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Abstract: In this article, the main problem under investigation is the detection and diagnosis of
short-circuit faults in power transmission lines. The proposed fault detection (FDD) approach is
mainly based on principal component analysis (PCA). The proposed fault diagnosis/identification
(FAI) approach is mainly based on sliding-window versions of the discrete Fourier transform (DFT)
and discrete Hilbert transform (DHT). The main contributions of this article are (a) a fault detection
approach based on principal component analysis in the two-dimensional scores space; and (b) a rule-
based fault identification approach based on human expert knowledge, combined with a probabilistic
decision system, which detects variations in the amplitudes and frequencies of current and voltage
signals, using DFT and DHT, respectively. Simulation results of power transmission lines in Portugal
are presented in order to show the robust and high performance of the proposed FDD approach
for different signal-to-noise ratios. The proposed FDD approach, implemented in Python, that can
be executed online or offline, can be used to evaluate the stress to which circuit breakers (CBs) are
subjected, providing information to supervision- and condition-based monitoring systems in order to
improve predictive and preventive maintenance strategies, and it can be applied to high-/medium-
voltage power transmission lines as well as to low-voltage electronic transmission systems.

Keywords: rule-based fault detection and diagnosis approach; principal component analysis;
discrete Fourier transform; discrete Hilbert transform; short-circuit faults and circuit breakers; power
transmission lines

1. Introduction

Electricity has been used as a major energy source since the late years of the 19th
century. In 1891, three-phase alternating current transmission started in Germany, when
a 175 km overhead power line was commissioned to supply electrical energy to an inter-
national electrical engineering exhibition located in Frankfurt [1]. Since high quantities
of electrical energy are difficult to store, power transmission lines are needed to connect
electrical power plants to electrical grids and consumer facilities.

Electrical power systems consisting of a great number of generation, transmission,
and distribution subsystems are considered large complex systems; hence, their planning,
design, modeling, installation, operation, and management are very difficult tasks [2–4].
Circuit breakers (CBs) are critical assets in power transmission systems; they are needed
to control electrical power networks by switching circuits on, by carrying loads, and
by switching circuits off in short-circuit faults or maintenance situations, under manual
command or automatic supervision [5–7]. In recent decades, in typical overhead power
transmission lines, network voltages have risen from 110 to 700 kV or more; typical nominal
currents are of the order of several hundred amperes [8]. In SCADA systems, that supervise
and control electrical power networks, fault detection and diagnosis (FDD) approaches and
fault-tolerant control approaches must be implemented in order to try to guarantee that
faults do not provoke drastic failures [9–12].
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The occurrence of a short-circuit fault in a phase implies a rapid increase in current
and a rapid decrease in voltage in that phase; in addition to these symptoms associated
with amplitude variations, another relevant symptom is the rapid change in the frequency
of these signals. Some relevant reviews related to state-of-the-art approaches for fault
detection and diagnosis, with potential to be applied in power transmission lines, can
be found in Refs. [13–19]. There exist two major approaches: (a) rule-based approaches,
where rules are based on human expert knowledge; (b) data-driven machine learning
(ML)/artificial intelligence (AI) approaches, where the algorithms independently detect
and analyze data patterns and modify their behavior accordingly to predict new output.

The proposed rule-based robust FDD approach was developed in the context of the
H2020 BD4NRG EU Project—Big Data for Next Generation Energy, https://www.bd4
nrg.eu/ (accessed on 18 March 2024 ). It was found that the vast majority of references
are associated with machine learning (ML)/artificial intelligence (AI) approaches; in this
article, the great challenge was to propose a new rule-based hybrid FDD approach, with the
advantage of being an easy-to-understand methodology based on signal processing and
statistical analysis techniques. The main contributions of this article are (a) a fault detection
approach based on principal component analysis in the two-dimensional scores space; and
(b) a rule-based fault identification approach based on human expert knowledge, DFT, and
DHT, combined with a probabilistic decision system. This is a hybrid rule-based approach
in the sense that it combines different classical approaches such as principal component
analysis for fault detection, discrete Fourier transform for fault identification via ampli-
tude estimation, discrete Hilbert transform for fault recovery via instantaneous frequency
estimation, and probabilistic decisions, without resorting to optimization techniques, in
order to take advantage of the potential of each approach, with the aim of obtaining a high
performance similar to the performances of ML/AI-based approaches.

The remaining parts of this article are organized as follows. Section 2 describes the
state of the art. In Section 3, the theoretical concepts of the proposed robust rule-based fault
detection and diagnosis approach are presented. Section 4 is dedicated to the presentation
of the simulation results, a discussion regarding the performance of the new robust FDD
approach, and also, a performance comparison with other approaches. Finally, in Section 5
the conclusions and directions for further research are presented.

2. State of the Art

This section starts with the presentation of the terminology and notation, covering top-
ics of power systems and typical short-circuit faults, protection devices (relays and circuit
breakers), and also typical fault detection and diagnosis approaches in this research area.

2.1. Terminology and Notation

Given that terminology is not always a consensual subject, it is important to clarify
it when writing scientific articles. The terminology in the area of fault management used
in this article can be found in Refs. [20,21], and also at the IFAC website https://tc.ifac-
control.org/6/4/terminology/terminology-in-the-area-of-fault-management (accessed on
18 March 2024). In Table 1, the most relevant notation used in this article is presented.

Table 1. Notation.

Symbol Meaning

t Continuous time
k Discrete time
u Voltage signals
u1, u2, u3 Voltage signals in phases A, B, C
u0 Voltage signal in grounded (earthed) neutral wire
i Current signals
i1, i2, i3 Current signals in phases A, B, C
i0 Current signal in grounded (earthed) neutral wire

https://www.bd4nrg.eu/
https://www.bd4nrg.eu/
https://tc.ifac-control.org/6/4/terminology/terminology-in-the-area-of-fault-management
https://tc.ifac-control.org/6/4/terminology/terminology-in-the-area-of-fault-management


Energies 2024, 17, 2169 3 of 30

Table 1. Cont.

Symbol Meaning

As Amplitude of a signal
T Period of a signal
f Frequency of a signal
w Angular frequency of a signal: w = 2 π / T = 2 π f
ϕ Phase of a signal
Hx Threshold for the signal x(k)
tmax Simulation time in HyperSim: 1.5 s
Ts Sampling time in HyperSim: 50 µs
N f Number of CSV files processed for each experiment: 619
n Number of samples in each signal per experiment in HyperSim: 30,001
a Number of relevant principal components in the PCA model: a = 2
&& Logical AND
|| Logical OR
max() Maximum function
min() Minimum function

2.2. Three-Phase Power Systems and Typical Faults

In three-phase power systems, the voltages and the currents can be modeled as
sinusoidal signals for non-fault situations. In fault situations, the voltages and the currents
are no longer sinusoidal signals, and assuming a simplified model can be expressed by (1)
and (2) for a short period of time after the fault occurs, given that variations in amplitude,
frequency, and phase will occur.

u(k) = Au(k) sin(w(k) k + ϕ(k)) (1)

i(k) = Ai(k) sin(w(k) k + ϕ(k)) (2)

When an unintentional electrical connection occurs between two points at different
potentials, a low-impedance loop is created, called a fault loop, in which a short-circuit
current circulates [4,22]. Shunt (or short-circuit) faults are considered the most typical
faults in power grids [23,24]. On high-voltage power networks, ground faults account for
more than 80% of the total number of faults [25,26]. Ground faults are associated with
both overcurrents and undervoltages in the affected phases (A, B, or C). The typical power
system shunt (short-circuit) faults are [27] three-phase faults, three-phase-to-phase faults,
three-phase-to-ground faults, and three-double-phase-to-ground faults.

Faults on high-voltage overhead power lines are generally single-phase-to-ground
arcing faults and are mostly temporary; for this reason, protective circuit breakers are
provided with the automatic reclosing function. This function allows the line to be reclosed
and kept in operation after the fault has disappeared because the arc can self-extinguish [28].
The two main types of distribution network faults are transient faults and permanent faults,
with about 80% being transient faults and 20% permanent faults [29].

High-impedance faults (HIFs) are very difficult to detect and recognize by traditional
monitoring equipment because their presence results in a slight increase in load currents
and a small decrease in the voltages [9,27,30].

The typical values of the signal-to-noise ratio (SNR) on power lines depends on the
type, length, and load conditions, as well as the amplitudes and frequencies of signals and
noise. According to [26], in the context of power lines, the noise is defined as an unwanted
electrical signal with less than 200 kHz superimposed on the power system voltage or
current in phase conductors, or found on neutral conductors or signal lines; it is not a
harmonic distortion or transient, and it can disturb computers and controllers.

2.3. Circuit Breakers and Protective Relays

Circuit breakers are critical assets in power transmissions systems, since they are power
devices used to control electrical power networks by switching circuits on, by carrying
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loads, and by switching circuits off in short-circuit faults or maintenance situations, under
manual command or automatic supervision [5–7,31]. Typically, when a fault is detected in
any of the three phases (A, B, or C), the circuit breaker opens the power contacts associated
with the three phases (A, B, and C) for safety reasons. Since circuit breakers are critical assets
in power transmission systems, new fault detection and diagnosis approaches should be
developed and implemented in the SCADA systems of electricity distribution companies.

A protective relay is a device that monitors the electrical variables (voltages, currents,
frequency, etc.) of power systems and triggers a circuit breaker to isolate the faulty element
when a fault is detected. In recent years, a revolution has taken place in the development
and application of microprocessor-based multifunction protective relays (MMPRs). Single-
function electromechanical relays are now outdated, and these are being replaced with
MMPRs in many industrial and utility systems [32].

In Figure 1, the fault times and circuit breaker actuation times are represented. Typ-
ically, the fault start is unknown, as is the case in the present work, although it can be
estimated by analyzing the available signals. The fault detection time (t1 − t0) should be as
short as possible, as the next tasks (FAI, CBO, CBC, and FAR) will only occur if the fault
is detected. The fault detection and diagnosis approaches should be able to detect all the
times: t0, t1, ti, t2, t3, and t4. The fault identification (FAI) task is the most complex.

Figure 1. Fault times and circuit breaker actuation times.

2.4. Fault Detection and Diagnosis Approaches

In the last two decades there have been major developments in the areas of fault
detection/diagnosis and fault-tolerant control due to increasing performance, quality, and
sustainability requirements [12,33,34]. The first task is fault detection and the next is
fault diagnosis [20]. Fault detection implies the determination of the faults present in the
system, and the time of detection. In the context of this work, fault diagnosis implies the
determination of the kind of the faults (fault identification), and also the fault times and
circuit breaker actuation times, as depicted in Figure 1.

Reviews related to state-of-the-art approaches for fault detection and diagnosis that
can be applied in power transmission lines can be found in [13–19]. There exist two
major approaches: (a) rule-based approaches, where rules are based on human expert
knowledge; and (b) data-driven machine learning/artificial intelligence approaches, where
the algorithms independently detect and analyze data patterns and modify their behavior
accordingly to predict new output.

Typical fault detection and diagnosis approaches applied to power transmission lines
are as follows:

• Rule-based signal processing approaches. Relevant studies include (a) phasor-based
algorithms, time-domain analysis, time–frequency analysis (Fourier transform and
wavelet transform) [28]; (b) approach based on positive sequence voltage and current
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measurement from phasor measurement units (PMUs) [35]; (c) harmonic analysis and
use of discrete Fourier transform (DFT) [36]; (d) fault classification based on group
sparse representation [37].

• Rule-based statistical approaches. Relevant studies include (a) statistical fault de-
tection approach based on the voltage energy signal (VES) [38]; (b) combination of
symmetrical components technique with principal component analysis (PCA) for fault
detection and classification [39].

• Rule-based artificial intelligence approaches. Relevant studies include (a) fault de-
tection based on fuzzy logic [40]; (b) approach based on fuzzy logic and wavelet
transform [41]; (c) approach based on discrete wavelet transform and fuzzy decision
system [42].

• Data-driven machine learning/artificial intelligence approaches. Relevant studies
include (a) fault detection and classification based on neural ELM networks [43];
(b) fault detection using the Pruned Exact Linear Time (PELT) algorithm in large
datasets, and classification using wavelet transform [44]; (c) performance evalua-
tion of different machine learning algorithms [45]; (d) different machine learning
algorithms [28]; (e) automatic oscillography analysis with neural networks [46]; (f)
variational autoencoders (VAEs) in conjunction with ML algorithms [47]; (g) empirical
wavelet transform (EWT), local energy (LE), and support vector machine (SVM) [48];
(h) data-based Cauchy distribution weighting M-estimate RVFLNs neural method [30];
(i) review on artificial intelligence-based fault location methods in power distribution
networks [18]; (j) fault location in power distribution systems via deep graph convo-
lutional networks [49]; (k) fault identification based on deep reinforcement learning,
using deep Q-network [50].

In Table 2, relevant modern references in the FDD area applied to power transmission
lines are mentioned, sorted by year. In the bibliographical research carried out, it was
found that the vast majority of references are associated with ML/AI approaches; in this
article, the great challenge was to propose a new rule-based FDD approach. At the end of
Section 4, the proposed FDD approach is compared to all these FDD approaches, in terms
of fault identification performance.

In a great number of situations, the fault detection and diagnosis (FDD) problem
can be formulated as a classification problem that maps the symptoms into faults, taking
into consideration the reference patterns associated with the nominal situation without
faults [10]. This was the approach followed in this article, using a rule-based classification
approach. The SCADA supervision systems with fault-tolerance capabilities must try
to guarantee that the systems remains in the region of required performance and safety,
even in faulty situations [10,11]. Protective circuit breakers provided with the automatic
reclosing function allow, in many situations, fault (short-circuit) recovery in less than 1 s, as
will be detailed in Section 4.

Table 2. Relevant references in the FDD area applied to power lines.

Approach Diagnostics Technique Reference Year

PCA, DFT, and DHT Rule-based This article 2024
Data-based RVFLNs neural method ML/AI [30] 2023

Machine learning and variational autoencoders ML/AI [47] 2023
Wavelets and fuzzy decision system Rule-based [42] 2022

PELT and wavelet transform ML/AI [44] 2022
Machine learning with neural networks ML/AI [45] 2022
Wavelet transform and neural networks ML/AI [46] 2022

Deep reinforcement learning ML/AI [50] 2022
Power quality events ML/AI [36] 2020

Deep graph convolutional networks ML/AI [49] 2020
Group sparse representation Rule-based [37] 2019

Wavelets, local energy, and SVM ML/AI [48] 2017
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3. Proposed Fault Detection and Diagnosis Approach

This section contains the following topics: (a) HyperSim simulator and COMTRADE
files; (b) nominal operation, SNR, short-circuit faults, and main symptoms; (c) the proposed
theoretical fault detection and diagnosis architectures and approaches.

3.1. HyperSim Simulator and COMTRADE Files

In this work, a big dataset with relevant short-circuit faults was used, made available by
the R&D Nester laboratory (https://www.rdnester.pt/en-GB (accessed on 18 March 2024))
from the REN TSO electricity infrastructure (“Redes Elétricas Nacionais”, https://www.ren.
pt/en-gb (accessed on 18 March 2024)), in the context of the H2020 BD4NRG EU Project—Big
Data for Next Generation Energy, https://www.bd4nrg.eu/ (accessed on 18 March 2024). The
HyperSim simulator (https://www.opal-rt.com/systems-hypersim/ (accessed on 20 March
2024)) was used to create models of 12 overhead power lines in Portugal, with different
voltages (150 kV, 220 kV, and 400 kV). These models were developed by the R&D Nester
laboratory, the synthetic data were saved in 619 COMTRADE files, and after converted to
the CSV format that was used in this work [46].

The IEEE Standard C37.111 (https://standards.ieee.org/ieee/C37.111/3795/ (ac-
cessed on 20 March 2024)), also known as IEC 60255-24 Ed.2, defines a common format
for transient data exchange, COMTRADE (common format for transient data exchange),
for power systems; it was developed to provide a standard file format for sampled analog
waveforms and event data collected by monitoring devices [27]. COMTRADE files enable
the exchange of data files between incompatible devices.

3.2. Nominal Operation, SNR, Short-Circuit Faults, and Main Symptoms

On overhead power lines, in the nominal operating region (without short-circuit
faults), the neutral current i0 should obey the condition expressed by Equation (3). When
the current exceeds the rating of the differential circuit breaker, approximately 1 A or a
few amperes, the differential circuit breaker opens the power contacts; in this work, the
estimation of the fault start instant t0 is based on the instant at which |i0(k)| > 1 A. The
grounded (earthed) neutral wire can also serve as a parallel path to earth for short-circuit
fault currents, acting as a neutral fault protection.

|i0(k)| < 1A (3)

Harmonics in power lines are mainly due to the use of nonlinear power electronics
equipment, causing voltage distortions and affecting the quality of energy supplied to
consumers. According to EN-50160/IEC-61000-3-2 standards, the total harmonic distortion
(THD) limit value for voltages above 1000 V is 5%; this value is valid for nominal (normal)
operating conditions with a probability of 95%.

In this work, in order to emulate some of the situations referred to as load imbalances,
load variations, and voltage distortions, Gaussian noise was added to the voltage and
current signals, assuming different signal-to-noise ratios (SNRs), as detailed in Table 3,
since the available signals generated by the HyperSim simulator, made available by the
R&D Nester laboratory, do not contain noise. The lowest SNR values (25 dB and 20 dB)
were established taking into account typical allowable tolerances in voltage and current
signals in nominal operation; they were 5% and [10%; 20%].

Table 3. Established SNR values, and neutral current i0 in nominal operating region.

SNRu [dB] SNRi [dB] |i0| [A]

85 80 <1
55 50 <1
35 30 <1
30 25 <1
25 20 <1

https://www.rdnester.pt/en-GB
https://www.ren.pt/en-gb
https://www.ren.pt/en-gb
https://www.bd4nrg.eu/
https://www.opal-rt.com/systems-hypersim/
https://standards.ieee.org/ieee/C37.111/3795/
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In a power line, when a short-circuit fault occurs, two typical relevant symptoms are
the rapid increase in current and the rapid decrease in voltage [9,27]. Based on this premise,
for the faults under study, Table 4 was constructed, which defines the rules used in this
work for fault detection and diagnosis; a rapid increase in the current is denoted using the
label “+1”, and a rapid decrease in the voltage is denoted using the label “−1”; the label “0”
denotes a symptom not relevant to fault diagnosis.

In the event of a short-circuit fault, in addition to the symptoms of rapid changes in
the amplitudes of currents and voltages, another relevant symptom is the rapid change in
the frequency of these signals.

Table 4. Short-circuit faults and main symptoms.

Fault ID Type i0 i1 i2 i3 u1 u2 u3

F7 3P Three-Phase to Ground +1 +1 +1 +1 −1 −1 −1
F6 ABG Two-Phase to Ground +1 +1 +1 0 −1 −1 0
F5 ACG Two-Phase to Ground +1 +1 0 +1 −1 0 −1
F4 AG Phase–Ground +1 +1 0 0 −1 0 0
F3 BCG Two-Phase to Ground +1 0 +1 +1 0 −1 −1
F2 BG Phase–Ground +1 0 +1 0 0 −1 0
F1 CG Phase–Ground +1 0 0 +1 0 0 −1
F0 F0 No Fault 0 0 0 0 0 0 0

3.3. High-Level Architecture of the Proposed Fault Detection and Diagnosis Approach

In Figure 2, the high-level architecture of the proposed fault detection and diagnosis
approach is depicted. As detailed in Section 3.1, a big dataset with relevant short-circuit
faults was generated by the HyperSim simulation software, allowing access to three-phase
voltage and current signals in power lines, Ux and Ix. The fault detection approach is
based on applying linear principal component analysis (PCA) to voltage signals, detecting
deviations from the nominal PCA model (without short-circuit faults); here, it is assumed
that the fault is detected at time t1. The fault diagnosis approach is mainly based on
estimating the instantaneous amplitude (Ae) and instantaneous frequency (Fe) of the
voltage and current signals, using the discrete Fourier transform (DFT) and the discrete
Hilbert transform (DHT), respectively; in addition to identifying the type of short-circuit
fault (F1-“CG”, F2-“BG”, etc.), this proposed methodology made it possible also to identify
the various time instants at which the fault was identified (ti), the circuit breaker opening
(t2), the circuit breaker closing (t3), the fault recovery (t4), the actuation delay (t2 − t0), and
the reconnection time (t4 − t2).

Figure 2. High−level architecture of the proposed fault detection and diagnosis (FDD) approach.
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In the next sections, detailed architectures for fault detection and for fault diagnosis
will be presented and explained.

3.4. Fault Detection Approach

In Figure 3, the detailed architecture of the proposed fault detection approach is
depicted. The fault detection approach is based on applying linear principal component
analysis (PCA) to voltage signals (u1, u2, u3, u0), given that voltage signals present a high
level of correlation under nominal (fault-free) operating conditions. When a fault occurs, in
our case a short-circuit fault, the correlation level decreases profoundly and quickly.

In dynamic processes where correlation or redundancy between variables exists, it
is advantageous to reduce the number of variables, maintaining an important quantity
and quality of relevant original information. Dimensionality reduction techniques, such
as principal component analysis (PCA), can greatly simplify and improve process mon-
itoring tasks, since they project the data into a lower-dimensional space that accurately
characterizes the state of the process under study [34,51–54]. Principal component analysis
(linear PCA) is one of the most popular dimensionality reduction techniques. PCA is a
multivariate statistical technique in which a number of related variables are transformed to
a smaller set of uncorrelated variables. PCA preserves the correlation structure between the
process variables, and captures the variability in the data. Principal component analysis is
a multivariate statistical technique that can also be used to design linear controllers [55,56]
or nonlinear controllers [57].

Next, the methodology proposed for applying linear PCA to voltage signals is de-
scribed, based on PCA and implemented using singular value decomposition (SVD) [10].
Given a training set of n observations and m process variables stacked into a data ma-
trix X ∈ ℜn×m, the loading vectors are computed by solving the stationary points of the
optimization problem formulated in Equation (4), where v ∈ ℜm×1 [34].

Figure 3. Architecture of the fault detection approach.
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max v ̸=0

(
vTXTXv

vTv

)
(4)

The stationary points of Equation (4) can be computed via singular value decompo-
sition (SVD) as described in Equation (5), where U ∈ ℜn×n and V ∈ ℜm×m are unitary
matrices, and the matrix Σ ∈ ℜn×m contains the non-negative real singular values of
decreasing magnitude along its main diagonal

(
σ1 ≥ σ2 ≥ ... ≥ σmin(m,n)) ≥ 0

)
, and zero

off-diagonal elements. The loading vectors are the orthonormal column vectors in the
matrix V, and the variance in the training set projected along the ith column of V is equal
to σ2

i .

1√
n − 1

X = UΣVT (5)

Solving Equation (5) is equivalent to solving an eigenvalue decomposition of the
sample covariance matrix S, as described in Equation (6), where the diagonal matrix
Λ = ΣTΣ, with Λ ∈ ℜm×m, contains the non-negative real eigenvalues of decreasing
magnitude (λ1 ≥ λ2 ≥ ... ≥ λm ≥ 0), and the ith eigenvalue equals the square of the ith

singular value, λi = σ2
i [34].

S =
1

n − 1
XTX = VΛVT (6)

In a great number of practical applications, and also in this work, one of the goals is
to minimize the effect of random noise, or high-frequency disturbance signals, that can
corrupt the PCA representation, and to optimally capture the relevant variations in the
data. To achieve this goal, only the loading vectors associated with the a largest singular
values must be retained in the PCA model. PCA projects the observation space into two
subspaces: the scores subspace, and the residual subspace. Selecting the columns of the
loading matrix P ∈ ℜm×a to correspond to the loading vectors V ∈ ℜm×m associated with
the a largest singular values, the projections of the observation data X ∈ ℜn×m into the
lower-dimensional space are contained in the scores matrix T ∈ ℜn×a, as described in
Equation (7), and the projection of T back into the m-dimensional observation space X̂ is
given by Equation (8).

T = X P (7)

X̂ = T PT (8)

The residual matrix E is computed according to Equation (9) and captures the varia-
tions in the observation space spanned by the loading vectors associated with the m − a
smallest singular values. Typically, the two subspaces spanned by X̂ and E are denominated
the scores space and residual space, respectively. A more accurate representation of the
process is given by the scores space, since residual spaces that have a small signal-to-noise
ratio (SNR) are removed.

E = X − X̂ (9)

For a linear PCA model, the amount of variance explained by a principal components
is given by Equation (10), that depends on the eigenvalues λi of the matrix Λ obtained in
Equation (6) by SVD, assuming that m is the number of process variables [34,52].

Eσ2(a)[%] =
∑a

i=1 λi

∑m
i=1 λi

× 100% (10)

In the PCA approach, the number of dimensions of the reduced space a defines the
number of dimensions of the scores space. One way to define this number of dimensions a
is to choose a number of dimensions that explains a high percentage of the total variance
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in the features data, for example, 80% or more. For many applications, only two or three
principal components are retained in the PCA model [10,34].

In this work, only the scores space T was selected for implementing the short-circuit
fault detection approach, considering only two principal components, a = 2, for m = 4
process variables (nominal voltage signals u1n, u2n, u3n and u0n); this decision was based
on the high variance explained by the first two principal components, as described in
Table 5, for high-SNR voltage signals.

Table 5. PCA model: explained variance as a function of the number of principal components a.

a Eσ2(a) [%] Choice

1 51.3249%
2 99.9989% a = 2
3 99.9999%
4 100%

A big dataset with relevant short-circuit faults was generated by the HyperSim simu-
lation software, allowing access to three-phase voltage and current signals in power lines,
Ux = [u1 u2 u3 u0] and Ix = [i1 i2 i3 i0], as described in Section 3.1. Each one of the 619 files
generated by the HyperSim software recorded a simulation lasting tmax = 1.5 s, including
the occurrence of one of the seven short-circuit faults described in Table 4; given that the
sampling interval was Ts = 50 µs, the number of samples in each signal was n = 30,001 .

Based on the SVD and PCA concepts described in this section, it is now possible
to present in detail the proposed short-circuit fault detection approach. The data matrix
Xn ∈ ℜn×m(n = 30,001, m = 4) used to build the nominal PCA model is given by
Equation (11), containing the nominal voltages (without short-circuit faults) in each phase
and in the neutral wire. The covariance matrix Sn ∈ ℜm×m(m = 4) is described in
Equation (12). The loading matrix Pa ∈ ℜm×a(m = 4, a = 2) corresponds to the loading
vectors V ∈ ℜm×m associated with the a largest singular values, expressed by Equation (13).
The projections of the observation data X ∈ ℜn×m into the lower-dimensional space are
contained in the scores matrix Ta ∈ ℜn×a(n = 30,001, a = 2), as described in Equation (14).

X = Xn =


u1n(0) u2n(0) u3n(0) u0n(0)
u1n(1) u2n(1) u3n(1) u0n(1)

...
...

...
...

u1n(n − 1) u2n(n − 1) u3n(n − 1) u0n(n − 1)

 (11)

S = Sn =
1

n − 1
XTX = VΛVT (12)

P = Pa = Vm,a (13)

T = Ta = Xn Pa (14)

Human beings only have the ability to monitor signals well in one or two dimen-
sions [10]. In this work, the PCA analysis allowed a reduction in the dimensionality of the
problem from m = 4 to a = 2. Given that the choice was a = 2 (two principal components),
the scores space is a two-dimensional (2D) space, i.e., Ta = T2, so we have a 2D nominal
PCA model. In this 2D scores space, the scores matrix for a window of length n can be
represented by two column vectors Equation (15). Each line of Ta is a score, and each score
is a projection of the original data in the 2D reduced scores space; the score with coordinates
(ta1(k), ta2(k)), with k ∈ {0, 1, ..., n − 1}, is represented by a point in the two-dimensional
scores space.
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Ta = T2 = [ta1 ta2] =



ta1(0) ta2(0)
ta1(1) ta2(1)

...
...

ta1(k) ta2(k)
...

...
ta1(n − 1) ta2(n − 1)


(15)

PCA models have the advantage that the scores variables produced, which are linear
combinations of the original variables, are more normally distributed than the original
variables themselves; this is a consequence of the central limit theorem. For problems
where the data obeys a normal distribution, the threshold of the two-dimensional scores
space is an ellipse, according to the T2 statistics, given by Equation (16), where Tα

2 depends
on Fisher’s F-distribution with m and n − m degrees of freedom [10,34].

(ta1(k))2

λ1
+

(ta2(k))2

λ2
= Tα

2 (16)

For the problem under study, the 2D graphics that relate the sinusoidal nominal
voltage signals (u1n, u2n, u3n), for data in the nominal operating region (without short-
circuit faults), are inclined ellipses, as depicted in Figure 4; in this figure, it can also be
verified that the nominal PCA model in the 2D scores space [ta1 ta2], for data in the nominal
operating region, is also an inclined ellipse. This nominal PCA model in the 2D scores
space [ta1 ta2], an inclined ellipse, is proposed in this work as the reference model for fault
detection, as detailed next.
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Nominal voltage data and PCA

Figure 4. Nominal voltage data and 2D PCA model (ta1,ta2).

For each time sample k, a short-circuit fault is detected if the signal Re(k) given
by Equation (17) exceeds the threshold, i.e., the condition expressed in Equation (18) is
verified. An adaptive threshold was used in this approach, HRe(k), that depends on the
SNR computed in the nominal operating region (without faults), expressed by Equation (21)
and assuming Gd = 1.2, a value detailed later. Equation (17) expresses the distance
between two points (two scores) in the scores space, the current score (Ta1 f (k), Ta2 f (k))
and the nominal score (Ta1(k), Ta2(k)), as described in Equation (19) and in Equation (20),
respectively, taking into account Equation (14).
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Re(k) =
√
(ta1 f (k)− ta1(k))2 + (ta2 f (k)− ta2(k))2 (17)

Re(k) > HRe(k) (18)

[ta1 f (k) ta2 f (k)] = [u1(k) u2(k) u3(k) u0(k)] Pa (19)

[ta1(k) ta2(k)] = [u1n(k) u2n(k) u3n(k) u0n(k)] Pa (20)

HRe(k) = Gd × max(Re(k − N + 1 : k)) (21)

3.5. Fault Diagnosis Approach

In Figure 5, the detailed architecture of the proposed fault diagnosis approach is depicted,
including the final stage of the fault detection approach, in order to clarify the link between
them. Taking into account the actions and respective times defined in Figure 1, the fault
diagnosis stage can be divided into four tasks: (a) rule-based fault identification using the DFT
for amplitude estimation, combined with a probabilistic decision system; (b) circuit breaker
opening; (c) circuit breaker closing; (d) fault recovery using the DHT for instantaneous
frequency estimation. Each of these tasks will be explained in different subsections.

Figure 5. Architecture of the fault diagnosis approach.

3.5.1. Rule-Based Fault Identification

In order to increase the accuracy of the rule-based fault identification approach, for
different SNR conditions, a probabilistic decision system was developed and implemented
according to the architecture detailed in Figure 6, as described next.

As described in Section 3.2, when a short-circuit fault occurs in a power line, two
typical relevant symptoms are the rapid increase in current and the rapid decrease in



Energies 2024, 17, 2169 13 of 30

voltage. In this work, Table 4 was constructed reflecting this premise, and it is the base
structure used here to create the if–then rules for fault identification.

In order to facilitate the explanation of the fault identification approach, a summarized
version of Table 4 is presented here in Table 6, with only faults F5, F1, and F0. To implement
the if–then rules, it is necessary to estimate the amplitudes of current signals [i0 i1 i2 i3]
and voltage signals [u1 u2 u3], within a sliding window of length N. In the present work,
this task was achieved by using a sliding-window version of the discrete Fourier transform
(SW-DFT), implementing an algorithm with overlapping windows to reduce artifacts at the
boundary, as a discrete short-time Fourier transform (DSTFT), according to Equation (22),
for a discrete-time signal x(k) with N points; using smaller time frames, the frequency
spectrum moves more smoothly over time; therefore, it is more accurate [58]. The DSTFT
can be used to analyze how the frequency content of a nonstationary signal changes over
time. If we attempt to compute the DFT over a non-integer number of cycles of the input
signal, then we might expect the transform to be corrupted in some way; so, in this work,
two cycles were used to compute the SW-DFT, corresponding to N = 800 samples.

X(Ωn) =
N−1

∑
k=0

x(k) e−j Ωn k , Ωn =
2π

N
n (22)

By way of example, in Equation (23) the condition for identification of fault F5 (ACG)
at time instant ti = t(k) is expressed, ensuring ti > t1, according to Table 6, using the
estimated amplitudes of the current signals and the voltage signals based on the SW-
DFT transform; this approach was implemented in a robust way, as explained next. The
diagnosis of other short-circuit faults is carried out in a similar way, following the rules
formally defined in Table 4.

Table 6. Short-circuit faults F5, F1, and F0, and main symptoms.

Fault ID Type i0 i1 i2 i3 u1 u2 u3

F5 ACG Two-Phase to Ground +1 +1 0 +1 −1 0 −1
F1 CG Phase–Ground +1 0 0 +1 0 0 −1
F0 F0 No Fault 0 0 0 0 0 0 0

As currents in power lines depend on loads, it was necessary to implement an adaptive
thresholds approach, Hx, according to (24) and (25). A sliding-window of length N was
considere, in the nominal operating region before the fault detection time t1, i.e., kn < k1
and k1 = t1/Ts. The absolute value function is represented by | |, and the maximum
function is represented by max(). The typical allowable tolerances in voltage and current
signals in nominal operation are, respectively, 5% and [10%; 20%]. The 20% tolerance
allowed us to define the gain Gi = 1.2, and the 5% tolerance allowed us to define the gain
Gu = 0.95.

(|i0a(k)| > Hi0) && (|i1a(k)| > Hi1) && (|i2a(k)| < Hi2) && (|i3a(k)| > Hi3) &&

(|u1a(k)| < Hu1) && (|u3a(k)| < Hu3)
(23)

Hix = Gi max(ix(kn − N + 1 : kn)) (24)

Hux = Gu max(ux(kn − N + 1 : kn)) (25)

Fault identification occurs within a window wi = [k1 : ki] of length ni, equivalent to
three or four cycles (60 ms or 80 ms), where k1 = t1/Ts is associated with the fault detection
time, as detailed in Figure 7. Applying the set of rules defined in Table 4 may result in
the identification of one fault, two faults, or no fault (F0), given the transient behavior of
short-circuit faults. In Figure 7, some possible faults identified in the window are depicted,
where in this case the correct fault is fault F1.
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Figure 6. Architecture of the fault identification approach.

Figure 7. Fault identification window, with multiple faults (F1 and F5).

In the probabilistic decision system proposed here (Figure 6), the fault identification
window wi = [k1 : ki] is divided in two sub-windows, wa = [k1 : kp] and wb = [kp + 1 : ki],
assuming that Kp = int(K1 + 1/4 × ni). In the case of identifying two faults in the window,
during the simulations it was found that, in the vast majority of situations, the start of
the correct fault occurs before the start of the incorrect fault, and typically within the first
sub-window wa = [k1 : kp].

In this proposed fault identification approach, the decision regarding the correctly
identified fault is based on the concept of the statistical mode (central tendency) of given
datasets (sub-windows wa and wb), as described next. Let us assume that the statistical
mode Ms(.) in sub-window wa is Ma, and the statistical mode in sub-window wb is Mb. It
is necessary to deal with the situation where the statistical mode may result in fault F0 (no
fault); the two conditions expressed in Equation (26) were established. Finally, the fault
identified Fi is obtained from Equation (27), given that the probability of the fault occurring
in sub-window wa is greater than the probability of the fault occurring in sub-window wb.

First, the described fault identification algorithm is executed once considering that
the window wi = [k1 : ki] has a size equivalent to three cycles (60 ms). The simulations
allowed us to conclude that the window size should be larger than the two cycles (40 ms)
used in the Fourier and Hilbert transforms, also bearing in mind that some fault symptoms
take longer to be revealed, possibly due to different fault locations.

i f (Mb == F0) then Mb = Ma;

i f (Ma == F0) then Ma = Mb;
(26)

Fi = Ms([Ma Ma Mb]) (27)
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As an example of application of the proposed fault identification approach, applying
it to the case of Figure 7 results in the information presented in Table 7.

Table 7. Example of applying the fault identification approach for data depicted in Figure 7.

Case Ma Mb Fault

C1 F1 F1 F1
C2 F0 F1 F1
C3 F1 F5 F1
C4 F1 F1 F1

In summary, the tuning parameters of the fault identification algorithm presented in
Equation (28) were obtained in order to (a) ensure tolerances in nominal operation associ-
ated with allowable load variations, since the typical allowable tolerances in voltage and
current signals in nominal operation are, respectively, 5% and [10%; 20%]; and (b) minimize
the cost function expressed by Equation (29) associated with high-impedance faults, subject
to condition Equation (30), where N f = 619 is the number of CSV files processed.

[Gi, Gu, ni] = [1.2, 0.95, 3 or 4 cycles = 60 or 80 ms] (28)

Ja =

N f

∑
i=1

Fx(i) (29)

Fx /∈
{

F1, F2, F3, F4, F5, F6, F7
}

(30)

3.5.2. Circuit Breaker Opening

For safety reasons, when a short-circuit fault is detected in any of the three phases
(A, B, or C), the circuit breaker opens the power contacts associated with the three phases
(A, B, and C). After fault detection at instant t1, detecting the instant in which the circuit
breaker opens the power contacts is a relatively simple task, as the current in the power
lines will tend to zero. Assuming t2 > t1, this instant t2 = t(k) is calculated when the
condition described in Equation (31) is true for the first time in a sliding window of length
N = 3, using the current signals at time instants {k − 2; k − 1; k}, assuming some temporal
redundancy in all the phases A, B, and C. The threshold Hix2 should be a small value
greater than zero, so the value Hix2 = 1.0 was assumed.

(|i1(k)| < Hix2) && (|i1(k − 1)| < Hix2) && (|i1(k − 2)| < Hix2) &&

(|i2(k)| < Hix2) && (|i2(k − 1)| < Hix2) && (|i2(k − 2)| < Hix2) &&

(|i3(k)| < Hix2) && (|i3(k − 1)| < Hix2) && (|i3(k − 2)| < Hix2)

(31)

3.5.3. Circuit Breaker Closing

After the detection of the circuit breaker opening at instant t2, detecting the instant in
which the circuit breaker closes the power contacts is a relatively simple task, as the current in
the power lines will recover from zero to the nominal values. Assuming t3 > t2, this instant
t3 = t(k) is calculated when the condition described in Equation (31) is true for the last time in
a sliding window of length N = 3, using the current signals at time instants {k − 2; k − 1; k},
assuming some temporal redundancy in all the phases: A, B, and C. The threshold Hix2 should
be a small value greater than zero, so the value Hix2 = 1.0 was assumed.
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3.5.4. Fault Recovery

Fault recovery corresponds to the situation in which the currents {i1, i2, i3} have
frequencies close to the nominal value. After the detection of the circuit breaker closing at
instant t3, detecting the instant of time t4 = t(k), assuming that t4 > t3, in which the fault
recovery occurs is a task with some complexity, as will be explained next. The main idea
is to detect the instant t4 in which the estimated instantaneous frequency of the current
signals {i1, i2, i3} reaches a value close to the standard frequency; in Portugal, this value is
50 Hz ± 1%, i.e., a range of [49.50; 50.50] Hz.

The estimation of the instantaneous frequency fix(.) of current signals {i1, i2, i3} in a
sliding window is carried out here using the discrete Hilbert transform (DHT). The Hilbert
transform is useful in the analysis of nonstationary signals, in which the frequency may
vary with time, expressing the frequency as a rate of phase variation [59].

Here, the instant t4 = t(k) is calculated when the condition described in Equation (32)
is true for the first time in a sliding window of length N = 400, corresponding to one cycle
(20 ms). In order to take into account the transient behavio r, it was established here that the
estimated instantaneous frequency should belong to the range described in Equation (33),
with d f = 15 Hz.

((max( fi1(k − N + 1 : k)) ≤ f50 + d f ) && (min( fi1(k − N + 1 : k)) ≥ f50 − d f )) ||
((max( fi2(k − N + 1 : k)) ≤ f50 + d f ) && (min( fi2(k − N + 1 : k)) ≥ f50 − d f )) ||
((max( fi3(k − N + 1 : k)) ≤ f50 + d f ) && (min( fi3(k − N + 1 : k)) ≥ f50 − d f ))

(32)

[ f50 − d f ; f50 + d f ] = [50 Hz − d f ; 50 Hz + d f ] (33)

3.6. Thresholds and Robustness to Noise

As mentioned in Section 3.2, in this work, in order to emulate some of the situations
referred to as load imbalances, load variations, and voltage distortions, Gaussian noise was
added to the voltage and current signals, assuming different signal-to-noise ratios (SNRs).
Table 8 summarizes all thresholds used in this work, described earlier in Section 3. The
proposed FDD approach is robust to noise since the thresholds are adaptive, and depend
on the SNR computed in the nominal operating region.

Table 8. Thresholds computed in nominal operating region, and SNR dependence.

Task Thresholds Expression Value SNR Dependence

Fault Detection HRe(k) Gd × max(Re(k − N + 1 : k)) Gd = 1.2 Equation (21)
Fault Identification Hix(k) Gi × max(ix(k − N + 1 : k)) Gi = 1.2 Equation (24)
Fault Identification Hux(k) Gu × max(ux(k − N + 1 : k)) Gu = 0.95 Equation (25)

Circuit Breaker Opening Hix2 1.0 A
Circuit Breaker Closing Hix2 1.0 A

Fault Recovery d f 15 Hz

3.7. Pseudo-Code of the Hybrid FDD Algorithm

In order to clarify and explain in a sequential way the proposed FDD approach, the
pseudo-code of the implemented algorithm is presented next, in Algorithm 1.

The algorithms were programmed in the Python language using classes and objects.
In some lines, comments are presented at the end, referring to the subsections where the
various tasks are described; for example, “S:3.2” refers to Section 3.2.
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Algorithm 1 Hybrid Fault Detection and Diagnosis

1: Class Signals; Sig = Signals(.); {/* Python Class + Object */}
2: Class RENSignals; SRen = RENSignals(.); {/* Python Class + Object */}
3: NumFiles = 619; {/* 619 CSV files */}
4: for i = 1 to NumFiles do
5: [U1,U2,U3,U0,I1,I2,I3,I0] = Load_Signals_from_CSV_File(SRen,i);
6: Sig.Ux = [U1,U2,U3,U0]; Sig.Ix = [I1,I2,I3,I0];
7: for k = 1 to n do
8: Sig = Add_Noise_Evaluate_SNR(Sig); {S: 3.2}
9: Sig.t0 = Fault_Start(Sig,Sig.i0); {Fault_start, S: 3.2}

10: [U1n,U2n,U3n,U0n] = Capture_Nominal_Data(Sig.Ux,Sig.t0); {S: 3.4}
11: Sig.Un = [U1n,U2n,U3n,U0n];
12: [Sig.H] = Compute_Thresholds(Sig); {Table 8, S: 3.6}
13: [P,T1,T2] = Compute_2D_Nominal_PCA_Model(Sig.Un); {S: 3.4}
14: [T1f,T2f] = Project_Data_using_PCA_Model(Sig.Ux,P); {S: 3.4}
15: [Sig.Re] = Compute_Fault_Detection_Residual(T1f,T2f,T1,T2); {S: 3.4}
16: if (Sig.Re(k) > Sig.HRe(k)) then
17: Sig.t1 = t(k); Fde = 1; {Fault detected, S: 3.4}
18: end
19: [Ae_Ux,Ae_Ix] = SW_Disc_Fourier_Transform(Sig); {S: 3.5}
20: [Sig.ti,Sig.fault] = Fault_Identif(Sig,Ae_Ux,Ae_Ix,Sig.t1); {Fault identified, S: 3.5}
21: [Sig.t2] = CBreaker_Opening_Detection(Sig,Sig.t1); {CB Opening, S: 3.5}
22: [Sig.t3] = CBreaker_Closing_Detection(Sig,Sig.t2); {CB Closing, S: 3.5}
23: [Fe_Ix] = SW_Hilbert_Transform(Sig,Sig.t3); {S: 3.5}
24: [Sig.t4] = Fault_Recovering_Detec(Sig,Sig.t3,Fe_Ix); {Fault recovering, S: 3.5}
25: Fault_detection_delay = Sig.t1 - Sig.t0;
26: Fault_identification_delay = Sig.ti - Sig.t1;
27: CB_actuation_delay = Sig.t2 - Sig.t0;
28: CB_reconnection_time = Sig.t4 - Sig.t2;
29: Save_Results(“bd4nrg.txt”,“append”);
30: end for
31: end for

4. Simulation Results and Discussion

In this section, most of the simulation results presented in the figures are related to
short-circuit fault “ABG” (F6), associated with the first file “LCGRM1_1_11_15_54.csv” of
the big dataset. In some figures, some simulation results related to short-circuit fault F1
(CG), associated with the last file “LCGRM1_7_20_24_10.csv” of the big dataset, are also
presented. Both simulations were performed with signal-to-noise ratios of SNRi = 30 dB
and SNRu = 35 dB.

Here, a discussion is provided regarding the performance of the new proposed FDD
approach. A performance comparison of the proposed FDD approach with other FDD
approaches (rule-based and ML/AI-based) is also provided.

4.1. Dataset, HyperSim, and Programming Language

As mentioned in Section 3.1, a big dataset with synthetic data comprising 619 CSV
files was created by the REN company using the HyperSim simulator, containing the seven
typical short-circuit faults described in Table 4. Each CSV file was saved in a different
directory. The 619 directories occupy 2.87 gigabytes of disk space. In the near future, this
big dataset, with 619 CSV files, should be available in open access (e.g., in OpenAIRE—
https://www.openaire.eu (accessed on 28 March 2024)). The big dataset allowed for around
90 files for each type of short-circuit fault, facilitating the testing of the algorithms and the
tuning of their parameters, as well as their validation.

In Table 9, the HyperSim simulator parameters used to generate the big dataset can
be observed. HyperSim allows a diversity of topological and operational scenarios of the

https://www.openaire.eu
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electrical network to be simulated, i.e., variation in the fault resistance, variation in the
location where the fault occurred along the power transmission lines, and also the different
moments for each of the events (start of fault, end of fault, circuit breaker opening and
closing), for models of 12 overhead power lines in Portugal with different voltages (150 kV,
220 kV, and 400 kV) [46].

Table 9. HyperSim simulator parameters.

Parameter Minimum Value Maximum Value Variation

Start of fault 0.1 s 0.3 s 0.01 s
Circuit breaker opening Start of fault + 0.04 s Start of fault + 0.06 s 0.001 s

End of fault Circuit breaker closing − 0.06 s Circuit breaker closing − 0.04 s 0.001 s
Circuit breaker closing Circuit breaker opening + 0.9 s Circuit breaker opening + 0.9 s 0 s

Fault location 40% of the line length 60% of the line length 10% of the line length
Fault resistance (ohm) 2 20 1

The developed FDD algorithms were implemented in the Python programming lan-
guage (v3.8), https://www.python.org/ (accessed on 28 March 2024) [60,61], on a computer
with Windows 64 bits OS, 32 GB of RAM and Intel(R) Core(TM) i7-6700K CPU @ 4.00 GHz
4.00 GHz processor. The CPU processing time for each CSV file was around 58 s, given
that the Python language is interpreted, and also there was no concern about optimizing
some routines that included some graphics. It may be possible to reduce this time to a few
seconds using faster hardware, a compiled language, and optimization routines.

In each simulation performed in the HyperSim simulator, the simulation time tmax
was 1.5 s. Given that the sampling time used was Ts = 50 µs, the number of samples in
each current signal and voltage signal was n = 30,001. Considering the standard frequency
f 50 = 50 Hz, which corresponds to a period of T = 20 ms, each cycle (period) had
400 samples associated.

In Table 10, the seven short-circuit faults considered in this work, and also some
filename examples, are presented.

Table 10. Short-circuit faults and some file examples.

Fault ID Type File

F7 3P Three-Phase to Ground “LCGRM1_4_15_30_43.csv”
F6 ABG Two-Phase to Ground “LCGRM1_1_11_15_54.csv”
F5 ACG Two-Phase to Ground “LCGRM1_2_12_36_39.csv”
F4 AG Phase–Ground “LCGRM1_5_17_16_58.csv”
F3 BCG Two-Phase to Ground “LCGRM1_3_14_18_05.csv”
F2 BG Phase–Ground “LCGRM1_6_18_21_34.csv”
F1 CG Phase–Ground “LCGRM1_7_20_24_10.csv”
F0 F0 No Fault

4.2. Simulation Parameters

In order to facilitate understanding of the work, in Table 11, the main simulation
parameters and times are presented. It should be highlighted that the proposed FDD
approach was tested with a big dataset that considers situations of noise, different signal-to-
noise ratios, load variations, and low-, medium-, and high-impedance short-circuit faults.

https://www.python.org/
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Table 11. Main simulation parameters and times.

Parameters/Times Value

HyperSim simulation parameters See Table 9
Simulation time in HyperSim, tmax 1.5 s

Sampling time in HyperSim, Ts 50 µs
Number of samples in each signal generated by HyperSim, n 30, 001

Number of CSV files processed in Python 619
CPU processing time for each CSV file 58.22 s

Number of Portuguese overhead power lines simulated 12
Voltages on power lines [kV] 150, 220, 400
SNRi [dB] in current signals 20, 25, 30, 50, 80
SNRu [dB] in voltage signals 25, 30, 35, 55, 85

Load variations on power lines Yes
Low-, medium-, and high-impedance short-circuit faults Yes

Fault start estimation, t0 |i0| > 1 A
Fault detection parameters Gd = 1.2

Fault identification parameters Gi = 1.2, Gu = 0.95
Fault identification window size 60 or 80 ms

4.3. Fault Detection Results

The fault detection simulation results with fault F6 (ABG) and fault F1 (CG) are
presented and analyzed, considering SNRi = 30 dB and SNRu = 35 dB. For other types of
short-circuit faults, the performance was similar.

In Figure 8, the added noise, and current and voltage signals with added noise, in the
nominal operating region ([0.0; 0.10] s), can be observed. From top to bottom, the following
signals can be observed: (a) noise added to voltage u1; (b) voltage u1 with noise, where
SNRu = 35 dB; (c) noise added to current i1; (d) current i1 with noise, where SNRi = 30 dB;
(e) current i0, which verifies the condition |i0(k)| < 1 described in Equation (3).

For fault F6 (ABG), two main symptoms are expected: a rapid increase in current
signals [i1 i2] and a rapid decrease in voltage signals [u1 u2]. In Figure 9 and Figure 10,
respectively, in the instant t(k) = 0.187 s, which corresponds to sample k = 3740, these
two main symptoms can be observed. In phase A, the amplitude of the current i1 quickly
changed from a value close to 460 A to 4700 A, and the amplitude of the voltage u1 quickly
changed from a value close to 170,000 V to 145,000 V. In phase B, the amplitude of the
current i2 quickly changed from a value close to 450 A to 4300 A, and the amplitude of
the voltage u2 quickly changed from a value close to 180,000 V to 130,000 V. In phase C,
variations in current and voltage amplitudes are of little significance.

In Figure 11, the PCA 2D scores are presented, for nominal behavior without a fault
(left panel) and for behavior with a fault (right panel). When the fault occurs, the scores
moves away from the ellipse (nominal PCA model) as the correlation between the voltage
signals [u1 u2 u3 u0] changes. In Figure 12, now the PCA 2D scores for fault F1 (CG) are
presented, for nominal behavior without a fault (left panel) and for behavior with a fault
(right panel).

The proposed fault detection approach detects the short-circuit fault based on the
Re(k) signal described in Equation (17), as can be observed in Figure 13. The Re(k) signal
is drawn in blue, and the adaptive threshold HRe(k) described in Equation (21) is drawn
in orange; the short-circuit fault is detected when the Re(k) signal exceeds the threshold
HRe(k). In the figure title, the vector associated with the fault times [t0, t1, t2, t3, t4], in
samples [3723, 3740, 4893, 22719, 23141], is presented.
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Figure 8. Noise and noisy signals in the nominal operating region.
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Figure 9. Fault F6 (ABG): current signals (i1, i2, i3, i0).
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Figure 10. Fault F6 (ABG): voltage signals (u1, u2, u3, u0).
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Figure 11. Fault F6 (ABG)—PCA 2D scores: nominal behavior (left image), behavior with a fault
(right image).

The simulation results obtained with the proposed fault detection approach are in line
with expectations, and in the future the performance could be improved.
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Figure 12. Fault F1 (CG)—PCA 2D scores: nominal behavior (left image), behavior with a fault (right
image).
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Figure 13. Fault F6 (ABG): Fault detection signal, Re, and adaptive threshold.

4.4. Fault Diagnosis Results

In this section, the fault diagnosis simulation results with short-circuit faults F6 (ABG)
and F1 (CG) are presented and analyzed. For other types of short-circuit faults, the perfor-
mance was similar.

In Figure 14, in the graphics presented, from top to bottom, the following signals can
be observed for fault F6 (ABG):

• (a) the fault detection signal “Re” (blue signal), and the respective adaptive threshold
(orange signal);

• (b) the signal “fde01”, which corresponds to the moments in which the fault is active;
• (c) the “fde” signal, that records the various time instants, [t0 t1 t2 t3 t4]; In the

figure title, the vector associated with the fault times [t0, t1, t2, t3, t4], in samples
[3723, 3740, 4893, 22719, 23141], is presented.

• (d) the “fdi01” signal, that allows evaluating, in the identification window, the short-
circuit faults identified; in this case, two faults were identified: first, the fault F4 (AG)
for a short time (in magenta color); and second, the correct fault F6 (ABG) for most of
the time (in pink color);
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• (e) the signal “fdi”, which indicates which fault was well identified based on the rules
and on the probabilistic decision system: in this case, fault F6 (ABG) and the respective
instant ti; the colored dots define the beginning and end of the fault identification
window;

• (f) the relevant FDD times are [t0 t1 t2 t3 t4] = [0.186 0.187 0.245 1.136 1.157] s, and
ti = 0.247 s;

• (g) the title of the figure also mentions the number of the processed file (0, in this case),
the identified fault "ABG" and the real fault "ABG*" (marked with the symbol "*").

In order to elucidate the dynamic behavior of the amplitudes estimated by discrete Fourier
transform (DFT), in Figure 15, for fault F6 (ABG), a graphic with the estimation of the amplitude
of the current i1 using the DFT, based on a sliding window algorithm, is depicted. Estimation of
current and voltage amplitudes is necessary to implement the fault identification task.

In order to elucidate the dynamic behavior of the frequencies estimated by discrete
Hilbert transform (DHT), in Figure 16, for fault F6 (ABG), a graphic with the estimation of
the instantaneous frequency of the current i1 using the discrete Hilbert transform, based on
a sliding window algorithm, is depicted. The Hilbert transform allowed us to determine
the instant t4 associated with fault recovery. It can be observed that after circuit breaker
reclosing, the frequency of current i1 tends to 50 Hz, as expected.
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Figure 14. Fault F6 (ABG): Fault detection and diagnosis.
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Figure 16. Fault F6 (ABG): Estimation of the instantaneous frequency of i1 using the Hilbert transform.

In Figure 17, in the graphics presented, from top to bottom, the following signals can
be observed for fault F1 (CG):

• (a) the fault detection signal “Re” (blue signal), and the respective adaptive threshold
(orange signal);

• (b) the signal “fde01”, which corresponds to the moments in which the fault is active;
• (c) the “fde” signal, that records the various time instants, [t0 t1 t2 t3 t4]; In the

figure title, the vector associated with the fault times [t0, t1, t2, t3, t4], in samples
[2243, 2260, 3520, 21139, 22011] is presented.

• (d) the “fdi01” signal, that allows evaluation of, in the identification window, the
short-circuit faults identified; in this case, two faults were identified: first, the correct
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fault F1 (CG) at the beginning of the identification window (in orange color); and
second, the fault F5 (ACG) at the end of the identification window (in brown color);

• (e) the signal “fdi”, which indicates which fault was well identified based on the rules and
on the probabilistic decision system: in this case fault F1 (CG) and the respective instant
ti; the colored dots define the beginning and end of the fault identification window;

• (f) the relevant FDD times are [t0 t1 t2 t3 t4] = [0.112 0.113 0.176 1.057 1.101] s, and
ti = 0.173 s;

• (g) the title of the figure also mentions the number of the processed file (618, in this
case), the identified fault "CG" and the real fault "CG*" (marked with the symbol "*").
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Figure 17. Fault F1 (CG): Fault detection and diagnosis.

4.5. Main Results and Discussion

To allow conclusions to be made about the overall performance, in Table 12 the main
simulation results, without noise, for all the 619 CSV files processed, are presented. The
pseudo-fault Fx (xyz) is associated with the faults that were not identified, as a typical
fault belongs to the set {F1; F2; F3; F4; F5; F6; F7}; these are high-impedance faults, which
cause a small increase in the short-circuit current, and for this reason they are difficult
to identify given the thresholds used. Note that all short-circuit faults were detected by
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the proposed approach. For each fault, the number of faults generated by the HyperSim
simulator (“Sim”), the number of well-identified faults (“FDD”), and the difference between
previous values (“FDD-Sim”), are presented. The last line of the table provides validation
of the values.

The information available in Table 13, FDD main simulation results for different SNRi,
allows Table 14 to be built; the “Sim” column indicates the real number of faults, and the
“FDD” column indicates the number of faults identified by the FDD approach. In Table 14,
the main global performance indices (η) are presented. The fault detection performance is
100%, for any SNR. The fault identification performance has a value in the range [97.09;
98.22]%, depending on SNR; the best performance (98.22%) occurs for SNR = 30 dB, given
that the probabilistic decision system was tuned for this central SNR value. These fault
detection and identification results reveal that the proposed FDD approach presents good
robustness to noise.

Table 12. FDD main simulation results without noise (SNR = +∞).

Fault ID Sim FDD FDD-Sim

F7 3P 90 90 0
F6 ABG 87 82 −5
F5 ACG 89 83 −6
F4 AG 90 91 +1
F3 BCG 86 86 0
F2 BG 87 90 +3
F1 CG 90 95 +5
Fx xyz 0 2 +2
Σ 619 619 0

Table 13. FDD main simulation results for different SNRi.

Fault ID Sim 20 dB 25 dB 30 dB 50 dB 80 dB

F7 3P 90 90 90 90 90 90
F6 ABG 87 84 83 82 82 82
F5 ACG 89 86 87 85 84 83
F4 AG 90 87 89 92 91 91
F3 BCG 86 84 84 84 86 86
F2 BG 87 89 91 91 90 90
F1 CG 90 97 94 95 96 95
Fx xyz 0 2 1 0 0 2
Σ 619 619 619 619 619 619

Table 14. Main global performance (accuracy) indices, η [%], for different SNRi.

Task ID 20 dB 25 dB 30 dB 50 dB 80 dB

Fault Detection [%] FDE 100 100 100 100 100
Fault Identification [%] FDI 97.09 97.90 98.22 98.06 97.58

As fault detection and diagnosis systems implemented in hardware/software may
perform at less than 100%, when a fault is detected in any of the three phases (A, B, or C),
for safety reasons the circuit breaker opens all the power contacts associated with the three
phases (A, B, and C).

In Table 15, for the circuit breakers, the mean values and the standard deviations of
actuation delay and reconnection time are presented. The mean value of the reconnection
time is close to the typical value for circuit breakers, which is around 0.90 s, as mentioned
in Table 9. The mean value of the actuation delay is similar to values obtained with other
approaches, such as Ref. [44]. The fault detection delay depends on the SNR, and takes
mean values in the range [0.80; 4.83] ms; these mean values are less than 17 ms, a value
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obtained in Ref. [44]. The mean value of the fault identification delay is closer to the mean
value of the circuit breaker actuation delay, assuming an approximate value of 60 ms.

Table 15. Average values of times and delays for different SNRi.

Times and Delays [ms] 20 dB 25 dB 30 dB 50 dB 80 dB

Fault Detection Delay: t1 − t0 4.83 1.64 0.91 0.80 0.81
Fault Identification Delay: ti − t1 60.19 60.19 60.26 60.77 61.00

CB Actuation Delay: t2 − t0 58.94 59.10 59.22 59.41 59.81
CB Reconnection Time: t4 − t2 929.62 929.62 929.62 929.62 929.62

In Table 16, the proposed FDD approach is compared to other studies in the literature,
in terms of fault identification accuracy/performance, η [%]. The “dataset” column shows
the type of dataset/software used. The “noise” column indicates which references consid-
ered noise in the tests carried out. The proposed robust rule-based FDD approach achieved
very high performance, similar to the performances of machine learning/artificial intelli-
gence (ML/AI) approaches, validating this FDD approach. It is important to highlight that
the rule-based hybrid FDD approach proposed in this work, considering noise, achieved
similar performance to the ML/AI approach [46] based on wavelet transform and neural
networks, without considering noise, using the same big dataset (REN: HyperSim).

High-impedance faults are very difficult to detect and diagnose using traditional
monitoring equipment because their presence results in only a slight increase in load
currents and a slight decrease in load voltages. More research should be performed on
the topic of FDD of high-impedance faults. A methodology with the potential to solve
this type of incipient fault could be the use of deep learning approaches, such as nonlinear
Deep-PCA [62].

Table 16. Performance comparison with other studies in the literature.

Approach Reference Dataset/SW Noise Accuracy [%]

Rule-Based: PCA, DFT and DHT This Article REN: HyperSim Yes 98.22
Deep reinforcement learning [50] IEEE 14-bus Yes 100.00
Wavelets, local energy and SVM [48] PSCAD Yes 99.77
Deep graph convolutional networks [49] IEEE 123-bus Yes 99.38
Group sparse representation [37] PSCAD Yes 99.09
Machine learning and variational autoencoders [47] Aspen No 99.00
Wavelet transform and neural networks [46] REN: HyperSim No 98.50
Machine learning with neural networks [45] Matlab/Simulink Yes 98.47
Wavelets and fuzzy decision system [42] IEEE 34-bus No 94.90
Power quality events [36] Real Smart Grid No 92.90
PELT and wavelet transform [44] REN: Real Data No 91.56
Data-based RVFLNs neural method [30] RTDS-RTS Yes 89.94

5. Conclusions

The proposed rule-based hybrid fault detection and diagnosis approach, developed
in the context of the H2020 BD4NRG EU Project—Big Data for Next Generation Energy,
implemented in Python, allows the detection and diagnosis of short-circuit faults in power
transmission lines, and it can be applied to high-/medium-voltage power transmission
lines as well to low-voltage electronic transmission systems.

This hybrid FDD approach, combining different classical approaches such as PCA,
DFT, DHT and probabilistic decision, without resorting to optimization techniques, takes
advantage of the potential of each approach, with the aim of obtaining high accuracy in
identifying faults (around 98%), similar to the performances of ML/AI-based approaches.
The proposed FDD approach was tested and validated on a big dataset (619 files), having
achieved 100% accuracy in detecting short-circuit faults, as detailed in Table 14.
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The use of adaptive thresholds allowed situations of load imbalances, load variations,
and voltage distortions, to be dealt with, modeled as different signal-to-noise ratios (SNRs),
revealing the good robustness to noise of the proposed FDD approach. Adaptive thresholds
also made it possible to better deal with various fault situations, such as low-, medium-,
and high-impedance short-circuit faults.

The proposed robust FDD approach can be used to evaluate the stress to which the
circuit breakers are subjected, providing information to supervision- and condition-based
monitoring systems, in order to improve predictive and preventive maintenance strategies.

Some pointers for future work are (a) improve the performance of the proposed FDD
approach using optimization techniques, to compute tuning parameters and thresholds; (b)
estimate the short-circuit fault resistance; (c) develop an FDD approach to deal better with
high-impedance faults based on nonlinear deep-PCA; (d) better compare this robust FDD
approach with other FDD approaches, for the same big dataset, such as ML/AI approaches.
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