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Abstract: The integration of renewable energy sources, such as wind power, into the
electrical grid is essential for the development of sustainable energy systems. Doubly fed
induction generators (DFIGs) have been significantly utilized in wind energy conversion
systems (WECSs) because of their efficient power generation and variable speed operation.
However, optimizing wind power extraction at variable wind speeds remains a major
challenge. To address this, an artificial neural network (ANN) is adopted to predict the
optimal shaft speed, ensuring maximum power point tracking (MPPT) for a wind energy-
driven DFIG connected to a matrix converter (MC). The DFIG is controlled via field-oriented
control (FOC), which allows independent power output regulation and separately controls
the stator active and reactive power components. Through its compact design, bidirectional
power flow, and enhanced harmonic performance, the MC, which is controlled by the
simplified Venturini modulation technique, improves the efficiency and dependability
of the system. Simulation outcomes confirm that the ANN-based MPPT enhances the
power extraction efficiency and improves the system performance. This study shows how
wind energy systems can be optimized for smart grids by integrating advanced control
techniques like FOC and simplified Venturini modulation with intelligent algorithms
like ANN.

Keywords: wind energy; WECS; MPPT; DFIG; FOC; MC; Venturini algorithm

1. Introduction
In the last two decades, wind energy has definitively been recognized as an applica-

ble source of renewable energy systems, fundamentally due to its characteristic of being
an inexhaustible source that could be converted to electrical energy across numerous sys-
tems called WECSs. Recently, researchers have increasingly concentrated on the optimiza-
tion of WECSs to take advantage of the full potential of this abundant and non-polluting
energy source [1]. Furthermore, nowadays, energy experts are looking for alternative effica-
cious and environmentally friendly energy resources in order to decrease the dependence
on fossil fuels such as hydrocarbon- and petroleum-based fuels, the primary contributor to
the problem of global warming, which are becoming scarce [2]. The increasing integration
of the production of wind energy in modern power systems has brought about new diffi-
culties and challenges. One of the significant requirements for WECSs is their capability for
generating stable and desirable power in spite of fluctuating and varying wind speed situa-
tions; moreover, they react swiftly to sudden wind speed variations [3]. Numerous control
schemes have been suggested for both grid-side converters and machine-side converters,
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interconnected through a DC bus capacitor. Additionally, WECSs use a range of electrical
generator types, such as permanent magnet synchronous generators (PMSG) and DFIG, to
effectively convert wind energy into electrical energy [4]. Fixed-speed and variable-speed
WECSs are the two main categories into which WECSs have been divided according to their
operational speed. In fixed-speed WECSs, power converters are not required because of
the constancy in the speed of the generator’s rotor and the direct connection to the grid [5].
In the variable-speed WECSs, in order to make sure that the turbine runs at its maximum
power, the generator’s shaft speed needs to be continuously modified and adjusted. As
a result, the maximum power extraction (MPE) occurs, which would be the cause of the
rising annual production of the energy by 5–10% [6]. Taking into consideration that the
wind turbine operating regions have been divided into four operation regions presented
in Figure 1, the first region encompasses the area from start-up until the cut-in point. The
second region, commonly referred to as the MPPT region, spans between the cut-in and
the rated speed, where the turbine’s output power ought to be maximized. The third
region, known as the speed regulation region, aims to keep the shaft speed at rated levels
in order to ensure that the turbine does not generate power exceeding the generator’s
rated capacity. The fourth region occurs if the speed of the wind exceeds the cut-out point,
ensuring protection against potential damage from excessively high wind speeds [2,4]. It is
remarkable to note that the maximum power from WECSs can be taken out by operating
the turbine in the second region [7].
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To optimize the efficiency and performance, several algorithms have been applied in
WECSs. Among them is the MPPT algorithm, which is widely utilized in sustainable energy
systems, such as photovoltaic systems and wind energy, to maximize power extraction
under varying environmental conditions [8]. In WECSs, the MPPT algorithm’s primary
objective is to gather the greatest possible amount of power from the wind. The two
primary methods, into which MPPT algorithms have been separated in the published
works, are direct power control (DPC) and indirect power control (IPC) [9]. DPC directly
measures the generated output power and modifies system parameters to guarantee that
the turbine performs its MPE. In contrast, the IPC technique pre-calculates the power using
wind-speed data [3,8,9].

WECSs, equipped with variable-speed wind turbine-driven DFIGs, have been be-
coming widespread day by day due to their capability of operating throughout a broad
spectrum of fluctuating wind speeds and can be operated at both sub-synchronous and
super-synchronous speeds. Moreover, they can be controlled with a partial-scale converter
since the converter addresses only the slip power, so that the converter components can
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be smaller and less expensive compared to those in full-power conversion systems. Typi-
cally, a gearbox is used to operate the DFIG, creating a link between the wind turbine and
the DFIG [10–12].

WECSs are characterized by an environmentally friendly nature and low-cost in-
stallation, yet they often suffer from low efficiency because of continuously altering
wind speeds [13]. Therefore, the MPPT plays a critical role in enhancing WECSs’ per-
formance. Various significant studies have been conducted to improve efficient MPPT
controllers; many of them have been applied to variable speed DFIGs, which can continu-
ously become acclimatized to changing wind speeds. This acclimation has been leading to
an enhancement in the overall turbine efficiency and limited power fluctuations [14].
MPPT’s fundamental objective is to maximize the power coefficient’s value (Cp) to its high-
est value, even with fluctuations in wind speed. The existing literature covers two broad
methods of MPPT strategies, which are conventional methods and the soft computing-
based approach [2]. Hill climbing search (HCS), which has been also known as perturbation
and observation (P&O), is one of the conventional techniques that has been documented
in [15]. One more method is the optimal torque control (OTC) technique, and it is utilized
to maximize the power for a WECS-based PMSG [16]. The advantages of this technique are
higher efficiency and straightforwardness. However, it suffers from dependency on the
climatic conditions [9]. Latterly, many researchers have been interested in soft computing
approaches, divided into two categories: nature-inspired techniques and artificial intelli-
gence (AI) techniques [2]. Ant colony optimization (ACO) [17], particle swarm optimization
(PSO) [18], and genetic algorithms (GAs) [19] are a few of the nature-inspired methods
adopted into the MPPT controller. Compared to conventional methods, the nature-inspired
methods have demonstrated fast tracking under changeable wind speeds. However, the
requirements of the multiparameter-like selection of chromosomes, crossover rate, and
population size have made them complex tasks [20]. The AI-based MPPT controller in
WECSs involves a fuzzy logic (FL) controller [21,22] and an ANN-based controller [23,24].
These methods do not require accurate mathematical modeling even though they operate
with variable inputs and have the ability of self-convergence in addition to self-learning
capabilities. Moreover, they are adaptable to the systems’ non-linear behavior. The FL tech-
nique has been used for maximizing the extracted power in WECSs [21,22]. However, its
tracking performance and efficiency depend on the predefined rule base, which decreases
its practical applicability. In addition, it requires a large scale of hypothetical knowledge
and might not ensure the best possible response [2]. In [23], the ANN technique was utilized
for pitch angle controllers to enhance the power maximization from the available wind in
a grid-connected wind turbine system. The outcomes demonstrated that the controller-
based ANN has better performance in contrast against traditional strategies.

In [25], in order to control DFIG-based-WECS, MPPT control based on the adaptive
neuro-fuzzy inference (ANFI) method was employed. The simulation results of the ANFI-
based approach were compared with those obtained using a classical PI controller. The
frequently used method in WECSs is the sliding mode control (SMC) method. It offers
robustness with variations in system parameters and can effectively handle limited external
disturbances. Thus, it has been widely utilized to control the squirrel cage induction
generator [26]. It has been reported in [27] that the fractional-order PI controller method
has been utilized for controlling the pitch angle, and the simulation results demonstrated
an enhancement in the capacity of DFIG at strong wind conditions. Other control methods
have been also reported in the literature, such as the proportional integral [28], the linear-
quadratic-Gaussian control method [29], and quantitative feedback theory [30], which have
been used for the MPPT of WECSs. However, such methods seek inclusive computational
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and graphical analysis and because they are not robust, they often result in oscillations at
output power [31].

It is essential for variable-speed WECSs to convert power from a source with varying
speed into electrical energy with a consistent frequency. In a variable-speed WECS that
uses DFIG, the main grid is directly connected to the stator side windings, so that fixed-
frequency electric power can be generated through the stator side, whereas the windings of
the rotor are supplied with inconstant voltage and frequency. To integrate the rotor-side
with the main grid, a controllable power electronic converter is required [10]. Additionally,
effective speed control is required to achieve MPT [11].

Grid-connected variable-speed WECSs driven by DFIG typically employ a back-
to-back converter that enables bidirectional power flow [32]. However, back-to-back
converters involve two-stage power conversion, which might require a complex control
algorithm to control the entire system effectively. Moreover, the large DC link capacitors
which are used in the converter system may increase volume, weight, and cost [33].

The DFIG can be controlled by a direct AC-AC MC in place of a traditional back-to-
back converter. The MC has a number of positive effects, including the ability to guarantee
sinusoidal input, output currents, and bidirectional power flow in a single-stage conversion
process without the necessity for a DC link capacitor. It has also gained popularity because
of its unity input power factor. Unlike traditional back-to-back converters, the MC has
a simpler control strategy and does not seek large and expensive elements for energy storing.
Furthermore, it can extend the speed range of the DFIG to be operated over synchronous
speed, so that the DFIG can deliver power not only from the stator but also from the rotor
to the main grid through MC. All the above-mentioned advantages have made the MC
a perfect choice for the wind power generation systems [34,35]. Most control strategies for
wind turbine-driven DFIG systems are typically based on the FOC approach [10,36].

In DFIG-based WECSs, the FOC schematic is specifically designed to regulate the
rotor currents in such a way that the power can flow bidirectionally from and to the grid,
depending on the rotor speed and operation conditions. This approach allows the shaft
speed to follow the reference value, which is determined by the curves of power-speed
characteristic of the wind turbine [10]. A block diagram of a grid-connected DFIG-based
WECS with MC is illustrated in Figure 2.

The ANN-based MPPT strategies have been discussed for several renewable energy
systems in the literature. However, no prior study has combined an ANN-based MPPT
approach with a MC-fed DFIG for a WECS. The proposed control strategy, which has
been presented in [10], uses a 2D lookup table for achieving the MPPT in a DFIG-based
WECS with a MC. While effective, the 2D lookup table method seeks offline data and lacks
adaptation to unexpected operating conditions. To address these limitations, this study
proposes replacing the 2D lookup table with an ANN-based MPPT approach, offering
improved adaptability, dynamic response, and reduced reliance on offline-generated data.
This paper presents the design, simulation, and evaluation of the proposed ANN-based
MPPT strategy.

The main contributions of this study are summarized as follows: proposing an ANN-
based MPPT approach to replace the conventional 2D lookup table utilized in reference [10];
integrating the ANN-based MPPT with the FOC strategy in a DFIG-based WECS fed by an
MC, which ensures bidirectional power flow with unity power factor; developing a global
simulation model in MATLAB/Simulink (version: R2024a)to evaluate the proposed system
under different wind conditions; and providing a comparative analysis of the ANN and
the 2D lookup table approach from [10].
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2. Wind Turbine Model
The produced power and mechanical torque, both of which depend on the airflow

across the blades and are significantly influenced by varying wind speeds, are represented
by the wind turbine’s aerodynamic model [3]. The mechanical power on the turbine’s rotor
is influenced by the power coefficient Cp(λ, θ), which varies with wind speed (vw) in m

s
and blade pitch angle (θ) in degrees, can be expressed as follows [10,37]:

Pw =
1
2

Cp(λ, θ)ρ π R2 v3
w (1)

where R is the turbine rotor-plane radius (m); ρ is the air density
(

Kg
m3

)
; and λ is the tip

speed ratio, which is calculated by Equation (2):

λ =
ωtR
vw

(2)

Equation (3) gives the generated mechanical torque by the turbine:

Tt =
Pw

ωt
(3)
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where ωt is the turbine shaft’s speed in rad
s . The mechanical coupling between the gen-

erator and turbine is commonly achieved by a gearbox, whose ratio G is calculated
as Equation (4):

G =
ωm

ωt
(4)

where ωm is the generator speed rad
s . If the power obtained from the wind turbine overrides

the generator’s rated power, limiting the wind turbine’s input power is essential and pitch
angle control achieves this. However, when the obtained power in a range below the
generator-rated power, the turbine ought to extract the maximum amount of power [10,38].
It should be noted that the power coefficient Cp(λ, θ) is at its highest level when the pitch
angle value is zero.

Cp(λ, θ) = 0.22
(

116
λi

− 0.4 θ − 5
)

e−
12.5
λi (5)

1
λi

=
1

λ + 0.08 θ
− 0.035

1 + θ3 (6)

As illustrated in Figure 3, the output power of the turbine is shown remarkably and
simultaneously rising as the speed of the wind rises. It is also obvious that the curve of the
output power attains its peak value at a definite shaft speed. Therefore, the turbine should
be run at the speed value that maximizes the power. Keep in mind that the value of Cp,
which is a non-linear function of tip speed ratio λ and pitch angle θ, differs depending on
the system. Theoretically, the highest value of Cp is 0.44, as depicted in Figure 4 [10]. The
mathematical details of Cp is found in [39].
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The wind turbine characteristics shown in Figures 3 and 4 were drawn based on
Equations (2), (5) and (6).

In this paper, the pitch angle control not only regulates the aerodynamic power input at
high wind speeds but also acts as an inherent rotor speed-limiting mechanism by reducing
the aerodynamic torque. As a result, there was no need for a separate speed limiter in
the control system. This interaction was embedded in the training data of the ANN,
where the pitch angle values reflect both normal operation and power-limiting conditions.
Accordingly, the ANN was trained to predict the optimal shaft speed based on both wind
speed and pitch angle.

The wind turbine model represents a laboratory-scale turbine that has been designed
to align with the characteristics of the 1 kW DFIG, which is available in the laboratory,
ensuring compatibility for the simulation and potential experimental validation.
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3. The MC and Simplified Form of Venturini Algorithm
The MC, which consists of bidirectional switches, functions as a direct AC-AC con-

verter. It has the ability to convert an input voltage with a constant amplitude and frequency
to a variable output voltage at different frequencies, and it eliminates the requirement of the
intermediate DC link capacitor. Consequently, it provides a substitute solution to the con-
ventional back-to-back converter, which is ordinarily and traditionally utilized to efficiently
control the DFIG-based WECSs. The array of nine bi-directional switches, made up from
semiconductor materials, establishes a direct connection between the three-phase source
and the three-phase load, forming the direct three-phase AC-AC conversion. Figure 5
illustrates the schematic representation of MC where three groups of bi-directional switches
have been coordinated; each group is connected with an output line. This coordination
would provide a direct connection between the input and output phases [40–42]. Due
to the direct supply of the MC from source voltage, it is imperative to keep away from
short circuiting the input phase. Additionally, the output phase ought never to be open
circuited if the load is inductive. For the MC to be operated safely, these two guidelines
are necessary [42].
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In this study, a simplified form of the Venturini modulation algorithm (Sunter–Clare
algorithm) [43], has been used to control the MC. Implementation of this algorithm is
easier and more appropriate for closed-loop operations. It is supposed that the MC is
supplied by a balanced three-phase constant voltage source. The input voltages vA, vB, vC,
and modulation terms can be used to represent the MC output voltages va, vb, vc as
in Equation (7). va

vb

vc

 =

MAa MBa MCa

MAb MBb MCb

MAc MBc MCc


vA

vB

vC

 (7)

To use this modulation technique, at least two of the three input line-to-line voltages
need to be measured. Then, the peak value of input voltages Vim and its position ωit can be
expressed as Equation (8):

V2
im =

4
9

[
V2

AB + V2
BC + VABVBC

]
(8)

ωit = atan

 VBC√
3
(

2VAB
3 + VBC

3

)
 (9)

where VAB, VBC are the line voltages. The target voltage’s peak magnitude, Vom and its
position, ωot can be calculated by Equations (10) and (11):

V2
om =

2
3

[
V2

a + V2
b + V2

c

]
(10)

ωot = arctan
(

Vb − Vc√
3 Va

)
(11)

where the target phase output voltages are denoted by Va, Vb, andVc. The voltage magni-
tude and angle are directly derived from the output of the control loops. Equation (12) is
used to obtain the voltage ratio q:

q =

√
V2

om

V2
im

(12)

Note that the maximum value of q cannot exceed 0.866. Equations (13)–(15) are used
to obtain the modulations for the output phase, a:

MAa =
1
3
+ K31 +

2
3V2

im
(Va + K33)

(
2VAB

3
+

VBC
3

)
(13)

MBa =
1
3
+ K32 +

2
3V2

im
(Va + K33)

(
VBC

3
− VAB

3

)
(14)

MCa = 1 − (MAa + MBa) (15)

The triple harmonics K are injected into the target output voltage in order to achieve
the maximum voltage ratio [44], and can be found using Equations (16)–(18):

K31 =
2q

9qm
sin(ωit)sin(3ωit) (16)

K32 =
2q

9qm
sin

(
ωit −

2π

3

)
sin(3ωit) (17)

K33 = −
√

V2
om

[
1
6

cos(3ωot)− 1
4qm

cos(3ωit)
]

(18)
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where qm is the highest value of transfer ratio which equals to 0.866.
Based on Equations (13)–(18), for the unity power factor, the turn-on times of the

switch locate between the input phase and the output phase are expressed as Equation (19).

Tβγ = Ts

[
1
3
+

2VoγViβ

3V2
im

+
2q

9qm
sin

(
ωit + ∅β

)
sin(3ωit)

]
(19)

where Voγ and Viβ are the output and input voltages and can be calculated as follows:

Voγ = qVim.cos (ωot + ∅γ)−
q
6

Vimcos (3ωot) +
1
4

q
qm

Vimcos(3ωit), Viβ = Vimcos
(
ωit + ∅β

)
(20)

where ∅γ, ∅β = 0, 2π
3 , 4π

3 .
In Equations (13) and (14), Va is substituted with Vb and Vc, respectively, to yield the

modulation functions for phases b and c. It should be mentioned that the target output
waveforms in Equation (10) do not have to be strictly sinusoidal. Equation (19) can be used
to obtain the MC’s input currents.IA

IB

IC

 =

MAa MBa MCa

MAb MBb MCb

MAc MBc MCc


Ia

Ib

Ic

 (21)

Switching signals for the MC were produced using a simplified version of the Venturini
modulation method. The MC provides the controlled rotor voltage and frequency required
to carry out FOC and decoupled active and reactive power regulation of the DFIG, taking
the role of the traditional rotor-side back-to-back converter in this system. The MC supports
the active and reactive control techniques used in this work as well as the MPPT by allowing
bidirectional power flow and variable-frequency operation at the rotor side.

MC Model

MC has been modeled in MATLAB/Simulink as a switching-based model employing
nine bidirectional switches coordinated in a 3 × 3 matrix arrangement. The FOC strategy
has generated reference voltage signals to synthesize the required voltage and frequency
for the rotor side. The simulation model operates the MC at a switching frequency of 5
kHz. Figure 6 illustrates the implementation of one phase of MC in Simulink. The other
two phases are not shown for clarity since they are the same except for a phase shift of 2π

3
and 4π

3 [44]. Ideal switches have been assumed in the simulation of the MC circuit. Figure 7
shows in detail the switching period calculation of phase (a) using a simplified form of
Venturini algorithm.
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4. Dynamic Model of DFIG
The DFIG equivalent circuit in the d− q frame is displayed in Figure 8. All the machine

parameters are referred to the stator side. This approach simplifies the machine structure
and allows us to easily simulate the machine in closed-loop control systems [3].
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Equations (22)–(29) represent the DFIG model in the synchronously rotating d − q
reference frame [16]:

Vsd = Rs Isd +
dψsd

dt
− ωeψsq (22)

Vsq = Rs Isq +
dψsq

dt
+ ωeψsd (23)

Vrd = Rr Ird +
dψrd

dt
− (ω e − ωr)ψsq (24)
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Vrq = Rr Irq +
dψrq

dt
+ (ω e − ωr)ψsd (25)

ψsd = Ls Isd + Lm Ird (26)

ψsq = Ls Isq + Lm Irq (27)

ψrd = Lr Ird + Lm Isd (28)

ψrq = Lr Irq + Lm Isq (29)

By rearranging the previous equations with the flux linkages taken into consideration
as state variables, it is simple to obtain state space representation of the d − q expression
as Equation (30).

d
dt


ψds

ψqs

ψdr

ψqr

 =


−Rs
σLs

ωe

−ωe
−Rs
σLs

Rs Lm
σLs Lr

0
0 Rs Lm

σLs Lr
Rs Lm
σLs Lr

0
0 Rs Lm

σLs Lr

−Rr
σLr

ωr

−ωr
−Rr
σLr




ψds

ψqs

ψdr

ψqr

+


vds

vqs

vdr

vqr

 (30)

If currents are utilized as state–space variables rather than fluxes, the DFIM’s state-
space model in the synchronous reference frame will be as Equation (31).

d
dt


ids

iqs

idr

iqr

 =

(
1

σLsLr

)
−RsLr ωrL2

m + ωeσLsLr RrLm ωrLmLr

−ωrL2
m − ωeσLsLr −RsLr −ωrLmLr RrLm

RsLm −ωrLmLr −RrLs −ωrL2
m + ωeσLsLr

ωrLmLr RsLm ωrL2
m − ωeσLsLr −RrLs




ids

iqs

idr

iqr

+

(
1

σLsLr

)
Lr 0
0 Lr

−Lm 0
0 −Lm

−Lm 0
0 −Lm

Ls 0
0 Ls




vds

vqs

vdr

vqr

 (31)

The previous arrangement is used to represent the DFIG in d − q frame since it is
helpful to obtain steady state for given stator and rotor input voltages.

The electrical torque and mechanical dynamics of the system are being represented
using Equations (32) and (33), respectively.

Te = 3
P
2

Lm
(

Isq Ird − Isd Irq
)

(32)

J
dωm

dt
= Te + TLoad − Bωm (33)

where s and r represent stator and rotor quantities, respectively. Lm, Ls, and Lr are magne-
tizing inductance, stator, and rotor self-inductances, respectively. Te and TLoad denote the
electrical and load torques. B is the friction coefficient, and P indicates the pole number. ωm

denotes the mechanical speed in rad
s , and J stands for moment of inertia. Figure 9 illustrates

the Simulink model of the DFIG in d − q frame.
By utilizing the quadrature component of the rotor current, the DFIG dynamic model

permits control of the electromagnetic torque
(

Irq
)
. This control mechanism enables the

system to follow the reference speed generated by the MPPT algorithm while keeping
active and reactive power under stator-flux FOC decoupled.
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5. Prediction of the Shaft Speed
For the estimation of the non-linear mapping between the independent variables,

which are the speed of the wind speed (Vw), the blade pitch angle (θ), and the dependent
variable, which is chosen to be the turbine’s shaft speed (ω m), is the parameter whose
power is to be maximized, an ANN is utilized. In neural networks, the training set for
this non-linear estimation or prediction implicates the states Vw and θ as inputs and ωm as
an output. A three-layer ANN is an efficacious technique for nonlinear function prediction.
Figure 10 displays this study procedure’s schematic diagram.

Energies 2025, 18, x FOR PEER REVIEW 13 of 26 
 

 

predict the optimal rotor speed under both unconstrained and power-limited conditions, 
which accordingly eliminates the need for a separate speed limiter 

 

Figure 10. Neural network for predicting shaft speed. 

To calculate the net activation 𝑎௝ in a neural network, data are received by the input 
layer, multiplied by the relevant weights 𝑉௝௜, and then added to a bias term 𝑏௝௢. Equation 
(34) expresses the calculation of the net activation of the input layer: 𝑎௝ = ෍ 𝑉௝௜𝑝௜ + 𝑏௝௢௟೚௜ୀଵ  (34)

where 𝑝௜ is the input to the 𝑖௧௛ node; 𝑏௝௢ is the associated bias term; and 𝑗 =  1, 2, 3 … 𝑙𝑜 
denotes the hidden layer’s number of neurons. An activation function 𝑓 applied to the 
net activation value yields the hidden layer’s output, which is determined by the follow-
ing: 𝑦௜ = 𝑓൫𝑎௝൯ = 𝑓 ቆ෍ 𝑉௝௜𝑝௜ + 𝑏௝௢௟೚௜ୀଵ ቇ (35)

where 𝑓 represents the activation function, selected to be hyperbolic tangent (𝑡𝑎𝑛ℎ). 
Then, the net activation of the output layer is calculated as Equation (36): 

𝑎௞ = ෍ 𝑊௞௝௟೚
௝ୀଵ 𝑦௜ + 𝑏௞௢ (36)

where 𝑘  represents the neuron number of the output layer, and 𝑊௞௝  represents the 
weight, which has a scalar value, between the 𝑗௧௛ node in the hidden layer and the 𝑘௧௛ 
node at the output layer. Based on its net activation, the output layer generates the desired 
shaft speed, 𝜔௠∗  as output: 𝜔௠∗ = 𝑓ଵ(𝑎௞) (37)

As expressed in Equation (38), the weights relating to the input and hidden layers 𝑉௝௜, and the weights relating to the hidden and output layers 𝑊௞௝, can all be used to indi-
cate the output of the model. 𝜔௠∗ = 𝑓ଵ ቆ෍ 𝑊௞௝௟೚௝ୀଵ 𝑓 ൬෍ 𝑉௝௜𝑝௜ + 𝑏௝௢௡௜ୀଵ ൰ + 𝑏௞௢ቇ (38)

This expression can be expressed in vector form as Equation (39): 𝜔௠∗ = 𝑓̅(𝑊ഥ ்𝑓(̅𝑉ത ்𝑝̅ + 𝑏௩) + 𝑏௪) (39)
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It is essential to note that the pitch angle in this system functions not only as
an aerodynamic control variable but also as a power-limiting mechanism. During the
high wind, when the generator power exceeds the rated power, the pitch angle is regulated
to limit the turbine’s input power and indirectly reduce rotor speed. Therefore, the ANN
training dataset inherently captures both normal operation and power-limited scenarios
through variations in θ. By including this interaction in the training data, the ANN can
accurately predict the optimal rotor speed under both unconstrained and power-limited
conditions, which accordingly eliminates the need for a separate speed limiter
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To calculate the net activation aj in a neural network, data are received by the in-
put layer, multiplied by the relevant weights Vji, and then added to a bias term bjo.
Equation (34) expresses the calculation of the net activation of the input layer:

aj = ∑lo
i=1 Vji pi + bjo (34)

where pi is the input to the ith node; bjo is the associated bias term; and j = 1, 2, 3 . . . lo
denotes the hidden layer’s number of neurons. An activation function f applied to the net
activation value yields the hidden layer’s output, which is determined by the following:

yi = f
(
aj
)
= f

(
∑lo

i=1 Vji pi + bjo

)
(35)

where f represents the activation function, selected to be hyperbolic tangent (tanh).

Then, the net activation of the output layer is calculated as Equation (36):

ak =
lo

∑
j=1

Wkjyi + bko (36)

where k represents the neuron number of the output layer, and Wkj represents the weight,
which has a scalar value, between the jth node in the hidden layer and the kth node at the
output layer. Based on its net activation, the output layer generates the desired shaft speed,
ω*

m as output:
ω∗

m = f1(a k) (37)

As expressed in Equation (38), the weights relating to the input and hidden layers Vji,
and the weights relating to the hidden and output layers Wkj, can all be used to indicate
the output of the model.

ω∗
m = f1

(
∑lo

j=1 Wkj f
(
∑n

i=1 Vji pi + bjo

)
+ bko

)
(38)

This expression can be expressed in vector form as Equation (39):

ω∗
m = f

(
WT f

(
VT p + bv

)
+ bw

)
(39)

This equation can be stated more specifically as Equation (40):

ω∗
m = (Wtanh(Vp + bv)+bw) (40)

Once the network structure has been chosen, the mean squared error (MSE), commonly
referred to as the cost function, is typically defined as Equation (41):

J
(

Vji, wkj

)
=

1
2

io

∑
i=1

(ωm − ω∗
m)

2 (41)

where ωm the actual optimal shaft speed and ω*
m is the ANN-predicted shaft speed.

Results from ANN Simulation

The weights of the ANN model have been modified using the Levenberg–Marquardt
training procedure. Either the maximum permitted number of iterations or the MSE
standard determines when the iterative process ends. To estimate an accurate shaft speed
based on the training data, a range of network parameter values, such as the number
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of neurons distributed across the hidden layers, have been methodically changed. The
flowchart of ANN model is given in Figure 11.
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The training data were generated by simulating a wind turbine model designed to
match the 1 kW DFIG. A total of 6001 samples were generated by varying wind speed from
3 m/s to 15 m/s and pitch angle from 0◦ to 12◦. For each combination, the optimal rotor
speed was calculated by maximizing the power coefficient Cp. The dataset was randomly
divided into 70% training, 15% validation, and 15% testing. ANN parameters are listed
in Table 1.

Three layers make up the final ANN structure for ωm prediction. The input variables
are found in the first layer, also referred to as the input layer, contains the input variables
Vw and θ. The second layer, refers to the hidden layer, contains 15 neurons. The third
layer, known as the output layer, predicts the shaft speed ω∗

m that maximizes the gener-
ated power. With this selection of network parameters, the predicted and actual values
match excellently.

There is a massive error at the beginning of the prediction; however, as demonstrated
in Figure 12, the error decreases as the number of epochs increases. The regression plot of
the ANN model has been illustrated in Figure 13. The regression value R determines if the
prediction is successfully performed or needs to be trained again. It is obviously seen that
R = 1, which is the optimal value of the prediction process.
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Table 1. ANN parameters.

Neuron Network Architecture Multi-Layer Perceptron Feedforward

Inputs Pitch angle and wind speed

output Turbine Shaft speed

Number of neurons at each layer input
Hidden
Output

2
15
1

Training function (Algorithm) (Levenberg–Marquardt algorithm)
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Figure 14 displays the error histogram related to the shaft speed prediction. It displays
very little inaccuracy with almost zero average value. The predicted shaft speed, which has
been obtained so far, will be used as the speed reference for controlling the DFIG.
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6. Field-Oriented Controller
The FOC method has been implemented together with the MC modulation technique

for controlling the DFIG. The control has been executed in a synchronously rotating ref-
erence frame, where the flux through the windings of the stator has been aligned with
the d − axis.

ψsq = 0 and
dψrq

dt
= 0,ψsd = Lm Ims and

dψrq

dt
= 0

where Ims is DFIG’s stator magnetizing current.
By assuming the q − axis component of the stator flux to be zero, the flux is directed

entirely along the d-axis. In this configuration, the rotor current’s q component controls
active power control, while its d component manages reactive power control. This approach
will enhance the system’s dynamic performance and efficiency [10].

The substantiality of the proposed control approach can be acquired by measuring
the stator voltage, rotor current, and rotor mechanical speed. Then, the stator magnetizing
current can be estimated as Equation (42):

τms

Lm
Vsd + Ird = Ims + τms

dIms

dt
(42)

The stator’s time constant, τms is given by Ls
Rs

. The electrical angular velocity can be
estimated by Equation (43):

ωe =
Tms
Lm

Vsq + Irq

Tms Ims
(43)

Vrd = Rr Ird + σLr
dIrd
dt

+ Vrdc (44)

Vrq = Rr Irq + σLr
dIrq

dt
+ Vrqc (45)

Te = −3
P
2

L2
m

Ls
Ims Irq (46)

Ps = −3ωe
L2

m
Ls

Ims Irq (47)

Qs = 3ωe
L2

m
Ls

Ims(Ims − I rd) (48)
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where σ is the leakage coefficient; Ps is the real power of the stator; and Qs is the re-
active power of the stator. Then, compensation terms, Vrdc and Vrqc, are expressed as
Equations (49) and (50):

Vrdc = (1 − σ)Lr
dIms

dt
−(ωe − ωr)σLr Irq (49)

Vrqc = (ω e − ωr
)

σLr Ird + (ω e − ωr)(1 − σ)Lr Ims (50)

The leakage coefficient is expressed by Equation (51).

σ =
LsLr − L2

m
LsLr

(51)

These are the equations used in the control system. Block diagram representation of
the wind turbine-driven DFIG employing FOC with an ANN-based MPPT algorithm are
shown in Figure 15.
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By synthesizing the regulated rotor voltage and frequency directed by FOC method,
the MC acts as the rotor-side converter, achieving decoupled active and reactive power
control in the DFIG, as seen in Figure 15.
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7. Simulation Results
Simulations based on the MATLAB/Simulink environment have been carried out to

assess the effectiveness and performance of the suggested control system for overall system,
and the entire system model in Simulink blocks is displayed in Figure 16. The objective
is to validate the impact of the ANN-based MPPT and the FOC scheme in maximizing
power extraction and ensuring stable operation under variable wind conditions. The
parameters of the DFIG were taken from an actual machine used in the laboratory. In
order to ensure the compatibility and realistic simulation performance, the wind turbine
parameters were determined to match the operational characteristics of the DFIG. Turbine
and DFIG parameters are displayed in Table 2.
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The main objective of the simulation was to assess the ANN-based MPPT performance
under various wind speed situations during regular grid operation without replicating
grid failures or transient disruptions.

The WECS model-based DFIG with MC has been operated at wind speeds that fluctu-
ate over time using a pitch-angle control mechanism. Unless the power produced by the
wind exceeds the generator’s rated power, the value of the pitch-angle value continues to be
zero. Otherwise, it would be regulated. Through the adopted control strategy, the turbine
was able to achieve its optimal power by tracking the maximum value of Cp when the pitch
angle is zero degrees as demonstrated in Figure 17. However, at the intervals between
22.4 and 37 s, the pitch angle was regulated due to the excess wind power generated by
the turbine. This pitch angle regulation protects the turbine from severe wind powers by
adjusting the Cp value.

The ANN model, which predicts or forecasts the ideal shaft speed that optimizes
the power, gives the possible wind speeds and pitch angle values based on the curves of
the power and speed of the wind turbine. Wind turbine shaft speed is transmitted to the
generator side through the gearbox ratio. The predicted speed, which guarantees ideal
tracking and MPE, is utilized as the reference speed for the DFIG’s rotor. Figure 18 shows
how the DFIG functions at sub-synchronous and super-synchronous speeds. The stator
windings of the four-pole DFIG are connected to a 50 Hz constant voltage source. The
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generator operates at super-synchronous region when the rotor speed exceeds 1500 rpm.
Otherwise, it operates at sub-synchronous region.

Table 2. The wind turbine and DFIG parameters.

Turbine Parameters

Parameters Symbol Value Unit

Length of the blade R 0.7 m
Air density ρ 1.25 kg/m3

Gearbox ratio G 1.4 -

DFIG Parameters

The nominal power P 1000 W
The number of pole pairs p 2 -

The stator resistance Rs 9.83 Ω
The stator inductance Ls 0.0292 H
The rotor resistance Rr 8.14 Ω

The rotor inductance Lr 0.0292 H
The mutual inductance Lm 0.4294 H

Inertia j 0.01 kgm2

Viscous friction coefficient B 0.005 N·m·sEnergies 2025, 18, x FOR PEER REVIEW 20 of 26 
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DFIG power is divided into stator and rotor components. While the stator’s real power
Ps is always negative, indicating that it is being supplied to the main grid, the rotor’s real
power Pr, which depends on the rotor speed, can be either supplied to or drawn from the
main grid. In Figure 19, it is seen that under sub-synchronous conditions, the power of the
rotor has a positive sign, indicating that the power is being absorbed by the rotor, whereas
at the super-synchronous condition, the power has a negative value, indicating the power
is being delivered to the main grid. The algebraic sum of both powers will give the net
power generated by the machine Pnet = Ps ± Pr, which is presented in Figure 19.

The stator’s reactive power curve is illustrated in Figure 20. It has been controlled
to remain zero due to the assumption that the power factor should be unity; this can be
achieved according to Equation (48) by setting the reference of the current Ird to be equal to
the magnetizing stator current Ims. However, in cases where reactive power is needed to be
delivered to the main grid, the current Ird will be increased to be more than the magnetizing
current; this is performed by multiplying the reference current by a factor that makes it
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above the magnetizing current Ims. The reference value of q component of rotor current Irq

is obtained from the output of speed controller loop.
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Figure 19. The DFIG stator power Ps, rotor power Pr, and net power Pnet.

In Figure 21, as long as the stator’s reactive power is kept at zero, there will be a phase
angle of 180◦ between the voltage of the main grid and DFIG’s stator current, indicating the
pure real power exchange by the stator side, ensuring that it is operating with power factor
of unity. Additionally, despite the variation in the rotor speed, the stator current frequency
stays fixed at 50 Hz because it is connected to the main grid directly.

Figure 22 demonstrates the waveforms of the MC input current and the grid phase
voltage during sub-synchronous operation region of the DFIG. During this region, the
waveforms will be in phase, which indicates that the rotor of the machine is absorbing
power from the main grid. However, in Figure 23, it has been illustrated that while the
DFIG operates in the super-synchronous region, there will be a phase shift of 180◦ between
the voltage and current, indicating the power is being transmitted from the rotor to the
grid over MC.
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Figure 22. Waveforms of grid phase voltage and MC input current in a sub-synchronous region.

The simulation results confirm that the MC successfully maintained the decoupled
active and reactive power control by effectively supplying the necessary rotor-side voltage
and frequency, allowing for bidirectional power flow in a range of wind conditions.

Furthermore, a comparison between the suggested ANN-based MPPT and a tradi-
tional 2D lookup table-based MPPT, which was developed in [10], was conducted. The
tracking performance of the power coefficient (Cp) for both approaches at different wind
speeds is shown in Figure 24.
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Figure 24. Comparison of power coefficient (Cp) tracking using the proposed ANN-based MPPT
and the conventional 2D lookup table method under varying wind speeds.

In comparison to the 2D lookup table technique, the findings show that the ANN-
based MPPT achieves faster convergence to the optimal Cp and maintains superior tracking
accuracy especially in transient regions. Table 3 provides a summary of a comparison study
to further illustrate the benefits of the suggested ANN-based MPPT over the traditional 2D
lookup table-based MPPT developed in [10]. This table outlines key differences in adaptabil-
ity, performance, and implementation aspects between the two approaches, demonstrating
the improvements achieved by the proposed method.
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Table 3. Comparison between ANN-based and lookup table-based MPPT approaches.

MPPT Method 2D Lookup Table [10] ANN

Data Requirement Requires offline-generated lookup table Trained once; no real-time lookup needed

Adaptability to
parameter changes Limited (static table) High (ANN can generalize to unseen data)

Convergence speed to Cpmax Slower Faster

Control Complexity Moderate Slightly higher (due to ANN)

Need for updating data Requires manual update if parameters
change Self-adaptive after retraining

Memory requirements Higher (due to table storage) Lower

Simulation Tool MATLAB/Simulink MATLAB/Simulink

8. Conclusions
The design, control, and simulation of the grid-connected WECS are presented in

this article. The ANN technique has been used to predict the shaft speed that extracts
the maximum possible power from the wind. By utilizing an ANN model, the system
dynamically predicts the shaft speed based on the speed of the wind and pitch angle to
ensure the extraction of maximum power. The simulation results have illustrated that the
usage of the ANN improves adaptability; moreover, it obtains accurate and efficient power
tracking under variable wind conditions. Furthermore, it offered faster convergence to the
optimal power coefficient and a smoother dynamic response compared to the conventional
2D lookup table method.

There are several benefits using the MC in the rotor side of DFIG as compared to
conventional back-to-back converters. Whereby, the need for DC-link capacitors has been
removed with the MC, increasing system reliability by lowering the number of elements. It
also enables bidirectional power flow, which allows the dynamic transfer of energy between
the main grid and rotor of the DFIG in both sub-synchronous and super-synchronous
regions. Furthermore, the MC ensures sinusoidal input and output waveforms at both
sides, which minimizes harmonic distortion and improves power quality. The simulation
results highlight that the combination of ANN-based MPPT together with MC offers
a compact, effective, and high-performance solution for DFIG-based WECSs.

Future works might concentrate on putting the proposed control system into real-
time hardware. Further investigation will focus on the ANN-based MPPT’s scalability for
utility-scale turbines, the integration of advanced machine learning models to increase
adaptability under rapidly changing situations, and the incorporation of fault detection
and diagnostic capabilities to improve system resilience and reliability.
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