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Abstract

The increasing penetration of photovoltaic solar energy has intensified the need for accurate
production forecasting to ensure efficient grid operation. This study presents a critical com-
parison of traditional statistical methods and machine learning approaches for forecasting
solar irradiance using the benchmark Folsom PLC dataset. Two primary research questions
are addressed: whether machine learning models outperform traditional techniques, and
whether time series modelling improves prediction accuracy. The analysis includes an
evaluation of a range of models, including statistical regressions (OLS, LASSO, ridge),
regression trees, neural networks, LSTM, and random forests, which are applied to physical
modelling and time series approaches. The results reveal that although machine learning
methods can outperform statistical models, particularly with the inclusion of exogenous
weather features, they are not universally superior across all forecasting horizons. Fur-
thermore, pure time series approach models yield lower performance. However, a hybrid
approach in which physical models are integrated with machine learning demonstrates
significantly improved accuracy. These findings highlight the value of hybrid models for
photovoltaic forecasting and suggest strategic directions for operational implementation.

Keywords: time series; forecasting; PV; management; solar; energy; machine learning

1. Introduction
Production management in modern electrical systems is one of the fundamental

pillars supporting the stability, efficiency, and sustainability of the energy supply. In this
context, system reliability and cost minimisation are the primary goals. One of the main
operational challenges involves maintaining a dynamic balance between electricity demand
and available generation in real time. Since electricity is not easily storable, a precise balance
between production and service is essential to avoid both energy waste and the risk of
blackouts or grid overloads [1].

The increasing integration of renewable energy sources, especially intermittent ones
such as photovoltaic (PV) solar and wind, has profoundly transformed the structure and
dynamics of electrical systems. Whereas traditional sources such as thermal, nuclear, and
even hydroelectric plants allow for highly controlled production management, newer
renewable plants depend heavily on weather conditions and are generally more volatile [2].
However, the current regulations in many countries give dispatch priority to renewables,
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forcing their use over more controllable sources, and although this may be environmentally
beneficial, it introduces significant complexity into the operation of the system [3].

Photovoltaic solar energy, in particular, has undergone exponential growth in recent
years. As of 2024, the global installed solar capacity exceeded 1400 GW, with annual
production reaching 2000 TWh, representing about 7% of global electricity generation [4].
This growth has been driven by technological cost reductions, incentive policies, and
increasing environmental awareness.

Production forecasting has become a central aspect of management. Planning and
scheduling of production units are conducted based on demand forecasting, and effective
management of this new energy reality also requires the forecasting of renewable energy
production. While traditional models have relied on statistical techniques, machine learning
(ML) approaches have gained in importance in recent years, as these algorithms have shown
a superior ability to capture non-linear patterns and adapt to highly variable contexts.

This article presents a critical review of the primary forecasting methods applied to
electricity production management, with a special focus on ML models. The objective
is to enable the development and selection of models that can respond effectively and
reliably in real time to the requirements of a prediction system embedded in a future home
energy management system. The performance of these methods is evaluated based on the
Folsom photovoltaic plant dataset that has been widely used in the scientific literature [5].
This facility has become a benchmark for the validation of predictive models due to the
availability and quality of its data. Two research questions are addressed in the article:

• RQ1: Are ML methods more accurate than traditional methods?
• RQ2: Can the use of time series enhance forecast accuracy?

The remainder of this paper is structured as follows: Section 2 presents a literature
review related to the main topic, and Section 3 explains the methods and materials used for
the study. Section 4 presents the results, while Section 5 concludes the article.

2. Related Literature
The reliability of PV production forecasting is essential for proper functioning of the

power system. The forecasting horizons used for solar and wind power prediction can vary
significantly—from very short-term (minutes to one hour) to long-term (months to years),
depending on the intended application [6]. This review primarily focuses on short-term
forecasting, which is critical for operational decision-making and grid stability.

Forecasting errors in Europe range between 15% and 100%, measured as a normalised
root mean square error (RMSE) relative to the mean [7]. A significant proportion of this
error is influenced by weather conditions, which can introduce an RMSE up to 35% in
a prediction [8]. This forecasting error propagates from generation to the grid, which is
operated by a transmission system operator (TSO) or an independent system operator (ISO),
with an ultimate impact on the distribution networks. Although the economic cost of this
error is difficult to generalise, it is estimated as ranging between 40 and 140 USD/MWh [9].
With the substantial increase in PV generation currently under way, this impact is likely to
grow, and there is consequently a growing interest in improving forecasting accuracy [10].

The most fundamental element of a forecast is solar irradiance. In general, two
distinct methodological approaches are employed, based on time series data or on physical
models [11]. These approaches differ in conceptual terms, regardless of whether statistical
or ML techniques are used for the modelling process. For forecasting based on physical
models, the irradiance is initially estimated under favourable weather conditions, known
as clear-sky conditions. These models use cell temperature to calculate power output.
Notable examples include the nominal operating cell temperature (NOCT) models [12]
and the Sandia models [13], developed by Sandia National Laboratories; comparative
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studies indicate minimal differences in performance between these approaches [14]. These
models are subsequently adjusted using meteorological data, so that the final irradiance
estimate accounts for cloud cover, wind, and other atmospheric conditions [15]. In this
context, the integration of satellite imagery with radiative transfer physical models to
estimate surface solar irradiance at high spatial and temporal resolution has given improved
results [16]. SoDa (solar radiation data) is a platform that provides access to solar irradiance
databases and estimation models, such as HelioClim and the Heliosat-2 model, developed
by MINES ParisTech [17].

Forecasting using statistical and time series models is carried out to estimate di-
rect irradiance, and to predict the meteorological parameters that influence irradiance,
thereby complementing physical models [18]. Classical time series methods are com-
mon: for example, Singh and Garg [19] and Sapundzhi et al. [20] have employed
ARIMA-based models, although hybrid models incorporating ML are generally preferred.
Despotovic et al. [21] used autoregressive models with transfer learning to forecast PV
output in Spain. Torres et al. [22] developed a deep learning-based solar power forecasting
system in which multiple data sources were integrated (meteorological, historical pro-
duction, satellite, etc.). Their model combined convolutional neural networks (CNNs) to
extract the spatial features from meteorological data with long short-term memory (LSTM)
networks to capture temporal dynamics and found that this approach significantly en-
hanced predictive performance compared to traditional models, even when applied to large
datasets [23]. This method was also applied by Qing and Niu to Cape Verde datasets [24].
Xu et al. [25] presented a hybrid short-term PV output forecasting approach in which signal
decomposition was combined with the XGBoost (Extreme Gradient Boosting) model.

The use of satellite imagery in forecasting is playing an increasingly important role.
The application of cross-correlation techniques to cloud features in sky images has enabled
minute-scale irradiance forecasts, with a forecasting RMSE of 17% having been achieved
for the global horizontal irradiance (GHI) for partly cloudy skies [26]. The introduction
of a three-dimensional CNN (3D-CNN) architecture for extracting spatiotemporal fea-
tures from video-like sky image sequences enabled their model to significant outperform
traditional two-dimensional CNN (2D-CNNs) and LSTM-based hybrid models in the pre-
diction of GHI [27]. Bu et al. [28] combined a spatiotemporal analysis of satellite images
interpreted through CNN and LSTM networks to simulate the impact of cloud cover on
irradiance. Similarly, the PV2-state model was enhanced using all-sky images to estimate
sunshine indices and forecast photovoltaic output, achieving improved skill scores for 15 to
30 min intervals [29].

In order to promote research in this field, several noteworthy initiatives have been
undertaken to enable solar production data to be openly shared [30,31]. As the integration
of PV systems into electric grids progresses, it is becoming essential to improve forecasting
methods. Sengupta et al. [32] have compiled and made available a comprehensive dataset
of solar irradiance and meteorological parameters across the United States that spanned
the last 30 years. One critical aspect of any dataset is its reliability. Vignola et al. [33]
emphasised the need for ground-based measurements over a period of at least one to two
years in order to ensure data quality and representativeness. A good example is offered by
the dataset released by Pedro et al. [5], which is commonly referred to as the PLC dataset.
This dataset is widely used for benchmarking forecasting models [34].

An understanding of the outcomes of previously developed models is a necessary
starting point for evaluating the effectiveness of the forecasting approaches proposed in this
study and for framing a meaningful comparison of their performance. Marinho et al. [35]
explored the issue of short-term solar irradiance forecasting using deep learning techniques
(CNN-1D, LSTM, and CNN-LSTM) applied to the Folsom (USA) dataset. The forecasting
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error, evaluated using the RMSE, was approximately 75 W/m2 for GHI. Oliveira et al. [36]
developed a novel architecture and used the Folsom data for benchmarking. Using XGBoost,
their model achieved an average RMSE of 39 W/m2 for intra-hour GHI forecasting and
48.5 W/m2 for intra-day GHI forecasting. However, for direct normal irradiance (DNI)
prediction, the RMSE values were significantly higher, with values of 86.8 W/m2 for intra-
hour and 109.9 W/m2 for intra-day forecasts. Alternative techniques such as support vector
regression (SVR), group method of data handling (GMDH), and quantum neural networks
(QNN) yielded RMSE levels that were approximately 25% to 50% higher, a finding that
underscored the relative effectiveness of the XGBoost approach [36]. Zhang et al. [37]
conducted a comparative evaluation of seven forecasting architectures tailored for ultra-
short-term solar irradiance prediction, with lead times of 2, 6, and 10 min. These models
included a baseline statistical persistence model (SPM), an AutoML-based model (NUM)
based on meteorological inputs, and five deep learning architectures combining spatial and
temporal features based on CNN and ViT methods. The average RMSE for GHI forecasting
was approximately 95 W/m2.

Yang et al. [38] compared models such as quantile regression forests, Gaussian process
regression (GPR), Bayesian model averaging (BMA), ensemble model output statistics
(EMOS), and persistence-based probabilistic models, also using the same dataset [39].

Table 1 summarises the main forecasting methods and results reported in the reviewed
literature, highlighting the diversity of approaches, prediction horizons, and accuracy
levels achieved across studies.

Table 1. Summary of recent methods for solar irradiance forecasting using the Folsom dataset and
similar benchmarks.

Reference Authors Methods Used Forecast Horizon Reported Results

[19] Singh & Garg ARIMA and S-ARIMA Short-term on
Power Production

nRMSE 3.4% on a 24 MW
power station

[21] Despotovic et al.
Autoregressive +

Transfer Learning for
Spanish PV

Short-term
nRMSE ≈ 19% for 30 min,

31% for 180 min and 34% for
6h for GHI

[22,23] Torres et al.

CNN + LSTM with
meteorological,
historical, and

satellite data for
Queensland (AUS)

Short-term
(intra-day)

RMSE ≈ 148 MW for PV
power in a 70 MW PV plant

[24] Qing & Niu
LSTM + weather

forecasts for
Cape Verde

Day-ahead (hourly) RMSE ≈ 76 W/m2 for GHI

[25] Xu et al. Signal decomposition
+ XGBoost Short-term eRMSE ≈ 1.19 for

Power (MW)

[26] Alonso-Montesinos
et al.

Sky images + cloud
cross-correlation Minute-level RMSE ≈ 17% for GHI under

partly cloudy conditions

[27] Zhao et al. 3D-CNN vs. 2D-CNN
and LSTM Short-term (DNI) nRMSE ≈ 30% for DNI

[28] Bu et al.

CNN + LSTM on
satellite images for
several PV Stations

in China

Short-term RMSE ≈ 60–80 W/m2

[29] Paulescu et al. PV2-state +
sky imagery

Intra-hour
(15–30 min) nRMSE ≈ 23%
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Table 1. Cont.

Reference Authors Methods Used Forecast Horizon Reported Results

[35] Marinho et al. CNN-1D, LSTM,
CNN-LSTM Short-term RMSE ≈ 75 W/m2

(GHI, Folsom dataset)

[36] Oliveira et al. XGBoost, SVR,
GMDH, QNN

Intra-hour and
intra-day

RMSE for GHI:
39–48.5 W/m2 for DNI:

86.8–109.9 W/m2

[37] Zhang et al. AutoML, CNN,
ViT, SPM

Ultra short-term
(2, 6, 10 min) RMSE for GHI ≈ 95 W/m2

3. Materials and Methods
3.1. Dataset

In this study, we use a dataset that is freely available from the Zenodo repository under
the https://doi.org/10.5281/zenodo.2826939, commonly called the Folsom PLC dataset.
This was created by Pedro et al. [5] and contains detailed measurements from the California
Independent System Operator (CAISO) headquarters located in Folsom, CA, USA. The
data include single-minute frequency recordings of GHI and DNI, as well as information
on several weather conditions such as the ambient temperature, relative humidity, wind
speed and direction, pressure, etc. In addition to on-site measurements, the dataset also
includes meteorological forecast variables obtained from the North American Mesoscale
Forecast System (NAM), sky images, and satellite images.

The primary reason for selecting this dataset was its extensive use in the scientific
community. The Folsom PV dataset has been widely studied in the context of PV power
forecasting and has served as a benchmark in numerous research articles. Its frequent use
in the literature means that consistent comparisons can be made across different predictive
modelling approaches, thereby facilitating an objective evaluation of the performance of a
model. Moreover, its public availability and data quality make it particularly suitable for
reproducible and comparative research.

Several authors have utilised this dataset to assess and benchmark solar forecasting
approaches; for example, it has served as the basis for evaluating probabilistic forecasting
methods using ensemble and hybrid models [38,39], as well as for the implementation of
deep learning and QNNs for solar irradiance prediction [36].

3.2. Machine Learning Methods

In this study, we considered all ML methods that were capable of providing regression-
based predictions, although only those that yielded the best results are presented here. We
present a brief description of each model below.

3.2.1. Neural Networks

Neural network (NN) models are based on computational models formed by intercon-
nected functional nodes called neurons [40]. Figure 1 shows a neuron of the network in
detail. Each neuron produces an output signal (Ok) by processing input signals using (Ii)
through an activation function ( f ).

Each neuron (k) is connected via links (wi) called axons, which assign weights to the
input received by the neuron. Biases (bk) are also added to increase the flexibility of the
model. Each neuron is connected to several input signals (nk) which may be outputs from
other neurons, or the predictor variables.

https://doi.org/10.5281/zenodo.2826939
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Figure 1. Schematic of a neuron node.

The activation function introduces non-linearity and may be a linear, sigmoid, tanh,
ReLU function, etc., depending on the purpose of the network. The output of a neuron is
calculated as shown in (1).

Ok =
nk

∑
i=1

wi Ii + bk (1)

Neurons are organised into layers called the input, hidden, and output layers, as
shown in Figure 2. A common type is a feedforward neural network, which consists of one
input layer, one or more hidden layers, and one output layer. It can be seen that the input
variables (predictors, Xn) are linked to the neurons lying in the input layer, which must all
have the same number of observations t. The data may either be endogenous or exogenous.
The neurons in the output layer provide forecasts of the output variable ŷ for h steps ahead.
The general formulation is shown in (2):

ŷ = f (X1, X2, . . . , Xn) (2)

Figure 2. A feedforward two-hidden-layer neural network.

Training involves adjusting the weights to minimise the difference between the pre-
dicted and actual values, typically using gradient descent and a loss function such as the
mean squared error (MSE).
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3.2.2. Regression Trees

A regression tree (RT) is a specific version of the decision tree (DT) algorithm [41] and
predicts values by recursively partitioning the data based on predictor variables, in the
same way as in regression. The way in which the information is graphed is similar to a
tree, as each node is split into branches until a terminal node (leaf) containing the response
value is reached. Figure 3 shows a generic representation of the tree.

Figure 3. Schema of a regression tree.

Starting from the root node, a decision is made at each internal node j as to which
path to follow, based on the splitting criterion defined at that node, which determines
the behaviour of the branch from that point onward, called the region (Rj). This process
is repeated until the leaf nodes at the bottom of the tree are reached. Given a dataset
(X, y) = (X1, X2, . . . , Xn, y), and depending on the splitting criteria, a leaf node j is
reached from which the value yj is obtained as the node value. The value at each internal
node (ŷRj ) is computed as the weighted average of the values of the branches (regions also
known as rectangles) downstream from that node.

To construct the tree structure and determine the splitting criteria, algorithms rely
on computation of the error through specific metrics, with the most common one for
regression being CART (classification and regression trees). The process of constructing an
RT involves determining the optimal number of terminal nodes, T, as well as selecting a
suitable regularisation paramete α to find a trade-off between the complexity of the model
and data fitting. A larger number of nodes typically allows the model to capture more
intricate patterns in the data, but it also increases the risk of overfitting. Conversely, a
smaller tree may generalise better but at the cost of reduced accuracy.

A cost-complexity pruning approach is commonly employed to address this trade-off
where the objective is to minimise the function (3).

|T|

∑
j=1

∑
xi∈Rj

(
yi − ŷRj

)2
+ α|T| (3)

where |T| is the number of terminal nodes in the tree, and α is a non-negative parameter
that penalises the tree complexity. Optimal values of T and α are typically obtained through
cross-validation: this involves partitioning the dataset into training and validation subsets,
fitting trees with varying complexity, and selecting the configuration that minimises the
cross-validated error. This procedure ensures that the final model achieves a good balance
between predictive accuracy and generalisation capability.
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3.2.3. Random Forest Ensemble

A combination of simple processes can yield remarkable results, and this philosophy
underpins the development of ensemble methods based on DT. These methods can enhance
the prediction accuracy through combining simpler models. Of these, random forest (RF)
stands out as a robust technique that has consistently delivered strong performance [42].

Initially, the bagging (bootstrap aggregating) technique is applied, as illustrated in
Figure 4. This method involves dividing the dataset into m training subsets Bi, on which
a series of sampling operations with replacement are performed. Simple models (in this
case, RT) are then fitted to each subset. Each sample drawn is independent from the others,
which contributes to increasing the variability among the models.

Figure 4. Schema of a random forest bootstrap aggregation.

RF is an ensemble of regression trees, each of which is trained on a different bootstrap
sample of the original dataset, thereby introducing a layer of randomness. A random subset
of features is selected at each split within a tree, from which the best split is chosen. The
advantage of this technique lies in its ability to decorrelate the trees, which significantly
enhances the generalisation capacity of the ensemble and reduces overfitting.

The final prediction of a regression model based on RF is generally obtained by
averaging the outputs of all individual trees. This aggregation smooths out the variance
inherent in single DTs, resulting in more stable and accurate predictions.

3.2.4. LSTM Networks

A specialised version of a recurrent neural network (RNN) is an LSTM network.
This was designed to enable efficient modelling of temporal sequences and time-
dependent patterns in order to avoid the problems with the gradient that arise in RNNs
during training [43].

An LSTM network is structured in the form of an input neuron layer, an output layer,
and one or more hidden layers. These hidden layers are organised into cells as shown in
Figure 5. Each cell consists of a series of gates, known as it (input), ot (output), ft (forget),
and state (ct). Each gate has a purpose, such as information added to the input, information
about the cell’s state, and information to be removed from the cell, respectively. In addition,
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through the use of the tan h function, the model can incorporate candidate cells to provide
information from other cells.

Figure 5. Schema of an LSTM cell with a forget gate.

The equations in the compact form are shown in Equations (4)–(9):

ft = σt(W f xt + U f ht−1 + b f ) (4)

it = σt(Wixt + Uiht−1 + bi) (5)

ot = σt(Woxt + Uoht−1 + bo) (6)
∼
c t = tan h(Wcxt + Ucht−1 + bc) (7)

ct = ft ⊙ ct−1 + it ⊙
∼
c t (8)

ht = ot ⊙ tan h(ct) (9)

where W∗ and U∗ are the matrices of weights for the input and the recurrent connections,
where * f indicates the forget gate, i is the input gate, o is the output gate, and c is the
memory cell. b∗ are the corresponding bias vectors. σt represents the sigmoid function.

∼
c t

represents the candidate state to be included in the cell. The information from each of the
cells is transmitted over time so that, at each instant in time, the cells receive information
from the variables, are fed back with information from the previous cell and a hidden
state, issue a new hidden state, and pass the information to the next cell. This process is
illustrated in Figure 6.

Figure 6. Diagram showing the information flow over time in an LSTM cell.

The training process is similar to that of the models described above, and involves
tuning the weights, biases, and all parameters. Values of c0 = 0 and h0 = 0 were used
here. The solver used for the training was the ADAM optimiser algorithm to minimise
the MSE.
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3.3. Analysis

Based on the research questions posed here, a structured methodology was defined
with the primary objective of analysing the behaviour of various ML models. Since en-
ergy production is highly dependent on solar irradiance, the prediction process focused
specifically on estimating two key components: DNI and GHI.

The study was organised into two main research branches: the first focused on physical
modelling approaches related to cell temperature estimation, while the second explored
the use of time series forecasting based on historical production data. Finally, a hybrid
methodology was implemented for the physical modelling approach.

The choice of the physical model was motivated by the need to establish a baseline
for comparison with the work presented in [5]. Although other models, such as those
referenced above, were considered, the minimal differences between them in terms of
performance led to a decision to retain the original approach.

This analysis focused on three forecasting horizons: intra-hour, intra-day, and day-
ahead. For the intra-hour horizon, predictions were made from 5 to 30 min ahead, with a
granularity of 5 mi intervals. For the intra-day horizon, forecasts ranged from 30 to 180
min ahead, using 30 min intervals. Finally, the day-ahead horizon considered lead times
from 26 to 40 h ahead, with predictions generated every hour.

3.3.1. Physical Modelling Approach

Following the methodology described in [5], forecasts of both global and direct ir-
radiance were performed using a clear-sky model and by generating predictions for the
clear-sky index kt, defined as the ratio between the actual irradiance and the theoretical
clear-sky irradiance as shown in (10):

kGHI
t =

GHI
GHIcs

, kDNI
t =

DNI
DNIcs

(10)

Predictions were initially made using only endogenous variables, and the model was
then extended by including exogenous variables. The procedure involved first computing
the clear-sky irradiance values, based on the GHI (GHIcs) and DNI (DNIcs)—using the
Ineichen and Perez model [44], which accounts for site-specific parameters such as atmo-
spheric pressure and air mass. Once the clear-sky values had been estimated, the predictive
model was used to forecast the corresponding clear-sky index as follows (11):

ĜHI = k̂GHI
t ·GHIcs , D̂NI = k̂

DNI
t ·DNIcs (11)

The estimation of k̂t was carried out with one-step-ahead forecasts performed at each
selected time point within the respective horizons. Two distinct methods were used to
perform the predictions, each relying on a different set of input variables, in order to
understand their effect on forecasting accuracy. The first method used only endogenous
variables, which were extracted directly from the time series of the clear-sky index. These
variables included: Bkt , the backward average of the clear-sky index, which reflects the
average behaviour over a recent window of time; Lkt , the lagged average values, which
incorporate historical values with different time lags to detect temporal dependencies; and
Vkt , the variability in the clear-sky index, which captures the extent of recent fluctuations
and instability in the data. This approach relies solely on past behaviour of the system
itself, without introducing any external information, and serves as a reference for what can
be predicted from internal patterns alone.

In the second method, climatological variables were included to enhance the prediction
performance by introducing relevant external data. The type of climatological input varied
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depending on the time horizon of the forecast: for intra-hour and intra-day predictions,
the model incorporated satellite images that provided real-time information on cloud
coverage, whereas for day-ahead forecasts and beyond, the model used numerical weather
predictions from the North American Mesoscale Forecast System (NAM), provided as
Numerical Weather Prediction (NWP). NAM offers forecasts of meteorological parameters
such as temperature, wind, humidity, and cloud cover, which are key elements when
modelling solar resource availability at longer time scales.

The implementation presented in [5] was reproduced, with the original methodology
being closely followed to ensure consistency in the results obtained. Building on this
foundation, the analysis was extended through the incorporation of ML models into the
regression process. The results obtained through these methods were then used as a
baseline for comparison with those from the traditional model and served as a point of
reference for subsequent evaluation.

3.3.2. Time Series Approach

The second method was based on an approach that was more closely aligned with time
series forecasting and leveraged the temporal patterns in the data to make predictions [5].
The specific objective was to explore the potential benefits of utilising the full temporal
spectrum of the series, and to capture its dynamic behaviour over time rather than focusing
solely on individual time steps. ML techniques were selected as the modelling framework
to enable this expanded approach, thereby continuing and building upon the exploratory
work initiated in the prior analysis.

In this case, the entire time series was utilised, including periods during which no
production occurred (or none was expected to occur), since irradiance data occasionally
reflect non-zero values under such conditions. The prediction was performed directly
on the GHI and DNI values, rather than on derived indices. To capture the seasonality
inherent in the time series and following an approach similar to that proposed in [45],
synthetic variables were introduced. Certain characteristics of the time series were not fully
exploited in the first methodology, particularly including structural components such as
the evident daily seasonality and subtle annual cycles observed in the data. By adopting
approaches that are more closely aligned with time series forecasting, it becomes possible
to generate new predictions using alternative methods that are better suited to capturing
these temporal patterns.

Of these features, the most notable is the 24 h lag of the target variable, which was
systematically included across all forecasting horizons, since it effectively captures the
inherent daily cyclic behaviour of the series. In addition, to reflect the underlying trends,
a moving average variable (computed from values from 24 h earlier) was generated and
incorporated independently of the prediction horizon. These engineered variables are
specifically designed to capture key temporal dynamics such as periodicity and trend
components within the data.

In addition to the time series features, meteorological variables were also incorporated
into the modelling framework. Specifically, forecasts provided by the NAM model were
included as input variables across all prediction horizons, regardless of their forecasting
horizon. This approach was chosen over the use of satellite imagery, which was employed
for the intra-hour and intra-day forecasts, in order to maintain a consistent and standardised
basis for prediction across all horizons.

3.3.3. Hybrid Approach

Finally, a hybrid approach was explored, in which the calculation of k̂t, as introduced
in the initial analysis, was preserved but enhanced through the integration of the time
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series features described previously. In this framework, the k̂t series was explicitly treated
as a time series and was used as the target variable, and modelled based on observed data,
accounting for both daily and intra-annual seasonality through the inclusion of appropriate
lagged values. Although the series does not exhibit a strong trend component at first glance,
a trend term was nevertheless considered and found to provide additional explanatory
power to the model.

To complement the observed data, the variables Bkt , Lkt , and Vkt were incorporated,
contributing valuable information regarding the variability inherent in the time series.
In this approach, the k̂t index was interpreted as a time-dependent process with its own
intrinsic temporal structure, which contributed to improving the predictive performance of
the underlying physical models.

Climatological inputs derived from the NAM were also included as predictor variables.
At the same time, the philosophy outlined in Section 3.3.1 regarding the use of climatological
variables was maintained, thus ensuring consistency in the treatment of meteorological
inputs throughout the modelling process. NAM was chosen due to its ease of integration
and accessibility, making it a practical option for enhancing model performance without
introducing excessive complexity. Although the short-term prediction of cloud cover (e.g.,
one-day-ahead forecasts) was beyond the scope of this study, the climatological variables
provided by NAM proved sufficient to establish a meaningful link between meteorological
conditions and the physical model behaviour.

The final prediction is therefore obtained by weighting the output of the physical
model with the forecasted value of k̂t, allowing for a dynamic adjustment of irradiance
estimates based on both physical principles and data-driven temporal patterns.

3.3.4. Metrics

To compare the results, two metrics were used as follows: RMSE, as given in (12) and
the mean absolute error (MAE), as shown in (13), where T is the total number of observed
and forecasted values used to measure the accuracy of the forecasts.

RMSE =

√√√√ 1
T

T

∑
t=1

(yt − ŷt)
2 (12)

MAE =
1
T

T

∑
t=1

|yt − ŷt| (13)

3.3.5. Model Development, Hyperparameter Optimisation, and Validation Strategy

Several ML models were implemented and evaluated, including all the above-
mentioned and others, like SVM. The modelling process followed a generalised workflow.
All models were configured using the default parameter settings provided by the machine
learning and deep learning toolboxes integrated into MATLAB R2024b. These default
values served as the basis for subsequent optimisation.

Subsequently, a systematic hyperparameter optimisation phase was carried out using
Bayesian optimisation, which offers an effective method for navigating the hyperparameter
space. The most representative hyperparameters for each model are summarised in Table 2.

The optimisation process was carried out independently for each operation and
model instance, yielding distinct parameter combinations depending on the context and
data characteristics.
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Table 2. Hyperparameter optimisation space for the main models used.

Model Hyperparameters Optimisation Space

NN Number of hidden layers
Number of hidden layers

[1, 3]
[10, 300]

Activation functions [ReLU, tanh, sigmoid]
DT Minimum leaf size [1, 7500]

RF
Number of learning cycles
Learning rate
Minimum leaf size

[100, 3000]
[0, 1]
[1, 7500]

LSTM
Number of hidden units
Learning rate
Dropout rate

[50, 300]
[0, 0.1]
[0, 0.6]

Regarding model validation, the dataset before 2016 was used for training and eval-
uation. This data was split into 70% for training, 20% for validation, and 10% for testing,
maintaining temporal coherence within the pre-2016 data. The validation strategy was
adapted to the nature of each model:

• For models based on physical variables, k-fold cross-validation was applied to assess
generalisation.

• For time series models, a holdout validation approach was used to preserve the
temporal structure and avoid data leakage.

Following the validation stage, an out-of-sample evaluation was performed using the
2016 dataset. This step allowed us to test the predictive performance of the selected models
by generating forecasts across the defined temporal horizon. The RMSE and MAE were
used to evaluate the accuracy of the predictions.

4. Results
This section presents the results obtained from the different forecasting approaches,

and the performance is evaluated using RMSE and MAE along different forecasting hori-
zons. For clarity and coherence, the results are structured into two main subsections: the
first focuses on the comparative methods, which reproduce the implementation presented
in [5] and serve as a benchmark for evaluation, while the second introduces the proposed
models based on time series forecasting techniques, thus incorporating temporal structure
and seasonality into the modelling process.

The results obtained using physical-based models are presented first. These models
serve as a baseline, following the methodology in the original approach. Three statistical
regression techniques are employed to generate predictions: ordinary least squares (OLS),
ridge regression, and the least absolute shrinkage and selection operator (LASSO). Owing to
space limitations, a detailed account of these methods is omitted, and the reader is referred
to [46] for thorough and accessible explanations. These methods were applied to the original
set of variables derived from the physical formulation, without the incorporation of time
series-specific features, thereby enabling a direct comparison with the newly proposed
models introduced in the subsequent section. We also tested several ML models: including
RT, RF, NN, LSTM, and Support Vector Machines (SVM), among others, although only
those models that yielded the best results are reported in this work. The forecasting results
for GHI and DNI are presented in Tables 3 and 4.
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Table 3. Comparison of global irradiance using statistical methods and machine learning techniques,
with data in units of W/m2 (each model is shown first without the use of exogenous variables and
immediately below with the inclusion of climatological variables).

Intra-Hour Intra-Day Day-Ahead

GHI RMSE MAE RMSE MAE RMSE MAE

Statistical
methods

lasso 68.4 34.2 88.0 47.8 101.1 59.4
lasso + weather 67.2 35.1 93.1 53.3 70.5 43.0

ols 67.7 35.9 89.2 50.1 98.5 35.9
ols + weather 66.4 37.5 83.1 47.8 75.1 37.5

ridge 68.5 34.2 87.7 47.6 100.5 34.2
ridge + weather 67.3 35.0 99.5 55.8 74.1 35.0

ML
Methods

Random Forest 66.8 35.3 86.9 48.0 98.0 35.3
Random Forest + weather 63.8 34.3 78.9 43.8 68.6 34.3

Neural network 66.3 35.1 91.5 51.7 152.2 35.1
Neural network + weather 64.8 36.6 92.9 52.9 107.1 36.6

Regression Tree 81.5 41.7 103.5 55.8 120.6 41.7
Regression Tree + weather 81.1 41.7 95.8 52.7 84.0 41.7

LSTM 66.2 36.0 89.2 51.2 140.4 94.3
LSTM + weather 70.7 39.5 87.0 49.5 107.9 73.9

Table 4. Comparison of direct irradiance using statistical methods and machine learning techniques
with data in units of W/m2.

Intra-Hour Intra-Day Day-Ahead

DNI RMSE MAE RMSE MAE RMSE MAE

Statistical
methods

lasso 130.5 75.9 183.0 110.7 261.4 188.3
lasso + weather 128.8 35.1 188.9 123.2 177.7 121.0

ols 130.1 35.9 189.2 125.3 258.0 208.3
ols + weather 127.5 37.5 178.1 117.3 184.2 131.1

ridge 131.5 34.2 182.6 110.0 262.6 189.3
ridge + weather 128.7 35.0 200.5 128.2 178.5 121.6

ML
methods

Random Forest 129.2 35.3 185.6 120.5 256.2 206.0
Random Forest + weather 125.0 34.3 172.4 111.3 173.9 122.0

Neural network 128.2 35.1 194.2 126.2 334.4 246.1
Neural network + weather 126.1 36.6 202.1 128.0 247.5 170.2

Regression Tree 157.6 41.7 220.9 136.1 316.6 233.2
Regression Tree + weather 158.4 41.7 214.8 129.5 211.9 141.5

LSTM 127.9 79.9 191.4 125.9 376.3 299.3
LSTM + weather 125.5 79.7 183.1 116.0 222.8 161.9

An analysis of both tables indicates that, although increasing the forecasting horizon
does not lead to a dramatic rise in RMSE values, the variability of this metric does increase
significantly. This pattern is observed for both GHI and DNI. It is also evident that the
inclusion of exogenous variables, such as meteorological data, does not consistently enhance
the predictive performance; although these variables contribute to improved results for
intra-hour and next-day horizons, they do not offer benefits for intra-day forecasts.

However, a comparison between ML and statistical models does not clearly favour
either approach. While RF methods tend to show improvements in most cases, the other
ML techniques do not consistently outperform the metrics achieved by statistical models,
despite optimising their hyperparameters. It can be concluded that, in this case, the use
of ML does not provide a competitive advantage in operational terms: the performance



Energies 2025, 18, 4122 15 of 19

metrics are very similar, while the time investment required to develop the models is
significantly greater.

Table 5 compares the performance metrics for the prediction of GHI using ML models
with a time series approach, while Table 6 provides the corresponding comparison for
DNI. An analysis of the results indicates that applying a time series model approach with
this strategy does not enhance prediction performance; on the contrary, it degrades it.
When using the original data directly as a time series, the inherent variability within the
series interferes with the model’s predictions, as the model is unable to respond to rapid
fluctuations effectively.

Table 5. Comparison of time series approach methods for global horizontal irradiance, with data in
units of W/m2.

Intra-Hour Intra-Day Day-Ahead

GHI RMSE MAE RMSE MAE RMSE MAE

TS Random Forest 206.9 206.2 214.3 206.2 329.7 207.1
Random Forest + features 207.0 206.2 214.3 206.2 329.7 207.1

Neural network 207.0 206.3 215.2 206.3 329.6 207.1
Neural network + feat 207.0 206.3 214.5 206.4 329.6 207.1

Regression Tree 206.9 206.2 215.0 206.2 329.7 207.1
Regression Tree + features 206.9 206.2 214.3 206.2 329.7 207.1

LSTM 211.8 206.2 270.5 206.3 318.2 210.7
LSTM + features 211.8 206.3 270.5 206.3 318.5 210.6

TS Random Forest 41.3 39.2 46.3 39.2 82.2 43.0
hybrid Random Forest + features 40.7 38.9 45.8 39.1 78.8 41.3

Neural network 41.1 39.0 45.6 39.3 74.4 40.2
Neural network + feat 41.7 39.5 46.1 39.6 76.5 40.9

Regression Tree 44.9 41.3 51.0 41.8 90.4 45.4
Regression Tree+features 46.0 42.2 54.8 42.9 92.6 44.9

LSTM 108.5 89.0 86.6 51.6 89.0 41.3
LSTM+features 102.9 84.0 82.5 50.0 88.8 41.5

Table 6. Comparison of time series approach methods for the direct normal irradiance with data in
units of W/m2.

Intra-Hour Intra-Day Day-Ahead

DNI RMSE MAE RMSE MAE RMSE MAE

TS Random Forest 260.7 258.0 274.8 258.0 403.6 258.9
Random Forest + features 260.6 257.9 274.8 258.0 403.5 258.9

Neural network 261.3 258.1 275.0 258.1 403.4 259.0
Neural network + feat 260.9 258.1 275.0 258.1 403.5 259.0

Regression Tree 261.2 258.0 274.8 257.9 403.5 258.8
Regression Tree + features 260.6 257.9 274.8 257.9 403.6 258.9

LSTM 265.5 269.62 320.6 258.0 407.5 269.6
LSTM + features 266.2 269.83 320.6 258.0 407.1 269.8

TS Random Forest 116.9 112.6 128.4 112.9 210.8 119.0
hybrid Random Forest + features 113.4 109.0 125.6 109.2 209.0 118.8

Neural network 116.5 112.7 124.6 113.2 198.9 115.4
Neural network + feat 113.4 109.4 124.8 110.6 205.0 118.4

Regression Tree 121.4 114.9 134.6 116.0 225.5 123.1
Regression Tree + features 120.2 112.2 140.6 114.6 239.1 125.7

LSTM 179.0 151.0 165.7 113.9 218.3 116.3
LSTM + features 186.5 160.6 170.0 115.9 218.8 115.9
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However, when a hybrid strategy is applied, the results improve significantly. In this
approach, a physical model accounts for the influence of the sun’s position on the panels
and the corresponding irradiance. This allows the ML models to focus solely on capturing
the meteorological patterns, leading to more accurate and stable predictions.

5. Discussion
To address RQ1 (Are ML methods more accurate than traditional methods?), we

used the dataset provided in [5], one of the most widely used benchmarks in the field. A
comparison was carried out between traditional statistical models and ML models. While
it is acknowledged that both statistical and ML approaches could be further refined and
optimised to achieve better performance by developing tailored and highly customised
models, a comparative analysis based on standard configurations reveals a clear trend:
ML models outperform traditional statistical methods under comparable conditions. This
suggests that even without extensive fine-tuning, ML techniques provide a more robust
framework for solar irradiance forecasting.

To answer RQ2 (Can the use of time series enhance forecast accuracy?), the study
explored a time series modelling approach by incorporating the seasonality and temporal
patterns present in the data. The findings indicate that traditional physical models are
inherently better suited to handle the structure of irradiance data, mainly due to their
ability to capture the deterministic components related to solar geometry. However, when a
hybrid strategy is adopted, in which a physical model is combined with an ML component,
the predictive performance is significantly improved. This hybrid approach leverages the
strengths of physical models to manage the solar position and the incidence of irradiance,
while allowing the ML models to focus on capturing meteorological variability. Hence,
although the exclusive use of time series modelling with raw data may not improve
accuracy and can even degrade it, the application of time series techniques within a
hybrid framework indicates (with some nuance) that temporal strategies can enhance
forecast performance.

One observation made in this analysis was that the influence of meteorological vari-
ables is not the same in all cases and depends on the scale and method used. This aspect
will be analysed in future work.

The results obtained are of the same order as those reported by Oliveira et al. [36]
using XGBoost, with a mean RMSE of 39 W/m2 for intra-hourly GHI predictions in their
study, compared to approximately 40 W/m2 in this paper. An improvement is observed
for intra-daily GHI prediction, with this paper achieving an RMSE of 46 W/m2 compared
to 48.5 W/m2 in the aforementioned study.

In contrast, for DNI prediction, the models presented here have not reached the same
level of performance in intra-hourly forecasts, with RMSE values of 117 W/m2 versus the
87 W/m2 reported. Similarly, for intra-daily prediction, the RMSE obtained is 128 W/m2,
compared to 110 W/m2 in previous work.

6. Conclusions
This paper has presented a comprehensive analysis using a benchmark dataset that has

been widely adopted in the field of solar energy forecasting. The experimental framework
allowed for a fair and insightful comparison between traditional statistical approaches and
ML models, considering both direct implementation and time series-based strategies.

The research questions posed at the outset were effectively addressed, and the results
demonstrated that ML models provide a superior alternative to traditional statistical
methods for the task of solar photovoltaic irradiance forecasting. This is particularly evident
when time series strategies are employed, especially in hybrid configurations in which
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physical modelling is integrated with ML. Such strategies enable better handling of the
data’s deterministic and stochastic components, leading to improved prediction accuracy.

Naturally, the conclusions drawn here are specific to the scope and dataset of this
study, although the methodology and insights are transferable to other contexts. Work is
already under way to apply this approach to additional datasets, to develop more general-
isable conclusions and to validate the trends observed here across varying geographic and
climatic conditions.

This work formed a part of a project aiming to develop the predictive capabilities of a
system designed for home energy management systems.

Future work will focus on the real-time implementation of similar models to inte-
grate these forecasting strategies into operational systems for solar energy management
and optimisation.
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