the necessary correction, is quite large. At the same time, we emphasize that this
difference is not an error of the diagnostic method, but the essence of the manifestation
of transformer nonlinearity in operating mode (which is not mentioned in textbooks
and monographs on transformers).

This article presents algorithmic solutions to diagnostic problems using the examples
of insulation (Module 1) and electromagnetic (Module 2) subsystems, as well as some
results of the forecasting models. In the next publication, the authors plan to describe the
algorithms of the voltage regulation subsystems (Module 3) and high-voltage bushings
(Module 4) and present the results of their application.

4. Conclusions
The following conclusions can be drawn from the presented study:

1. A concept of a hybrid expert diagnostic system based on the functionality of measure-
ment and analytical complexes has been proposed. The system is built on a minimalist
approach to the number of monitored parameters and types of measuring equipment
for four subsystems of power transformers.

2. A methodology and algorithm for diagnosing the electromagnetic parameters of a
transformer have been developed, taking into account the nonlinearity and nonsinu-
soidality of the winding currents and voltages. The method allows for determining
not only the Zk parameter and its variations but also other electromagnetic parameters
necessary for a comprehensive assessment of transformer condition. The feasibility of
the method has been demonstrated through an experiment on a physical transformer
model under conditions of measurement errors in primary voltages and currents.
The signal sampling frequency has been shown to have a significant impact on the
accuracy of the solution.

3. In the field of information technologies, an optimal client–service architecture for
training hybrid system models based on data storage and management processes has
been implemented. This includes effective management of data and hyperparameters
and improved system scalability through the use of data lakes and message brokers.
The adoption of these technologies enables more efficient real-time big data processing,
improves the overall system performance, and reduces latency, which is particularly
important for high-load computing platforms.

4. The optimal search path for smoothing coefficients of synaptic trajectories in the
probabilistic neural network training algorithm has been improved. Spiral trajectories
were replaced with linear ones, which enhanced the algorithm’s ability to find optimal
solutions and avoid getting stuck in local minima. Additionally, the introduction of a
chaotic operator significantly improved global search and increased the likelihood
of finding global optima. These changes provided a balance between the required
diagnostic accuracy and the efficient use of computational resources.
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