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Abstract: A lithium-ion battery–ultracapacitor hybrid energy storage system (HESS) has been recog-
nized as a viable solution to address the limitations of single battery energy sources in electric vehicles
(EVs), especially in urban driving conditions, owing to its complementary energy features. However,
an energy management strategy (EMS) is required for the optimal performance of the HESS. In this
paper, an EMS based on the particle swarm optimization (PSO) of the fuzzy logic controller (FLC) is
proposed. It aims to minimize battery current and power peak fluctuations, thereby enhancing its
capacity and lifespan, by optimizing the weights of formulated FLC rules using the PSO algorithm.
This paper utilizes the battery temperature as the cost function in the optimization problem of the PSO
due to the sensitivity of lithium-ion batteries (LIBs) to operating temperature variations compared
to ultracapacitors (UCs). An evaluation of optimized FLC using PSO and a developed EV model
is conducted under the Urban Dynamometer Driving Schedule (UDDS) and compared with the
unoptimized FLC. The result shows that 5.4% of the battery’s capacity was conserved at 25.5 ◦C,
which is the highest operating temperature attained under the proposed strategy.

Keywords: battery; electric vehicle; energy management strategies; fuzzy logic control; hybrid energy
storage system; particle swarm optimization

1. Introduction

Concerns over global warming, escalating fuel costs, and environmental consciousness,
coupled with depleting fossil fuels linked to conventional vehicles, demand a move towards
sustainable, environmentally friendly vehicles using clean energy. Thus, it is crucial to
find clean propulsion methods to sustain mobility benefits [1]. Using electric vehicles
(EVs) is a top solution to address the environmental challenges of conventional internal
combustion engine vehicles (ICEVs). EVs not only help reduce carbon emissions, but also
advance the goals of the Paris Agreement [2]. The energy storage system (ESS) is essential
for EVs, and lithium-ion batteries (LIBs) have become predominant. LIBs offer advantages
like high energy density, low self-discharge, absence of memory effect, high efficiency,
and longevity [3]. While LIBs offer many advantages, they have shortcomings like low
power density and limited life cycle. EVs need high energy during steady-state driving
and brief high peak power during acceleration and braking. In particular, subjecting LIBs
to frequent power surges and charging cycles degrades their lifespan and overall health [4].
Standard single-source LIBs in EVs cannot simultaneously meet high power and energy
demands without compromising on performance, range, or lifespan, making it challenging
for them to rival traditional combustion engine vehicles (ICEVs). To deliver high power
and reduce degradation, batteries are often oversized, leading to increased weight, size,
and cost.

Combining high-energy-density LIBs with high-power-density ultracapacitors (UCs)
in hybrid energy storage systems (HESSs) is a preferred solution over battery oversizing.
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UCs provide benefits like higher power density, faster charge/discharge rates, broader
temperature range, and extended lifespan, complementing batteries and fitting high-power
demands [5]. However, UCs have a lower energy density; combining LIBs and UCs would
harvest the advantages of both storage systems for EVs. In HESSs, UCs meet the high
power demands of EVs and buffer against rapid power changes due to their superior
power density over LIBs. While UCs are generally bulkier and costlier per energy unit
than LIBs for light-weight EVs, they are also ideal for applications like electric buses and
trucks where performance and durability outweigh size and cost concerns, especially in
frequent start–stop scenarios. The UC-LIB-based hybrid energy system is proposed and
investigated in [6] due to its simultaneous provision of high specific energy density and
high specific power density. Additionally, combining UCs with LIBs improves battery
lifespan by reducing peak power stresses, enhancing dynamic performance, and alleviating
thermal strain [7]. To fully utilize HESS’s capabilities, it is crucial to consider its topology,
which can be classified as passive, semi-active, and active HESS based on the DC/DC
converter number(s) and position within the HESS architecture [8]. From the standpoint
of stability, complexity, and controllability, the passive structure is the simplest way to
hybridize UC and LIB, with the UC and LIB directly linked in parallel. Here, the UC acts
as a power buffer, responding quickly to high-power demands and lessening strain on
the LIB. However, it lacks power distribution control, leading to suboptimal energy use of
UC. The semi-active topology allows control of one power source via a DC/DC converter,
but its energy efficiency is influenced by power demand dynamics. In contrast, the fully
active topology uses separate DC/DC converters for both power sources, offering full
power distribution control of the HESS and a variety of working modes to cater to diverse
power needs. Nevertheless, it incurs additional costs for the DC/DC converter, as well as
increases the size and weight of the HESS [9]. Compared to the passive and fully active
topologies, the semi-active topology offers a good trade-off between performance and cost.
It is flexible in terms of implementing various control strategies, which further adds to its
appeal. Due to these advantages, the semi-active HESS is expected to become the most
popular topology for HESS.

The main challenge in battery–UC HESS systems is the energy management strategy
(EMS). This involves optimally distributing power between the battery energy source
and the UC power source, which is crucial for the performance of the electric drivetrain
system. Energy management of HESS is a prominent research area in the EV domain,
which has been categorized by Ren et al. [9] into two groups: (1) rule-based EMSs and
(2) optimization-based EMSs. Rule-based control strategies offer fast, practical solutions
using rules, either deterministic or non-deterministic, that are predefined based on human
expertise and understanding of the system ’s behavior. They require the knowledge of
the driving cycle to find an optimal power distribution between the energy sources and
have received widespread utilization due to their simplicity, reliability, adaptability, and
straightforward implementation. These rule-based EMSs that have been applied in recent
years include wavelet-transform (WT) [10], filter-based control [11], logic threshold control
strategy, and fuzzy logic control (FLC) [12]. To ensure there is sufficient energy storage to
provide transient power during vehicle acceleration or hill climbing and also a sufficient
capacity for regenerative energy recovery, Shen et al. [5] used FLC to maintain the UC
SOC level, taking the battery SOC and UC SOC as inputs with power regulation coefficient
as output. An adaptive FLC is proposed in [13] to establish the power split between the
battery pack and UC pack, taking system efficiency, battery current variation, and UC SOC
difference as the EMS evaluation criteria. The proposed EMS’s benefit is that it does not
require prior driving cycle information.

Aside from rule-based EMSs, optimization-based EMSs aim to find the global optimal
solution by solving an optimization problem containing one or more objectives. Optimization
algorithms, also known as meta-heuristic algorithms (MHAs), have recently gained popularity
because of their capability to address optimization challenges. Examples of MHAs adopted in
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the EMS of a hybrid storage system of LIB and UC include the genetic algorithm (GA) [14],
particle swarm optimization algorithm (PSO) [15], and simulated annealing algorithm [16].

Researchers have proposed merging rule-based and optimization-based EMSs or utiliz-
ing multiple rule-based or multiple optimization-based EMSs for enhanced management of
the LIB-UC hybrid system. They also investigated the influence of different energy storage
systems’ operating behaviors on their performance. This approach includes the work of Da
silva et al. [17], who proposed an interactive adaptive GA combined with FLC for multi-
objective optimization and power control of a hybrid UC–battery system. This method
improved the driving range and extended the battery lifespan by 22.88%. Yu et al. [18]
and Zhang et al. [19] proposed an energy management approach that integrated wavelet
transformer (WT) and fuzzy control for hybrid supercapacitor–battery energy management
while focusing on the battery peak power and supercapacitor voltage. In [20], a threshold-
based PSO algorithm was developed for optimal power management under uncertain
driving conditions, considering the power of the battery. Furthermore, Seixas et al. [21]
used PSO to optimize FLC parameters for the hybrid energy storage system autonomy,
extending it by 66.67%, but the specific parameters that were tuned and their impacts were
not detailed. In the aforementioned literature, the effects of the operating temperature on
the LIB of a hybrid system were not investigated in the design of the energy management
system. While the operating temperature does not significantly impact UC due to its broad
temperature range, it is crucial for the operation of LIBs. Comprehensive research reveals
that, among other factors, operating temperature is the most sensitive factor accelerating
the degradation of the performance of LIBs. LIB physiochemical properties are heavily
influenced by temperature. Low temperatures impair LIBs’ performance, capacity, and lifes-
pan. Conversely, high temperatures accelerate battery degradation, with risks of thermal
runaways, especially during high-rate discharge, if not managed well. Therefore, an EMS
that considers the effect of operating temperature is necessary for optimal utilization of
the LIBs. In this light, this paper proposes a particle swarm-optimized fuzzy logic energy
management strategy for LIB-UC hybrid energy storage. The work in this paper makes a
significant contribution to the existing literature by introducing a novel approach to energy
management in hybrid energy storage systems for electric vehicles. By optimizing the
weights of fuzzy logic controller rules using PSO and considering the impact of operating
temperature, we enhanced system efficiency, extended battery lifespan, and advanced the
state of the art in electric vehicle technology. To the best of our knowledge, no studies have
developed an EMS for LIB-UC HESSs considering the impact of operation temperature
on the battery alone. Simulation of the proposed EMS is conducted using the General
Motor (GM) EV1 embedded in the Advanced Vehicle Simulator (ADVISOR) overlay in
MATLAB/Simulink.

The remainder of the paper is organized as follows. Section 2 describes the vehicle
dynamics, drivetrain components, and the battery–UC HESS model. Section 3 presents a
detailed development of the EMS for optimal power distribution, including the FLC and
its optimization. Section 4 presents a comparison between the optimized and unoptimized
EMS for the HESS power control. Finally, Section 5 provides a brief conclusion.

2. System Modeling

The EV model is divided into the drivetrain subsystem and the powertrain subsystem.
Drivetrain components include a drive cycle, vehicle dynamics, wheel and axle, driveline
converter, final drive, and gearbox. The battery pack, ultracapacitor pack, DC/DC con-
verter, motor/motor controller and energy management system make up the powertrain
subsystem. This section discusses only the powertrain components.

The EV design must satisfy performance criteria, including acceleration, top speed,
and gradient conditions. The power supplied to the vehicle from the powertrain is termed
tractive power, which is utilized to counteract specific forces: rolling resistance force,
aerodynamic force, gradient force, and acceleration force. These forces are represented
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mathematically in Equations (1) to (4), and the total traction force required by the power-
train is given in Equation (5) [22].

Fr = Crr Mg cos α (1)

where Fr represents the rolling resistance force (N), Crr the rolling coefficient, M the gross
vehicle weight, g the gravitational acceleration (m/s2), and α the inclination angle (degrees).

Fa =
1
2

ACdρv2 (2)

where Fa represents the aerodynamic force (N), A the frontal area, Cd the coefficient of drag,
ρ the air density (kg/m3), and v the velocity of the vehicle (m/s).

Fg = Mg sinα (3)

where Fg represents the gradient force (N).

Facc = Ma (4)

where Facc represents the acceleration force (N) and a the acceleration (m/s2).

Ft = Fa + Fg + Fr + Facc (5)

where Ft represents the total tractive forces (N). Important specifications of the GM EV1
adopted are displayed in Table 1. The driver’s throttle and brake commands are necessary
for a vehicle to accelerate or coast. To replicate these commands, standard driving cycles
have been established by the US Environmental Protection Agency (EPA) for fuel con-
sumption and emissions testing [23]. The Urban Dynamometer Driving Schedule (UDDS),
designed to mimic city driving conditions by simulating frequent stops and starts, low
speeds, and short trip lengths typical in urban environments, is adopted as the driving
cycle. Compared to other driving cycles such as US06 (designed to represent more aggres-
sive, high-speed driving conditions), Federal Test Procedure-75 (represent more varied city
driving), and Highway Fuel Economy Test (represent highway driving), UDDS challenges
the energy storage system of EVs with frequent start–stop scenarios that can be used to
study the dynamic response of the HESS in this paper.

Table 1. Vehicle specifications.

Vehicle Dynamics

Parameter Value

Frontal area, A (m2) 2.0379

Air density, ρ (kg/m3) 1.2

Drag coefficient, Cd 0.19

Gravitational acceleration, g (m/s2) 9.81

Total mass (kg) 1487

Vehicle wheelbase (m) 2.5121

Gear ratio 10

Number of gears 1

Rolling resistance coefficient, µrr 0.0068

2.1. Motor/Controller

The motor drive, also known as the motor/controller, translates speed and torque
demands into electric power requirements and vice versa. This paper uses the GM EV1
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traction motor, which is based on the Westinghouse 75 kW AC induction motor with exper-
imental parameter data embedded within ADVISOR. The motor/controller incorporates
the relationships between electric power and mechanical features such as speed, torque,
rotor inertia, and losses. A 2D lookup table, indexed by rotor speed and output torque,
is employed to manage power losses [24]. Table 2 contains the empirical details of the
induction motor adopted.

Table 2. Electric motor design parameters.

Traction Motor Drive

Parameters Value

Efficiency 0.9098

Mass of motor (kg) 91

Max. current (A) 480

Max. voltage (V) 120

Rated power (kW) 75

2.2. Battery Model

This paper uses a Saft LIB, composed of series and parallel cells that form modules
of the pack, with its main specifications listed in Table 3. The battery dynamics are de-
scribed using an internal resistance (Rint) model, where the battery pack is modeled as an
equivalent circuit consisting of an open-circuit voltage source (Uoc,BAT) in series with an
internal resistance (Ro) [16]. The mathematical formulations of the model are expressed
in Equations (6)–(9) [25]. Uoc,BAT and Ro are calculated as piecewise linear functions of the
SoC and module temperature. These functions are determined by using empirical data,
while, in the general case, the Uoc,BAT increases with increasing SoC, while Ro increases with
decreasing SoC. If given the battery current (IBAT), the battery terminal voltage (Ut), also
known as the bus voltage, can be expressed in Equation (6), while Equation (7) computes
the power of the battery.

Ut = Uoc,BAT − IBAT Ro (6)

PBAT = Ut IBAT (7)

IBAT =
UocBAT −

√
U2

ocBAT
− 4RoPBAT

2Ro
(8)

SoCBAT = SoCBAT,0 − 1
3600

∫ 1
AhBAT

dt

1 =

{
IBAT , IBAT ≥ 0
ηBAT , IBAT IBAT < 0

(9)

Table 3. Battery–UC design parameters.

Parameters/Values Battery Ultracapacitor

Minimum cell voltage (V) 2 0

Maximum cell voltage (V) 3.9 2.5

Nominal voltage of pack (V) 192 175

Cell test temp. (degree Celsius) 0–41 0–40

Nominal capacity 6 Ah 2500 F

Number of series modules 18 140

Number of parallel modules 2 4
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The quadratic expression in (8) is the battery’s current, with IBAT known; the SoC of
the battery (SoCBAT) is described in Equation (9), where (SoCBAT,0) is the initial SoC, IBAT
is the current in ampere-hour integration (AhBAT), and ηBAT is the battery’s efficiency.

2.3. Ultracapacitor Model

In this paper, the Maxwell PC2500 UC is used as the auxiliary energy storage device
and its characteristics are modeled using the Resistance Capacitance (RC) model. The mathe-
matical expressions describing the RC model are contained in Equations (10)–(13).
Equation (10) expresses the direct relationship between the UC’s voltage and SOC.

SoCUC =
Qremaining

Qtotal
=

C(Voc − Vmin)

C(Vmax − Vmin)
=

Voc − Vmin
Vmax − Vmin

(10)

IUC =
VOCUC −

√
V2

OCUC
− 4RPUC

2R
(11)

C =
Iuc

Vmax
(12)

R =
∆V
Iuc

(13)

where Qremaining is the remaining UC’s capacity, Qtotal is the total capacity of the UC,
VOCUC is the UC’s open circuit voltage, Vmin is the minimum voltage of the UC, Vmax is
the maximum voltage of the UC, and C is the UC’s capacity in ampere-hours. The UC’s
current is computed by its resistance (R), VOCUC, and actual power (PUC), as expressed in
Equation (11). Equation (12) is used in the UC model to determine the total capacitance
value, whereas the resistance of the UC is computed with Equation (13), where ∆V is the
change in voltage of the UC and Iuc is the current flowing through it.

2.4. DC/DC Converter Model

The DC/DC converter model is quite complicated and deploying it in energy management
can significantly increase the computational workload, so an efficient interpolation method
was used instead. The converter’s efficiency is stored in a look-up table that uses the voltage
ratio of the energy storage devices and the power request from the UC as inputs since it is
coupled to the UC. In a typical scenario, Figure 18 in [26] illustrates the efficiency of the DC/DC
conversion as a piecewise linear relationship with respect to the power and voltage ratio.

2.5. Hybrid Energy Storage System Formation

The semi-active configuration of HESS is adopted in the EV, as shown in Figure 1,
because it offers a good balance between costs and functionality, as reviewed in Section 1.
The powertrain components in the dark blue border square consist of the hybrid energy
storage system of the battery pack and ultracapacitor pack, DC/DC converter, and energy
management system. While the energy management system in the green background
square is directly connected to the battery pack, it is coupled to the ultracapacitor through
the DC/DC converter in the blue background square, depicting the semi-active architecture
of the hybrid system. The DC/DC converter is connected to the UC in the HESS topology
to handle voltage fluctuation during peak power delivery and recovery, alleviating the
current strain of the battery during cycling. The parameters’ value of battery and UC in the
HESS are listed in Table 3.



Energies 2024, 17, 2163 7 of 19

Figure 1. HESS architecture in the EV.

3. Energy Management Strategy

An EMS is required to effectively distribute power between two energy storage systems
and optimize energy resource utilization. In this paper, an EMS comprising a hybrid of
PSO and FLC is developed to efficiently regulate the power delivery of the HESS. This EMS
algorithm aims to reduce battery degradation, extend its lifespan, and meet the dynamic
state requirements of the vehicle. The section specifically focuses on describing the EMS for
the hybrid LIB-UC system.

3.1. Fuzzy Logic Control

FLC is commonly applied in complex systems characterized by significant uncertainty.
Its key advantage lies in its independence from a mathematical model or prior system
knowledge. The FLC is utilized for allocating power demand to energy storage devices in
the HESS. It operates based on the if–then rule, which comprises three stages: fuzzification,
fuzzy inference system (FIS) engine, and defuzzification. The fuzzification stage converts
the crisp inputs from numerical values into linguistic fuzzy variables, and a membership
function is applied to assign a degree of membership to numerical data for various linguistic
variables. The FIS defines the IF–THEN rules that link the inputs to the output, while
defuzzification involves converting linguistic variables of the output into numerical values
using a defuzzification method such as weighted sum, weighted average, or centroid.
Sugeno-type FIS is adopted with five inputs: power demand (Pdmd), normalized speed,
battery SOC (ess_SOC), battery temperature (ess_mod_temp), and UC SOC (ess2_SOC).
The membership functions of the input variables are depicted in Figure 2, while the output
membership functions are linear, which are the power distribution factor (K): Kbat and Kuc
for battery and UC, respectively. The battery’s workload is limited to providing average
power to mitigate the strain on it when there is a high demand for power, whereas the
UC is responsible for meeting peak power requirements and recuperating energy through
regeneration. The power allocation follows the set of equations expressed in (14). According
to (14), the percentage of power output by the LIB and UC is not fixed but follows the
dynamic operation of the drive cycle. However, the power supply by both energy storage
devices, which is essentially determined by the power distribution factor (Kbat and Kuc,
must meet the power demand of the vehicle.

Pdmd = Pbat + Puc (14)

Pbat = Pdmd × Kbat (15)

Puc = Pdmd × Kuc (16)

Kbat + Kuc = 1 (17)
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Figure 2. Fuzzy membership functions: (a) power demand (pdmd), (b) speed, (c) battery state of
charge (ess_SoC), (d) battery temperature (ess_mod_tmp), and (e) UC state of charge (ess2_SoC).

3.2. Particle Swarm Optimization

PSO is an iterative search algorithm that uses particles to explore a search space. Each
particle represents a candidate solution and moves based on its current position and velocity,
which are updated according to personal and global bests of the entire swarm, which guide
the particles towards the optimal solution. The velocity of a particle is influenced by both
its own experience (cognitive factor) and its neighbor’s experience (social factor). Typically,
when searching a target space with d dimensions, a population of n particles is created.
The position and velocity of particle (i) are represented in d-dimensional vectors, as in (18)
and (19), while the optimal positions sought by the ith particle and the whole swarm are
the individual extremum and global extremum, as expressed in Equations (20) and (21)
[27].

Xi = (xi1, xi2, xi3, . . . , xiD), i = 1, 2, 3, . . . , n (18)

Vi = (vi1, vi2, vi3, . . . , viD), i = 1, 2, 3, . . . , n (19)

Pb = (pi1, pi2, pi3, . . . , piD), i = 1, 2, 3, . . . , n. (20)

Gb = (pg1, pg2, pg3, . . . , pgD), i = 1, 2, 3, . . . , n. (21)

Vid = ωvid + c1 · rand(0, 1) · (Pid − Xid) + c2 · rand(0, 1) · (Pgd − Xid) (22)

xid = xid + vid (23)

Equation (22) explains how the velocity vector of the particle is updated, and it
involves three terms:

• The first term, ωvid, is the inertia term, which allows the particle to maintain its current
direction of movement.
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• The cognitive term, represented by c1 · rand(0, 1) · (pid − xid) in Equation (22), is
influenced by the particle’s individual best location and encourages it to move towards
that position.

• The third term is the social term, denoted by c2 · rand(0, 1) · (pgd − xid), which is
affected by the group’s global best location. This term influences the particle to move
towards the global best position.

c1 and c2 are acceleration coefficients that control the influence of the cognitive and
social terms on the particle’s movement. rand(0, 1) represents a random number between
0 and 1. Figure 3 portrays the workflow of the PSO algorithm. Equation (23) represents the
update of the particle’s position in the search space. It simply adds the updated velocity to
the current position.

Figure 3. Particle swarm optimization flowchart.

3.3. Optimization of FLC with PSO Considering Battery Temperature Effect

Despite the expertise of a specialist in designing FLC rules, the FLC may not function
optimally. Hence, PSO can serve as an intelligent search engine to optimize the FLC
parameters without the need for exhaustive trial and error methods by a control engineer.
The PSO optimization of FLC is achieved by considering the battery’s temperature as the
cost function of the optimization problem. The objective is to minimize battery degradation
in order to extend its lifespan. FLC performance depends on the weights of the crisp output,
as depicted in Equation (24).

n

∑
i=1

wizi (24)

where zi represents the crisp output of each rule and wi denotes the weight of the ith rule
of the fuzzy logic system. However, due to the involvement of a large number of decision
variables, the arbitrary selection of rule weights may lead to the inefficient operation of
the dual energy storage devices. To address this issue, this paper employs PSO to turn the
weights of the FLC using the cost function defined in (25).

J =
∫ tend

t=0
T dt (25)
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The equation J represents the objective to be minimized, where J is the cost function
and T is the temperature, while the definite integral ranges from 0 s to tend, which is the
end of the simulation. Among all inputs to the FLC, the temperature of the battery is
selected as the PSO cost function due to LIBs’ increased temperature sensitivity compared
to UC. The FLC is designed to maintain moderate battery temperature at low and high
temperatures to prevent an increase in internal resistance and thermal runaway, respectively.
Since the UC is rarely affected by temperature, power demand is channeled to it during
low- and high-temperature conditions. Implementation of the FLC optimization structure
in Figure 4 is achieved by following the following steps:

1. Initialize the algorithm by setting the number of iterations to 38, the number of
particles to 16, the maximum velocity to 0.5, and the minimum velocity to −0.5.

2. Generate particles with random positions and velocities within the defined search space.
3. Simulate the EV model from the MATLAB script containing the PSO algorithm.
4. Evaluate the fitness of individual particles by applying the fitness function.
5. Update the particle position and velocity based on the PSO algorithm. The position

update is based on the global and local best positions found so far, while the velocity
update is based on the current position and the previous velocity.

6. Evaluate the fitness of the new particles and update the global and local best positions.
7. Repeat steps 5 and 6 until a stopping criterion is met, such as the maximum number

of iterations or when the desired optimal fitness value is obtained.
8. Write the global best particle position as the weights to fuzzy rule sets.

In Appendixes A and B, the details of the fuzzy logic controller including the parameter
values, rules, and optimized weights are presented to provide clarity to the reader.

Figure 4. Optimized FLC structure.

4. Results and Analysis

This section introduces the simulation platform and explains the process of adjusting
parameter values. It presents the simulation results of the unoptimized and optimized
FLC EMSs, and provides a comparison between the two, demonstrating the success of
the proposed strategy in minimizing battery degradation through the optimization of the
LIB temperature.

4.1. Platform

The complicated nature of computing parameters for simulating a HESS composed of
LIB and UC necessitated the utilization of ADVISOR. ADVISOR is an open-source software
which operates within MATLAB/Simulink environment. It is a registered trademark of the
Alliance for Sustainable Energy, LLC, the manager and operator of the National Renewable
Energy Laboratory (NREL) for the United States of America Department of Energy. The
canonical version number 2003-00-r0116 is used for the rapid analysis of the performance
of the proposed energy management strategy of the hybrid energy system. Simulating
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this hybrid energy storage system in it presents a practical approach to test the proposed
EMS. In this paper, GM EV1 embedded within ADVISOR is used with all corresponding
parameter values, except for the ESS, which was replaced with LIB-UC HESS. Table 3 lists
the values of the different variables of the HESS. In order to guarantee sufficient space for
swift charging and discharging of the UC, its initial SOC (ess2_SOC) is set to 90%, while
ess_SOC is established at 80%. The UDDS drive cycle is employed as the driving cycle in
the simulation.

4.2. Simulation Results of Unoptimized EMS

In this case study, the GM EV1 is simulated without the FLC being optimized. Ac-
cording to Figure 5a, the HESS delivers the necessary power to the electric motor to propel
the vehicle. However, this comes at the cost of battery lifespan as the battery experiences
significant current fluctuations, peaking at 240.3A, as illustrated in Figure 6c. The battery
pack temperature is 31 ◦C due to these current spikes, whereas the temperature of UC,
as shown in Figure 6b, is 20.1 ◦C. Figure 6d indicates that the Depth of Discharge (DoD)
of the battery is 30.9%, while that of UC is 36%. SoC calculation of the UC is based on
its voltage; hence, the voltage in Figure 6e and SOC in Figure 6f for the UC exhibits a
strikingly similar pattern. Because the UC is assigned to supply peak power as well as
receive regenerative power, its fluctuation is more than that of the battery, as shown in
Figure 6e.

4.3. Simulation Results of Optimized EMS

In this scenario, the FLC is optimized using PSO and tested in the GM EV1. Figure 6a
indicates that the HESS efficiently supplies the required power to the electric motor, while
the UC retrieves the regeneration energy through the assistance of the EMS. Figure 6b
shows the effect of the optimization in reducing the battery’s temperature to 25 ◦C, which
leads to only four occurrences where the battery current exceeds100A, as depicted in
Figure 6c, with a maximum current of 116.9A for the battery, and 66.3A for the UC. The UC
compensates the constrained output power of the battery caused by optimization in order
to fulfill the driving profile of the vehicle. As a result, the DoD of the UC and battery at the
end of the trip are 47% and 26% for the UC and battery, as Figure 6d portrays, indicating
improved efficiency and longer battery life. Figure 6e depicts a voltage drop of 11% for the
battery, and the UC voltage decreases by 52% at the end of the trip. SoC variation of the
UC follows the same trend as its voltage due to their direct relationship.

4.4. Comparison of Optimized and Unoptimized EMSs

This section compares simulation results of battery pack variables obtained from
optimized and unoptimized FLC EMSs. The unoptimized FLC led to a higher battery
temperature, reaching 31 ◦C, while the optimized EMS resulted in a temperature of only
25.5 ◦C, representing an 18% reduction, as depicted in Figure 7. Reduction in the battery’s
temperature ensures safe operation and avoidance of fire incidence occasioned by thermal
runaway. Low temperatures impair LIBs’ performance, capacity, and lifespan. Conversely,
high temperatures accelerate battery degradation, with risks of thermal runaways, espe-
cially during high-rate discharge. Hence, a moderate temperature between 15 ◦C and
25 ◦C is suitable for optimal performance of the battery in operation. Furthermore, the use
of unoptimized FLC EMS led to a significant battery current magnitude, with a peak of
240 A. In contrast, the optimized FLC EMS reduced this by 51%, as Figure 8 reveals; this
relieves the battery’s high current stress, which lengthens its lifespan. Figure 9 depicts the
degradation of the battery as a measure of its capacity fade. It shows that the battery’s
capacity decreases by 50.9% at the completion of the driving period in the unoptimized
scenario and 45.5% in the optimized. This represents 5.4% capacity saved, leading to longer
life and reduced need for charging and replacement. Table 4 provides a brief summary of
the unoptimized and optimized EMSs for selected battery variables.
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(a) Power requested and power delivered.

(b) Temperature of battery and UC.

(c) Current of battery and UC.

(d) Battery and UC Depth of Discharge.

(e) Voltage of battery and UC.

(f) SoC of battery and UC.

Figure 5. Unoptimized EMS.
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Figure 6. Optimized EMS.
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Figure 7. Temperature difference between optimized and unoptimized EMSs.

Figure 8. Comparing current fluctuation of optimized and unoptimized EMSs.

Figure 9. Contrasting degradation of the battery in unoptimized and optimized scenarios.

Table 4. Summary of results for the battery

Battery Variable Unoptimized EMS Optimized EMS

Temperature 31 ◦C 25.5 ◦C

Peak current 240 A 116.3 A

Maximum power delivered 38.3 kW 21.1 kW

Capacity fade 50.9% 45.5%

5. Conclusions

In conclusion, a particle swarm-optimized fuzzy logic energy management of a LIB-UC
hybrid storage system for an EV was investigated. First, the GM EV1 power demand based
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on the UDDS driving cycle was extracted from the single LIB energy source. Subsequently,
considering the EV’s operational characteristics and power demand, fuzzy logic rules were
developed to distribute the required power between the LIB and UC simultaneously. Then,
to address the problem of battery degradation due to large current fluctuation, the PSO was
used to optimize the fuzzy logic weights, taking into consideration the battery’s operating
temperature as a cost function. The performance of the proposed EMS was assessed by
comparing it with an unoptimized FLC. Simulation results indicated that the battery’s
temperature was reduced from the initial temperature of 31 ◦C to 25.5 ◦C in the optimized
strategy. This led to a significant 51% reduction in peak current and a 5.4% improvement in
capacity fade/degradation. These findings demonstrate that the proposed EMS is efficient
in splitting the power request from the drivetrain and minimizing degradation, thereby
ensuring safe battery pack operation, reducing the risk of thermal runaway, minimizing
battery current stress, and increasing the battery’s lifespan. Overall, while the proposed
particle swarm-optimized fuzzy logic control of the hybrid LIB-UC energy storage system
offers numerous advantages in terms of efficient energy management, dynamic adaptation,
and temperature-aware optimization, it also presents challenges such as oversizing each
energy storage device and lack of adaptability to real-time driving data. These challenges
will be addressed in future studies to further improve the proposed energy management
strategy for electric vehicles.
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Appendix A. Fuzzy Logic Parameter Values

[System]
Name = fisEV_iter30
Type = sugeno
Version = 2.0
NumInputs = 5
NumOutputs = 2
NumRules = 37
AndMethod = prod
OrMethod = probor
ImpMethod = prod
AggMethod = sum
DefuzzMethod = wtsum
[Input1]
Name = Pdmd
Range = [−60 120]
NumMFs = 7
MF1 = ‘VNeg’:‘trimf’, [−60 −40 −20]
MF2 = ‘Neg’:‘trimf’, [−40 −20 0]
MF3 = ‘Zero’:‘trimf’, [−20 0 20]
MF4 = ‘Low’:‘trimf’, [0 20 40]
MF5 = ‘Mid’:‘trimf’, [20 40 60]
MF6 = ‘High’:‘trimf’, [40 60 80]
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MF7 = ‘Vhigh’:‘trapmf’, [60 80 100 120]
[Input2]
Name = ‘speed2’
Range = [0 1]
NumMFs = 4
MF1 = ‘zero’:‘trimf’, [−0.33 0 0.33]
MF2 = ‘low’:‘trimf’, [0 0.33 0.6667]
MF3 = ‘high’:‘trimf’, [0.33 0.6667 1]
MF4 = ‘max’:‘trimf’, [0.6667 1 1.32]
[Input3]
Name = ess_SOC
Range = [0 1]
NumMFs = 3
MF1 = ‘low’:‘trapmf’, [0 0.25 0.5 0.6]
MF2 = ‘mid’:‘trimf’, [0.5 0.6 0.75]
MF3 = ‘high’:‘trapmf’, [0.6 0.75 1 1.8]
[Input4]
Name = ‘ess_mod_tmp’
Range=[0 70]
NumMFs=3
MF1 = ‘LowT’:‘trapmf’, [−31.5 −10 15 20]
MF2 = ‘NormalT’:‘trapmf’, [15 20 30 35]
MF3 = ‘HightT’:‘trapmf’, [30 35 101.5 101.5]
[Input5]
Name=ess2_SOC
Range=[0 0.95]
NumMFs=3
MF1 = ‘low’:‘trapmf’, [−0.3895 −0.0855 0.2 0.3]
MF2 = ‘mid’:‘trapmf’, [0.2 0.3 0.75 0.8]
MF3 = ‘high’:‘trapmf’, [0.75 0.8 0.95 1.377]
[Output1]
Name = ‘Pbat’
Range=[0 1]
NumMFs=9
MF1 = ‘k1’:‘constant’, [0]
MF2 = ‘k2’:‘constant’, [0.2]
MF3 = ‘k3’:‘constant’, [0.3]
MF4 = ‘k4’:‘constant’, [0.4]
MF5 = ‘k5’:‘constant’, [0.5]
MF6 = ‘k6’:‘constant’, [0.6]
MF7 = ‘k7’:‘constant’, [0.7]
MF8 = ‘k8’:‘constant’, [0.8]
MF9 = ‘k9’:‘constant’, [1]
[Output2]
Name = ‘Puc’
Range=[0 1]
NumMFs=9
MF1 = ‘k1’:‘constant’, [0]
MF2 = ‘k2’:‘constant’, [0.2]
MF3 = ‘k3’:‘constant’, [0.3]
MF4 = ‘k4’:‘constant’, [0.4]
MF5 = ‘k5’:‘constant’, [0.5]
MF6 = ‘k6’:‘constant’, [0.6]
MF7 = ‘k7’:‘constant’, [0.7]
MF8 = ‘k8’:‘constant’, [0.8]
MF9 = ‘k9’:‘constant’, [1]
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Appendix B. Fuzzy Logic RULES

• If (Pdmd is Low) and (ess_SOC is mid) and (ess2_SOC is low) then (Pbat is k9)(Puc is
k1) (0.84454).

• If (Pdmd is low) and (ess_SOC is high) and (ess2_SOC is low) then (Pbat is k9)(Puc is
k1)(0.75).

• If (Pdmd is Mid) and (ess_SOC is mid) and (ess2_SOC is low) then (Pbat is k9)(Puc is
k1)(0.5).

• If (Pdmd is Mid) and (ess_SOC is high) and (ess2_SOC is low) then (Pbat is k9)(Puc is
k1)(0.25).

• If (Pdmd is Low) and (ess_SOC is mid) and (ess2_SOC is mid) then (Pbat is k9)(Puc is
k1)(0.0012992).

• If (Pdmd is Low) and (ess_SOC is high) and (ess2_SOC is mid) then (Pbat is k9)(Puc is
k1)(0.84458).

• If (Pdmd is Mid) and (ess_SOC is mid) and (ess2_S0C is mid) then (Pbat is k9)(Puc is
k1) (0.75).

• If (Pdmd is Mid) and (ess_SOC is high) and (ess2_SOC is mid) then (Pbat is k9)(Puc is
k1) (0.5).

• If (Pdmd is Low) and (ess_SOC is mid) and (ess2_SOC is high) then (Pbat is k9)(Puc is
k1)(0.25).

• If (Pdmd is Low) and (ess_SOC is high) and (ess2_SOC is high) then (Pbat is k9)(Puc
is k1)(0.0012992).

• If (Pdmd is Mid) and (ess_SOC is mid) and (ess2_SOC is high) then (Pbat is k9)(Puc is
k1)(0.0012992).

• If (Pdmd is Mid) and (ess_SOC is high) and (ess2_SOC is high) then (Pbat is k9)(Puc is
k1)(0.0012992).

• If (Pdmd is High) and (ess_SOC is mid) and (ess2_SOC is low) then (Pbat is k9)(Puc is
k1)(0.0012992).

• If (Pdmd is High) and (ess_SOC is low) and (ess2_SOC is low) then (Pbat is k9)(Puc is
k1)(0.36481).

• If (Pdmd is High) and (ess_SOC is high) and (ess2_SOC is low) then (Pbat is k9)(Puc
is k1)(0.36481).

• If (Pdmd is Vhigh) and (ess_SOC is mid) and (ess2_SOC is low) then (Pbat is k9)(Puc
is k1) (0.36481).

• If (Pdmd is Vhigh) and (ess_SOC is high) and (ess2_SOC is low) then (Pbat is k9)(Puc
is k1)(0.034294).

• If (Pdmd is High) and (ess2_SOC is mid) then (Pbat is k1)(Puc is k9)(1).
• If (Pdmd is Vhigh) and (ess2_SOC is mid) then (Pbat is k1)(Puc is k9)(1).
• If (Pdmd is High) and (ess2_SOC is high) then (Pbat is k1)(Puc is k9)(1).
• If (Pdmd is Vhigh) and (ess2_SOC is high) then (Pbat is k1)(Puc is k9)(1).
• If (Pdmd is VNeg) and (ess2_SOC is low) then (Pbat is k1)(Puc is k9)(1).
• If (Pdmd is Neg) and (ess2_SOC is low) then (Pbat is k1)(Puc is k9)(1).
• If (Pdmd is Zero) and (ess2_SOC is low) then (Pbat is k1)(Puc is k9)(1).
• If (Pdmd is VNeg) and (ess2_SOC is mid) then (Pbat is k1)(Puc is k9)(1).
• If (Pdmd is Neg) and (ess2_SOC is mid) then (Pbat is k1)(Puc is k9).
• If (Pdmd is Zero) and (ess2_SOC is mid) then (Pbat is k1)(Puc is k9)(1).
• If (Pdmd is VNeg) and (ess2_SOC is high) then (Pbat is k1)(Puc is k9)(1).
• If (Pdmd is Neg) and (ess2_SOC is high) then (Pbat is k1)(Puc is k9)(1).
• If (Pdmd is Zero) and (ess2_SOC is high) then (Pbat is k1)(Puc is k9)(1).
• If (Pdmd is High) and (speed2 is high) and (ess_SOC is low) and (ess_mod_tmp is

NormalT) and (ess2_SOC is high) then (Pbat is k1)(Puc is k9)(1).
• If (Pdmd is Low) and (speed2 is high) and (ess_SOC is high) and (ess_mod_tmp is

NormalT) and (ess2_SOC is high) then (Pbat is k7)(Puc is K3)(1).
• If (Pdmd is Low) and (speed2 is max) and (ess_SOC is high) and (ess_mod_tmp is

NormalT) and (ess2_SOC is high) then (Pbat is k7)(Puc is k3)(1).
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• If (Pdmd is Low) and (ess_SOC is low) then (Pbat is k3)(Puc is k7)(1).
• If (Pdmd is Mid) and (ess_SOC is low) then (Pbat is k1)(Puc is k9)(1).
• If (Pdmd is High) and (ess_SOC is low) then (Pbat is k1)(Puc is k9)(1).
• If (Pdmd is Vhigh) and (ess_SOC is low) then (Pbat is k1)(Puc is k9)(1).
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