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Abstract: Neutral-temperature district heating and cooling (NT-DHC) is a recent concept in the district
heating sector. The current literature does not directly address the ability to create comprehensive
master plans for NT-DHC systems and reliably model their performance. This research presents a
new approach for the evaluation and planning of NT-DHC systems. The methodology involves the
use of a knapsack optimization algorithm to perform a comprehensive analysis of the conditions
that make the NT-DHC solution competitive against individual heating and cooling technologies.
The algorithm determines the optimal combination of potential extensions that maximizes overall
economic value. The results of a case study, which was conducted in Italy, show that NT-DHC is more
suitable in dense urban areas, while air-to-water heat pumps are better suited for low heat density
zones. This methodology aims to reduce the risks associated with energy demand and provide more
certainty about which areas a network can expand into to be competitive. It is targeted at energy
planners, utilities experts, energy engineers, and district heating experts who require assistance and
guidance in the planning and early stages of designing a NT-DHC system. This method might enable
pre-feasibility studies and preliminary design to determine the opportunities and limitations of a
system of this kind from an economic and technological perspective.

Keywords: neutral-temperature district heating and cooling; techno-economic model; knapsack
algorithm; transition pathways; network expansion scenarios; energy planning

1. Introduction

Climate change is a major global issue that requires action from the international com-
munity to reduce its impact. Emissions of greenhouse gases (GHGs) from human activities
have been on the rise since the pre-industrial era, with particularly significant increases
in the 2000s, despite the implementation of various mitigation policies [1]. Electricity and
heat were the largest sources of CO2 emissions in 2021, accounting for 42% of the global
total [2]. Concerning emissions for electricity production only and their distribution among
consuming sectors, industry was the most significant emitter, followed by buildings.

District heating (DH) is a service that delivers heat to customers through a network of
pipes. It is based on utilizing nearby sources to fulfill heating requirements. DH has shown
better performance compared to individual heating and cooling (H&C) systems in several
contexts [3]. It is gaining recognition as a promising method for decreasing emissions and
energy consumption for heating and cooling buildings. With proper management, DH
systems can help lower GHG emissions and combat climate change.

Traditional DH systems (TDH) typically run at high temperatures (more than 80 ◦C),
leading to significant heat losses and the need for costly piping insulation. According
to Ref. [4], different DH generations can be identified. The first three generations of the
DH sector are characterized by the constant trend of lowering the temperature of the
distribution network, using lean materials and components, and utilizing prefabrication to
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minimize human resources. Fourth-generation DH (4GDH) is a concept that aims to address
the various challenges towards establishing a future H&C system that is not dependent
on fossil fuels. These challenges include providing low-temperature DH for space heating
(SH) and domestic hot water (DHW), reducing energy losses in the grid, incorporating
renewable energy sources and waste heat recycling, and having a well-planned investment
strategy for the transition to a sustainable energy system.

Neutral-temperature district heating and cooling (NT-DHC), often referred to as fifth-
generation district heating and cooling (5GDHC), is a more recent concept in the DH sector
that lowers temperatures to ambient levels (10–35 ◦C) [5] and introduces decentralized
heat pumps (HPs) to set the user-side temperature at the desired level. So far, most of these
systems have been established in Switzerland and Germany [6]. Their benefits include
their decrease of heat losses in the distribution network, their ability to directly utilize
easily available low-grade sources/sinks like aquifer wells and low-temperature waste heat
(WH), and their potential to provide both heating and cooling with the use of reversible
heat pumps. Currently, there is no agreement within the scientific community on whether
NT-DHC/5GDHC should be considered as part of 4GDH or as an independent solution
fully deserving the definition of a new generation [7–9]. In fact, on the one hand, NT-DHC
presents distinguishing features (the full decentralization of heat pumps, the inclusion of
cooling, stronger orientation to interoperability with the electric sector through the wider
use of heat pumps); on the other, NT-DHC is not expected to replace previous DH solutions
in all cases (e.g., when abundant high-temperature sources are present, as in the case of
waste-to-energy plants), a fact that does not fit well with the idea of a new generation.
Hence, even though the 5GDHC terminology is already somewhat established, we stick
here to the NT-DHC nomenclature already used by the authors of this paper in previous
publications [10].

Multiple EU-funded research projects in the DH sector have been carried out in recent
years. The FLEXYNETS project [5] was the first to study the benefits and limitations of
NT-DHC technology through simulations and laboratory tests. Real demonstrations of
these systems are being implemented in projects such as LIFE4HeatRecovery and RE-
WARDHeat [10–13]. The EU supports the DHC industry in general through projects such
as ReUseHeat, Upgrade DH, and COOL DH, among others [14–16].

Techno-economic analysis is an active research field in the heating sector, with many
ongoing studies aiming to improve efficiency and sustainability. The use of renewable en-
ergy sources like solar thermal and geothermal energy in conjunction with thermal storage
systems is one area of research that has gained a lot of attention in recent years [17–19].
Researchers are working on developing new technologies and improving existing ones
to make these systems more efficient and cost-effective. Research is also being conducted
on using advanced controls and automation systems to improve the heating systems’
efficiency [20–23]. These systems can optimize the operation of heating systems in real
time based on factors such as weather forecasts and occupancy patterns and can help
to reduce energy consumption and costs. Additionally, studies are also focused on de-
veloping models of DH systems that utilize multiple energy sources, as well as on their
optimization [22,24–27]. Techno-economic analyses of DH systems typically focus on topics
such as energy efficiency, environmental impact, and cost-effectiveness. Furthermore, a
techno-economic analysis may also consider other elements, such as technical feasibility,
market acceptance, engineering requirements, and financial considerations. This field is
rapidly evolving, with new technologies and systems constantly being developed and
tested as the need for efficient and sustainable heating systems increases.

A key distinction in the technical analysis of NT-DHC as compared to TDH systems is
the added complexity in modeling decentralized HPs and the impact of variable neutral-
temperature sources (NTS) on system efficiency [28,29]. Due to the simultaneous H&C
of thermal networks, new hydraulic concepts are required, affecting topology, materials,
and sizing [27,28,30,31]. The modeling of TDH systems involves three important blocks:
sources, heat distribution, and loads. Modeling NT-DHC networks requires a holistic
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approach since these three blocks cannot be addressed independently [32]. In terms of
economic analysis, NT-DHC systems may be more expensive than conventional systems
due to the need to invest in higher-grade technology, but they may also result in higher
energy savings over time [33].

The models and tools that assist decision makers in choosing solutions for the built
environment can be divided into two main categories according to their geographical
application, time resolution, and purpose: detailed analyses at the building/district level
and regional/national energy planning [34]. The first category of tools focuses on the
load forecasting and simulation of a given system for single-building, local community,
or tailor-made projects. They have a high temporal resolution and are more suitable for
design purposes. Examples of these kinds of tools are TRNSYS, HOMER, and ESP-r, among
others [35–37]. There are also detailed DH approaches, sometimes called physical mod-
els, suitable for network design. They provide high accuracy and may include features
such as topology optimization and the routing and sizing of the network, but solving a
very complex system can be computationally expensive due to the number of variables
required [38–42]. These models are generally not equipped with economic data and, there-
fore, are not adequate for a complete techno-economic assessment (TEA) when comparing
energy scenarios [7,42–44]. There are commercially available software programs, such as
Fluidit Heat, that possess GIS functionality and offer an intuitive interface for analyzing
complex DH systems. This facilitates the execution of business case studies, but such
software’s primary design is centered around TDH systems, rendering it inadequate for
NT-DHC analysis. The capability of the software to make comparisons between various
energy scenarios, including individual H&C systems, seems limited [45]. COMSOF Heat
is another software that incorporates design and business features [45,46]. This software
can analyze, and route optimize different network configurations. The current application
of this GIS-based software is restricted to a single system and does not include future
expansion planning. In the same way, the holistic models energyPRO and nPro do not sup-
port the analysis of future expansions into space [27,47–49]. The second category of tools
pertains to simulation models that evaluate the operation and performance of multi-sector
energy supply and demand systems, including heating, cooling, electricity, transport, and
water. Long-term energy planning models typically have a low temporal resolution and
lack the detail necessary to fully represent DH characteristics such as piping thermal losses,
pumping energy consumption, and hourly HP performance. Tools that fit in this category
are EnergyPLAN, LEAP, and Crystal City, though this list is not exhaustive [50–52]. In
the pre-feasibility phase of NT-DHC systems, it is necessary to use comprehensive models
that consider all aspects of the system, including the sources, network, and end-users, in
a holistic manner. The current literature does not adequately address the ability to create
comprehensive master plans for NT-DHC systems (even in TDH systems) and accurately
model their performance.

The main contribution of this work is a comprehensive method for evaluating the
techno-economic potential of NT-DHC systems in areas where district heating is not
currently present. This approach is tailored to the case of NT-DHC as it includes the
modeling of decentralized HP substations. Moreover, it allows for one to consider multiple
heat sources and, as a key feature, it provides an optimization procedure for selecting the
best system extension in space (where optimization relies on the “knapsack” algorithm).
The methodology includes a novel approach for grouping heat demand areas using a
clustering algorithm (so that these areas can be considered as the “items” for the “knapsack”,
with the latter being represented by the maximum load possibly covered by available
sources). An additional methodological innovation is a simplified model for quickly
estimating the length of the network connecting the identified heat areas (combining the
effective width approach with explicit distance calculations). Economic aspects are also
properly considered, both in terms of investment and operation costs. This methodology
can assist in the planning and initial design of a new type of DH system. To provide a
practical example of the method, the paper also presents a specific case study wherein the
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possible expansion of a small existing NT-DHC network located in a city in Northern Italy
was considered.

This work is structured as follows: Section 2 presents the methodology proposed
and the cross-verification carried out with a physical model and monitored data from the
real NT-DHC network used as a case study. Sections 3 and 4 present the methodology’s
application to the case study and results. Finally, Section 5 provides conclusions and
suggestions for further work.

2. Methods

The entire methodology is meant to be swift and user-friendly to support the prelimi-
nary phases of NT-DHC expansion planning. Consequently, priority is given to simplicity
rather than to high accuracy. The aim is to guide the expansion of the system by deter-
mining the most profitable areas through energy assessments and subsequent financial
calculations. As the spatial resolution used to analyze the NT-DHC network scenarios cor-
responds to the urban scale, a functional unit (FU) of 1 km2 of residential areas was defined
as default choice. A reference area of this size has already been investigated in previous
publications [53,54]. The overall model is composed of different modules (Figure 1). Three
main categories of inputs are used: heat load data (arranged in hectare-size cells), heat
source data (arranged in source groups), and techno-economic parameters (including, e.g.,
operating temperatures and energy prices). The logic flow is as follows: (1) heat load clus-
ters of sizes compatible with the available sources are identified; (2) an expansion iteration
for the first source group is started (articulated in four steps: (i) network length estimation,
(ii) yearly techno-economic analysis for each cluster, (iii) a comparison against individual
H&C solutions and the exclusion of non-feasible clusters, (iv) the optimized selection of
remaining clusters); and (3) the process is iterated until either the full FU is covered or
no other source groups are available. The output is an expansion plan in multiple phases
(given by the number of source groups), where each phase is defined by an optimal set of
clusters for the corresponding source group.
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yielding different planning phases.

The core of the model relies on the four steps outlined above (see the blocks inside the
dashed contour of Figure 1). The network length required to connect each cluster to the
considered sources is calculated by combining an effective width approach with a star-like
configuration for the network backbone. The yearly techno-economic analysis for each
connected cluster is carried out separately, estimating overall annualized H&C supply
costs (including investments). The resulting costs are compared with those estimated for
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individual systems (air-source heat pumps in the case study considered here), and clusters
non-competitive for NT-DHC (i.e., clusters where individual H&C solutions are more
economically convenient) are excluded. Among the remaining clusters, an optimizer selects
the most competitive ones up to a load size compatible with the given group of sources.

The various modules and sub-models used are described in the subsequent sections.
Section 2.1 details the data gathering process for load demand and the clustering methodol-
ogy in the preprocessing phase. The clustering process divides the study area into zones,
each within the user-defined sources’ capacity during peak conditions. Identifying po-
tential NTS and their spatial locations is also an essential input for the model. Based
on the spatial arrangement of the clusters, the model calculates the central point of each
cluster and each source. To calculate the total network length required to connect the
sources with the loads, these inputs are necessary in the network extension calculation
block. The technical analysis focuses on overall results and avoids detailed network path
evaluations, greatly simplifying calculations by relying on approximate indicators for
parameters such as overall pipe length, pipe–ground heat exchange efficiency, pumping
energy consumption, etc. The model then calculates the techno-economic viability of each
potential expansion by determining the H&C network supply costs and revenues. The
net present value (NPV) is calculated as a measure of value. A cost comparison with the
business-as-usual case (BaU) of using individual H&C technologies is also performed. In
Sections 2.2 and 2.3, the network model and techno-economic assessment are presented.
Section 2.4 explains the optimization method and its application to the NT-DHC investment
allocation problem. The process is iterative, considering a limited source capacity in each
iteration and identifying the optimal subset of loads to join the network. This process can
be repeated until all loads are considered.

2.1. Loads Analysis and Clustering
2.1.1. Clustering

The methodology was developed to use load data that are open and accessible to
ensure it is broadly applicable. For this purpose, we chose to use the free online database
of the Hotmaps project, developed for the planning and mapping of H&C systems for
the EU28 countries [55]. It provides a spatial resolution of 100 m × 100 m, offering a
satisfactory granularity level for this type of analysis and avoiding the complications and
the computational burden of dealing with single buildings.

In contrast to conventional district heating, NT-DHC systems often rely on sources
with limited capacity, sometimes less than 1 MW. Therefore, the assumption is that it is
unlikely for a source to satisfy the H&C needs of an entire city or even of the FU defined
in this approach. At the same time, the size of the smallest considered source somehow
sets the granularity threshold for load aggregation. Therefore, it is useful to identify the
communities to be served so that they can be provided with thermal energy during peak
periods. A procedure was hence developed to group the aforementioned hectare-size
cells into larger clusters, with the constraint that each cluster does not exceed the size of
the smallest considered source. For computational efficiency, provided this constraint is
fulfilled, minimizing the number of clusters is clearly desirable.

A phenomenological approach based on clustering techniques was hence chosen for
this step. Clustering is a machine learning process that aggregates similar data points
into the same cluster and separates less similar points into different clusters. The python
scikit-learn library [56] provides various clustering algorithms to perform this task. No
single best clustering algorithm exists for all cases. Here, the appropriate number or size
of clusters depends on the capacity restrictions mentioned previously. A few clustering
algorithms accepting the number of clusters as an input were compared, in particular the
K-Means, the Spectral Clustering, and the Gaussian mixture methods. Each of them was
tested in an iterative way, starting with the trivial case of a single cluster and progressively
increasing the number of clusters until the constraint was met.
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The Spectral Clustering method provided satisfactory results (see Section 2.3 for an
example), yielding more even-sized clusters than the two other algorithms and showing
the highest computational efficiency for the considered case.

Special buildings (SBs), including commercial buildings, public buildings, and schools,
are also potential candidates for connection to the network, distinct from residential areas
due to their different daily and seasonal H&C profiles.

2.1.2. Space Heating and Domestic Hot Water

The determination of the space heating profile is performed using the heating degree
days (HDD) method, which is widely employed in the energy field. This method quantifies
the thermal heat required for a specific building and climate in terms of both magnitude
(in degrees) and duration (in hours) relative to the average daily outdoor temperature
(Tamb). The space heating hourly profile (Eth,sh) is established by setting a base temperature
(Tb−heat), which is set to 15 ◦C by default, reflecting the average European base tempera-
ture [57], but can be customized as desired. The calculation is carried out daily and then
distributed on an hourly basis. Then, for day j and hour h:

Eth, sh(j, h) = E%sh ×

(
Tb−heat − Tamb,j

)
∑365

i=1(Tb−heat − Tamb,i)
× fh, Tamb,j < Tb−heat, (1)

where fh is the share for hour h.
The energy share required for space heating (E%sh) is determined by building energy

requirements and the European climatic zone. This term, retrieved from Hotmaps data (see
previous section), depends on the size of the building area in the cluster. The customization
of this value is made possible through the utilization of data on the heating, cooling,
and domestic hot water (DHW) consumption of buildings in various European climates,
as presented in reference [58]. The variation in energy demand for DHW is constant
throughout the year and is not dependent on weather conditions. To obtain the DHW
hourly profile, the daily demand is evenly spread across the year and multiplied by a
random hourly profile. This profile can be tailored to the specific needs of the user using
statistical means in a free software package.

2.2. Network Model

The aggregate approach developed by Persson [59] is a useful method for calculating
the length of a distribution network. This approach takes into consideration its spatial and
heat density limitations.

The network model simplifies the representation of the network length without incor-
porating detailed pipe routing information. By identifying the sources and their geographi-
cal locations, the model calculates the network length required for connection. The Virtual
Source Point (VSP) is determined as the geometric center of a set of finite points, and the
total network length is calculated as the sum of Euclidean distances between each source
and the VSP. This investment cost (also depending on source power through pipe sizing)
is considered a fixed cost (so that the sink distance can be later calculated only from the
VSP) and is equal in all expansion scenarios (see Section 2.3.2 for further details on network
investment costs).

The model estimates the length of the network by considering both geographical
factors and the urban structure. The inter-distance (network backbone), connecting a
cluster and the VSP, is estimated based on the haversine distance (based on geographic
coordinates) between the VSP and the cluster’s centroid. The intra-distance (service pipes)
within the cluster’s area is estimated through the effective width approach [59], considering
urbanistic parameters such as the land and building areas, as available in the Hotmaps
database. By combining both position-based and density-based calculations, the model
balances the representation of both the urban environment and the distance-related factors
while avoiding the complexity of a full network geometry.



Energies 2024, 17, 2159 7 of 19

The overall network length for a given configuration (i.e., a given selection of con-
nected clusters) is hence given by the sum of the length of the inter-cluster network (the
backbone) and the length of the intra-cluster networks (the distribution networks within
each cluster):

Lntw = Linter + Lintra . (2)

In turn, the inter-cluster network length is given by the sum of the connection lengths
(calculated as haversine distance) between the VSP and the considered clusters and sources:

Linter = ∑j LVSP,j , (3)

where LVSP,j is the distance between the VSP and the j-th cluster/source, while the intra-
cluster network length is given by the sum of the distribution network lengths within
each cluster:

Lintra = ∑j

Aland,j

wj
, (4)

where Aland,j is the land area of the j-th cluster, and wj is its effective width. In general, the
effective width is defined as w = w0 p−α, where p is the plot ratio, i.e., the ratio between the
floor area A f loor of all buildings and the considered land area Aland; the coefficient w0 is
the reference effective width for p = 1; and the exponent α determines the effective width
decay with the increasing plot ratio (i.e., building density). Ref. [59], based on a statistical
analysis of some cities with widely developed DH systems, proposes the values of w0 = 61.8
and α = 0.15. These are used as default values in the model, though it is worth pointing out
that these parameters are expected to exhibit a non-negligible variability depending on the
urban context.

The star-like calculation in the inter-distance estimation tends to overestimate the
backbone length, as a real network would typically use existing pipes to reach nearby
clusters rather than constructing a new route for distant clusters. This approximation is
only considered reliable if the closest clusters are connected. The chosen clustering method
aims to minimize this by producing the largest possible clusters, resulting in a small number
of clusters and limiting length overestimation. Moreover, this effect is counterbalanced by
the length underestimation given by the chosen as-the-crow-flies distance measurement (in
reality, pipes follow street paths and hence give rise to so-called taxicab geometry lengths
according to the typical rectangular street grid occurring in many cities).

2.3. Techno-Economic Model

The techno-economic model (TEM) employed in this research (see the top-right box
within the dashed contour in Figure 1) is based on the methodology of an Excel tool
developed in the FLEXYNETS project [5]. The aim of this tool was to conduct feasibility
studies on the implementation of the NT-DHC concept under different conditions. In the
next subsections, the key equations used to determine the costs and benefits of the NT-DHC
solution are described.

2.3.1. NT-DHC Performance

The performance of the NT-DHC system is evaluated by considering the energy
balance between the sources and loads, including both heating and cooling supply. The
calculation is performed for each potential cluster or SB in the proposed new method.

The temperature delivered to the buildings for space heating (TSH) is calculated
using a climatic curve which considers the relationship between the required heating level
and the outdoor temperature. The desired temperature range is set based on minimum
(Tamb,min) and maximum (Tamb,max) outdoor temperatures, with minimum (TSH,min) and
maximum (TSH,max) SH supply temperatures being reached accordingly. Within the range
Tamb,min ≤ Tamb ≤ Tamb,max, the climatic curve is then given by the following equation
(linear in Tamb):
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TSH(Tamb) = TSH,max −
TSH,max − TSH,min

Tamb,max − Tamb,min
(Tamb − Tamb,min), (5)

while TSH = TSH,max for Tamb ≤ Tamb,min, and TSH = TSH,min for Tamb ≥ Tamb,min.
The temperature for DHW (TDHW) is assumed to be 55 ◦C. Exploiting the demand

profiles described in Section 2.1.2 (HDD distribution for SH and constant distribution for
DHW), a single effective temperature for users is calculated as the weighted average of the
SH and DWH temperatures. In this way, a single outlet temperature profile can be assigned
to the condenser side of decentralized HPs. Figure 2 shows an example of the monthly
average pattern for the resulting curve. Depending on the case, it should be adjusted based
on the specific climate conditions affecting the energy needed for SH, ambient temperature,
and building setpoints (TSH,min and TSH,max).

Energies 2024, 17, x FOR PEER REVIEW  8  of  21 
 

 

2.3. Techno-Economic Model 

The techno-economic model (TEM) employed in this research (see the top-right box 

within  the dashed  contour  in Figure  1)  is based on  the methodology of  an Excel  tool 

developed in the FLEXYNETS project [5]. The aim of this tool was to conduct feasibility 

studies on the implementation of the NT-DHC concept under different conditions. In the 

next subsections, the key equations used to determine the costs and benefits of the NT-

DHC solution are described. 

2.3.1. NT-DHC Performance 

The performance  of  the NT-DHC  system  is  evaluated  by  considering  the  energy 

balance between the sources and loads, including both heating and cooling supply. The 

calculation is performed for each potential cluster or SB in the proposed new method. 

The temperature delivered to the buildings for space heating (𝑇 ) is calculated using 

a climatic curve which considers the relationship between the required heating level and 

the  outdoor  temperature.  The  desired  temperature  range  is  set  based  on minimum 

(𝑇 , ) and maximum (𝑇 , ) outdoor temperatures, with minimum (𝑇 , ) and 

maximum (𝑇 , ) SH supply temperatures being reached accordingly. Within the range 

𝑇 , 𝑇 𝑇 ,  ,  the  climatic  curve  is  then given by  the  following equation 

(linear in  𝑇 : 

𝑇 𝑇 𝑇 ,  
𝑇 , 𝑇 ,

𝑇 , 𝑇 ,
𝑇 𝑇 , ,  (5) 

while  𝑇 𝑇 ,   for  𝑇 𝑇 , , and  𝑇 𝑇 ,   for  𝑇 𝑇 , . 

The temperature for DHW (𝑇 ) is assumed to be 55 °C. Exploiting the demand 

profiles described in Section 2.1.2 (HDD distribution for SH and constant distribution for 

DHW), a single effective temperature for users is calculated as the weighted average of 

the SH and DWH temperatures. In this way, a single outlet temperature profile can be 

assigned to the condenser side of decentralized HPs. Figure 2 shows an example of the 

monthly  average pattern  for  the  resulting  curve. Depending on  the  case,  it  should be 

adjusted based on  the  specific  climate  conditions  affecting  the  energy needed  for SH, 

ambient temperature, and building setpoints (𝑇 ,   and  𝑇 , . 

 

Figure 2. Example of the effective user temperature assumed by the model (green curve), valid for 

the  case  study  described  below.  This  corresponds  to  the  outlet  temperature  assigned  to  the 

condenser side of decentralized heat pumps. This effective temperature is calculated as the weighted 

monthly average of SH and DHW temperatures (blue and red curves, respectively). 

The  HPs  located  at  the  users’  substations  operate  in  parallel,  with  a  variable 

performance based on the network and load conditions. They are modeled in an aggregate 

Figure 2. Example of the effective user temperature assumed by the model (green curve), valid for
the case study described below. This corresponds to the outlet temperature assigned to the condenser
side of decentralized heat pumps. This effective temperature is calculated as the weighted monthly
average of SH and DHW temperatures (blue and red curves, respectively).

The HPs located at the users’ substations operate in parallel, with a variable perfor-
mance based on the network and load conditions. They are modeled in an aggregate
manner, allowing for a quick estimation of a large number of users. Equation (6), reported
below, was selected from reference [60] to represent a simplified understanding of the
performance of the HP pool. This coefficient of performance (COP) function is dependent
on the outlet temperature at the evaporators of the heat pumps (Te,o), which varies based
on the temperatures of the available sources, and on the required temperature delivered
to the users at the outlet of the heat pumps’ condensers (Tc,o). Additionally, a correction
factor (ηCF) was included in the formula to account for inefficiencies in the system that are
beyond the scope of the analysis. One then has the following:

COP = ηm(COPC − 1) + 1, (6)

where COPC = Tc/(Tc − Te) is the (temperature-dependent) Carnot COP, expressed as a
function of the condenser Tc = Tc,o + ∆THX and evaporator Te = Te,o − ∆THX refrigerant
temperatures, which, in turn, are estimated from the external fluid outlet temperatures
through the heat exchanger temperature drop ∆THX , assumed to be equal for the two cases.
Moreover, ηm can be interpreted as the compressor efficiency, a parameter varying due to
multiple factors such as the HP model, size, and operating conditions. For a given HP, it is
possible to estimate both ηm and ∆THX by fitting the above equations to datasheet values.
Typical orders of magnitude are ηm ≃ 0.5 and ∆THX ≃ 2.5 K. For calculations in cooling
mode, the energy efficiency ratio EER = COP − 1 is used.
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The above formulas are mainly conceived to describe the HP operation only. In user
substations, various other effects, like thermal losses in pipes and buffers or pumping
consumption on the users’ side, take place. Moreover, differences in actual and datasheet
HP performance, losses from HPs’ on/off cycles, inaccuracies in the climatic curve, and
measurement uncertainty play a role when comparing with real data. To include these
effects, the model includes a calibration factor ηCF, which is used to multiply the above
performance functions. In the absence of further data, the default value ηCF = 1 can
be used.

2.3.2. Net Present Value

Instead of using the common levelized cost of heat method utilized in other DH studies,
here, the economic feasibility of a NT-DHC project is measured through the evaluation
of the total net present value (NPV) of each network extension. Since NT-DHC systems
can provide simultaneous H&C through the same network, this choice avoids the issue of
deciding a cost allocation between the two services (possibly introducing separate levelized
costs of heating and cooling), which would otherwise complicate comparisons among
different extension options.

The NPV is calculated as the difference between the present value of the future cash
flows from the H&C sales of the NT-DHC operation and the initial investment costs. Here,
r is the required rate of return, and N is the period in years. The discount rate is company-
specific, since it depends on how the funding is obtained. Generally, it is based on investors’
expectations of return, or borrowing costs. The default rate of return in this assessment is
assumed to be 3% in the model. In the DHC sector, the most common business models are
those owned completely by public entities, which account for relatively low rates [61].

The advantages of using NPV as a financial indicator compared to others include the
fact that it accounts for the time value of money, it is additive (the total NPV of multiple
projects is the sum of the corresponding NPVs), and it constitutes a fast and easy metric
for comparing an initial investment against the present value of the expected returns. This
indicator is calculated for each potential extension scenario as follows:

NPV(r, N) =
N

∑
n=1

(pheatEth,h + pcoolEth,c) finc + C f ix − CNT−DHC

(1 + r)n − INT−DHC, (7)

where pheat and pcool are the H&C prices for the services sold through the NT-DHC network,
Eth,h and Eth,c are the amounts of yearly H&C energy delivered to the network users (herein
assumed to be constant along the project horizon), finc is a possible incentive factor given
by a government or utility company (the default value is assumed to be 1), C f ix is the fixed
operation and maintenance fee, CNT−DHC is the total annual cost of NT-DHC operation,
and INT−DHC are the NT-DHC investments.

The operating costs of a NT-DHC solution (CNT−DHC) is, in turn, subdivided into
three components: operational expenses (OPEX), the fixed operating and maintenance
costs of reversible HPs (OM), and carbon emission costs (Ctax):

CNT−DHC = OPEX + OM + Ctax. (8)

Here, the OPEX of a NT-DHC system includes all variable costs incurred by the
network manager. This includes the cost of electricity used by the heat pumps; any auxiliary
systems, such as auxiliary heaters, chillers, or cooling towers; pumping consumption costs;
and the cost of any waste heat (WH) sources. By default, the simulation assumes that WH
recovery is free; however, the method allows the user to assign a cost to this item to explore
different business models. One then has the following:

OPEX = Eel,HP pel,ind + ∑j Eth,WH,j pWH,j + ∑j Eth,aux,j
p f uel,j

ηtech,j
, (9)
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where Eel,HP is the HP electricity consumption in H&C mode, pel,ind is the industrial elec-
tricity price (typically different from the residential one, used in calculations for individual
technologies, see below), Eth,WH,j is the heat supplied to the network by the j-th WH source,
pWH,j is the corresponding price (possibly zero), Eth,aux,j is the energy produced/absorbed
by the j-th auxiliary system, and ηtech,j and p f uel,j are the efficiencies and the fuel prices of
the latter, respectively.

OM includes all costs independent of the operation of the heating system, such as
service agreements, spare parts, and insurance. The method relies on the cost values
obtained by fitting the HPs’ data from the Danish Energy Agency database [62]. Finally,
Ctax considers the potential future taxation on carbon emissions and the expected impact
on the final customer. This cost is assessed based on the estimated carbon emissions and is
assumed to be either directly or indirectly paid by the customer. For HPs, it can be written
as follows:

Ctax = ctax f em, elEel,HP, (10)

where ctax is the carbon tax, and fem,el is the electricity emission factor. Similar terms are
added for auxiliary systems if they are operating.

The investments required for the NT-DHC system (INT−DHC) include the network
costs (Intw), the reversible heat pump substations (IHPs), and the heat recovery equipment
at the production sites (Isrcs). Intw is determined by factors such as its length, diameter, and
the materials used. The distribution pipes consist of six different categories of pipes with
varying diameters, and the proportion of each type is determined based on the maximum
diameter required in the network and is set based on standard network configurations.
The network pipe composition, default scaling factors, and piping prices are based on
information collected in [63]. The investment in the network backbone (Iinter) also consid-
ers the maximum diameter needed and is designed to handle the peak conditions. See
Equations (11)–(13):

Intw = Iinter + Iintra, (11)

Iinter = Linter ppipe(Dmax), (12)

Iintra = Lintra∑6
i=1 sintra(Di)ppipe(Di), (13)

Di = Dmax
√

SFi, (14)

where Di is the diameter of the i-th pipe category (6 categories are considered according
to Table 1), SFi is a corresponding scaling factor (originally calculated from cross-section
data and, therefore, put under square root for diameter calculation), Dmax is the maximum
pipe diameter (based on inter-network branch sizing), sintra is the share of intra-network
length with pipes with diameter D, and ppipe(Di) is the specific (per unit of trench length)
pipe cost, including pipe, excavation, and installation costs. The latter depends on pipe
diameter, pipe type (insulation series), and district type (city center typically has higher
installation costs). The model includes a default database taken from [63].

Table 1. Default distribution of pipes among 6 possible categories and corresponding scaling factors
according to [63].

Pipe Category Length Share Scaling Factor

1 43% 0.025
2 24% 0.043
3 18% 0.109
4 8% 0.244
5 4% 0.665
6 3% 1.000 (i.e., D6 = Dmax )

The feasibility of the NT-DHC solution is evaluated in comparison to the BaU cases,
which include the use of reversible air-to-water heat pumps (A/W HPs) and individual
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gas boilers with split cooling units (individual H&C scenario). The emissions from the
individual gas boilers are accounted for using the corresponding emission factor ( fem, gas).
The carbon emission costs are calculated based on the energy consumption using equations
similar to Equation (10).

A case study (see below) was evaluated using the methodology outlined above. The
breakdown of revenues and expenses for each potential network extension scenario is
illustrated as an example in Figure 3b.

Energies 2024, 17, x FOR PEER REVIEW  11  of  21 
 

 

𝐼 𝐿 𝑠 𝐷  𝑝 𝐷 ,  (13) 

𝐷 𝐷 𝑆𝐹 ,  (14) 

where 𝐷   is the diameter of the  𝑖-th pipe category (6 categories are considered according to 
Table 1),  𝑆𝐹   is a corresponding scaling factor (originally calculated from cross-section data 
and, therefore, put under square root for diameter calculation), 𝐷   is the maximum pipe 

diameter (based on inter-network branch sizing),  𝑠   is the share of intra-network length 

with pipes with diameter 𝐷, and  𝑝 𝐷   is the specific (per unit of trench length) pipe 

cost, including pipe, excavation, and installation costs. The latter depends on pipe diameter, 

pipe type (insulation series), and district type (city center typically has higher installation 

costs). The model includes a default database taken from [63]. 

Table 1. Default distribution of pipes among 6 possible categories and corresponding scaling factors 

according to [63]. 

Pipe Category  Length Share  Scaling Factor   

1  43%  0.025 

2  24%  0.043 

3  18%  0.109 

4  8%  0.244 

5  4%  0.665 

6  3%  1.000 (i.e., 𝐷 𝐷 ) 

The feasibility of the NT-DHC solution is evaluated in comparison to the BaU cases, 

which include the use of reversible air-to-water heat pumps (A/W HPs) and individual 

gas boilers with split cooling units  (individual H&C scenario). The emissions  from  the 

individual gas boilers are accounted for using the corresponding emission factor (𝑓 , ). 

The  carbon  emission  costs  are  calculated  based  on  the  energy  consumption  using 

equations similar to Equation (10). 

A case study (see below) was evaluated using the methodology outlined above. The 

breakdown of  revenues and expenses  for each potential network extension  scenario  is 

illustrated as an example in Figure 3b. 

 

 

(a)  (b) 

Figure 3. (a) The clustering method applied to the case study. The inputs are the latitude, longitude,
and heat density of each city hectare. (b) Annual costs and revenues per candidate. The difference
between the green line and the bars represents the net economic margin per year (EUR/y).

2.4. Optimization

This section describes how the model uses the knapsack approach for making invest-
ment decisions in potential network extensions where there is a limited number of WH
sources and loads, each with a defined maximum thermal power (in MW) and economic
value (in EUR, as calculated using the estimated NPV described in Section 2.3.2).

The standard knapsack problem (KP) is the so-called 0–1 knapsack problem, which
consists of identifying a subset among n items, each with a weight (w) and a value (v), so
that the overall value of the subset is maximized and a maximum weight W (which can be
interpreted as the weight capacity of a knapsack) is not exceeded. Each of the n possible
items is either included (1) or not (0), which can be represented by the indicator function
x of the subset. Mathematically, given a set of n items (labeled from 1 to n), each with a
weight wi and a value vi, along with a maximum weight capacity W, this can be written as:

maximize∑n
i=1 vixi, n items, (15)

subject to ∑n
i=1 wixi ≤ W and xi ∈ {0, 1}. In the model, the evaluation is limited to

items that add value to the overall knapsack (only those extensions whose NPV has a
positive outcome):

vi > 0(i = 1, . . . , n). (16)

Finally, based on the clustering process described in Section 2.1.1, the items must be
smaller than the knapsack to avoid trivial solutions:

wi < W(i = 1, . . . , n). (17)
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The KP is considered to be NP and a hard optimization problem [64]. A trivial attempt
to solve it would be to make an exhaustive search of all 2n possible subsets of n items. For
instance, if there are 60 items, it would take more than 30 years to complete the search at a
rate of 1 billion vectors per second. This is because the number of combinations doubles
with each additional item. The model hence exploits the dynamic programming approach
introduced by Bellman [65], which offers a more efficient solution with a time complexity
of O(nW) compared to O(2n) for a brute force approach. Its implementation requires
W to be an integer, which can be easily enforced by properly discretizing/rounding the
“weight” value.

The computational effort required to solve the network extension problem depends on
the number of periods selected and the number of items to optimize. The evaluation of the
NPV of each item is linear (it takes approximately 0.2 s using the current non-optimized
TEM version). Once the value of each item is determined, the average time required to
solve the KP is 0.05 s.

2.5. TEM Dynamic Performance

The TEM outputs were cross-checked with a more detailed physical model that takes
into account the thermal and hydraulic characteristics of the network [11]. The original
Excel tool of [5,63] was modified to enhance its flexibility by converting it into a Python
implementation. The lumped approach was maintained, but it was enhanced with the
ability to conduct hourly analysis over the course of a full year (in [63], a time-slice ap-
proach based on a single representative day for each month was used). This upgrade also
facilitated the integration of a basic storage modeling component. Figure 4 illustrates some
representative results, considering the presence of cooling. The figure shows the dynamic
system performance over the course of a week in both winter and summer, highlighting
the importance of the variable network temperature and the source–load temperature
difference in determining the overall efficiency of the system.
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Figure 4. Example of energy balances calculated by the techno-economic model for the case study
considered below. (a) Behavior of a representative winter week. First panel from top: load power
(red/blue: heating and cooling loads; solid/dashed: gross/net values, i.e., user/network side; green:
overall net load). Second panel from top: source power (red areas: waste heat; orange areas: aquifer
wells; when visible, individual curves are the same as in the top panel). One can recognize the five
working days when WH is available and the weekend when aquifer wells are exploited. Lowest
panels: operating temperatures and COP values according to axis and legend. A drop in COP is
visible in the weekend due to the lower source temperature provided by the aquifer wells with
respect to WH. (b) Behavior of a representative summer week.

The validity of the lumped model was then evaluated through a comparison with
real data collected from a NT-DHC network in Ospitaletto, Italy. Hourly data from 2020,
which included temperature and flow rate measurements, and weekly/biweekly data from
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2019 were made available by the network operator. The results showed that the model
provides the proper order of magnitude for various values, such as seasonal COP (SCOP),
seasonal performance factor (SPF), and thermal losses [12]. However, to achieve a good
agreement between the model and real data (a few percent difference in the most important
indicators), two phenomenological coefficients were calibrated (the substation calibration
factor defined above and a calibration factor related to thermal losses to the ground). It
was concluded that an aggregate approach is appropriate for a small network like the one
in Ospitaletto, as most deviations between the non-calibrated model and real data can be
explained by physical details unrelated to user granularity.

3. Case Study

In this section, the method from the previous section is applied to the Ospitaletto
case study. The different types of NTS within the municipality were identified through
manual analysis to provide inputs for the model, along with their temperature level,
estimated thermal capacity, and location. Three groups of sources were selected based on
temperature availability and proximity, and they are presented in Table 1 and Figure 5.
According to the waste heat estimates presented in the FLEXYNETS project [5], hourly
availability profiles were estimated for industries and supermarkets. The heat demand for
the study area, retrieved from Hotmaps, is 35.7 GWh/year, with a peak demand of 17.3 MW.
The cooling demand was assumed to be 10.7% of the heat demand based on findings
from [66]. The Spectral Clustering method was used to determine the configuration shown
in Figure 5, starting with one large cluster and increasing granularity while considering
the smallest industrial WH plant of 1.58 MW. Table 2 summarizes the inputs used in this
reference scenario.

Table 2. Source characteristics and grouping selection for the given case study.

Source Category Capacity [MW] Temperature [◦C] Group

Powell Park Park 1.1 15 G1
Steel plant Industry 1.6 22 G1

SABAF Industry 6.0 25 G2
Piazza Mercato Park 12.3 15 G2

Carrefour Supermarket 0.1 18 G3
Ori Martin Industry 15.0 25 G3
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Figure 5. The location of clusters and source groups is represented by different colors. G1 is in orange,
G2 is in black, and G3 is in purple. The blue marker represents the centroid of SBs.

The energy prices vary significantly based on the customer type (residential or indus-
trial) and taxes. The assumptions were made using 2020 data from Eurostat [67], yielding
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the typical values reported in Table 3 (note that these are consequently pre-crises values;
the same holds for the assumptions about investment costs). It is assumed that a NT-DHC
system would not be subject to electricity taxes. Conversely, the performance of alternative
individual solutions is evaluated with the assumption that customers pay residential elec-
tricity and gas prices, inclusive of all taxes and fees. The highest heat price sold through
the network is assumed to be equal to the cost of the competing solution.

Table 3. Energy prices selected for the reference scenario, related to 2020 data.

Variable Price (EUR /kWh) Description

pgas 0.100 Residential gas price in Italy including taxes.
pel,ind 0.150 Industrial electricity price in Italy excluding taxes.
pel,res 0.200 Residential electricity price in Italy including taxes.
pheat 0.100 Assumed to be equal to gas price.
pcool 0.100 H&C network services are assumed to be equal.

In Table 4, a set of technical inputs based on the current operating conditions of the
Ospitaletto network is provided [12]. Additionally, a carbon tax is considered. Emission
factors in the Italian electrical grid, as reported by the Italian Institute of Research and
Environmental Protection (ISPRA), are utilized to determine an up-to-date value for the
electricity emission factor [68]. In this study, 0.281 tCO2/MWh represents the emissions
from electricity consumption (calculated using a standard method) for the reference year of
2018. Emission factor for gas is taken from Ref. [69].

Table 4. Technical inputs used in a default simulation.

Parameter Value Description

TDHW 55 DHW temperature [◦C]
TSH,max 55.7 Max indoor SH temperature for buildings [◦C]
TSH,min 46.8 Min indoor SH temperature for buildings [◦C]

ηm 53 HPs’ compressor efficiency [%].
ctax 75 Carbon tax [EUR /tCO2]
fem,el 0.281 Electricity emission factor [tCO2/MWh]

fem,gas 0.202 Gas emission factor [tCO2/MWh]

4. Results

The methodology considers a phased implementation of sources and loads based on
the thermal capacity and number of time periods. The sources are assumed to be available
in the order specified in Table 2. WH capacity should be determined considering industrial
sources’ capacity, as their stable schedules and constant heat supply are key for network
operation. Complementary sources such as supermarkets, small shops, bakeries, etc.,
should be considered to meet the total load but not for sizing. Parks or ground source sites
are considered auxiliary systems to help meet demand during weekends or when WH
plants are unavailable.

In Figure 6, the NPV of each potential extension project is calculated and represented
by a heatmap. The clusters with a high NPV appear in red, while those with a lower NPV
appear in yellow. The model then determines the optimal combination of clusters with the
highest total NPV while staying within the thermal capacity limit (as shown in Figure 6b).

The first iteration prioritizes cluster 10 for its highest NPV. Cluster 1 is included even
though it has marginal economic advantage, as its addition still meets the 1.58 MW thermal
power limit (see Figure 10a). The second iteration recalculates the NPV of the remaining
clusters, with 6 MW of WH capacity available. Figure 7a shows the markers representing
the locations of sources in group G2. The model selects the zones shown in Figure 10b
based on the best compromise between economic value and peak capacity.
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(b) Cost–benefit analysis.

The model calculates the NPV of the remaining loads, including SBs, in the third
iteration. All feasible loads are served by the NT-DHC system with 15 MW thermal
capacity. Zones in the southern part of the FU are not connected to the network (Figure 8)
and can use reversible A/W HPs at a lower cost than the NT-DHC solution (Figure 9). The
process concludes if a better scenario cannot be reached compared to the BaU case or if the
NT-DHC fully serves the FU. The expansion pathways for the NT-DHC system are shown
in Figure 10.

Energies 2024, 17, x FOR PEER REVIEW  17  of  21 
 

 

 

 

(a)  (b) 

Figure 7. (a) Heatmap representing the NPV of each cluster in the second network extension. (b) 

Cost–benefit analysis. 

The model calculates  the NPV of  the  remaining  loads,  including SBs,  in  the  third 

iteration. All  feasible  loads  are  served  by  the NT-DHC  system with  15 MW  thermal 

capacity. Zones in the southern part of the FU are not connected to the network (Figure 8) 

and can use reversible A/W HPs at a lower cost than the NT-DHC solution (Figure 9). The 

process concludes if a better scenario cannot be reached compared to the BaU case or if 

the NT-DHC fully serves the FU. The expansion pathways for the NT-DHC system are 

shown in Figure 10. 

 

Figure 8. Clusters 13, 14, and 17 produce unfeasible scenarios, as they generate insufficient revenue 

to offset the high network connection costs with G3. 

 

Figure 9. Cost comparison of H&C options. A/W HPs are preferred in Clusters 13, 14, and 17 over 

NT-DHC due to their lower cost. 

Figure 8. Clusters 13, 14, and 17 produce unfeasible scenarios, as they generate insufficient revenue
to offset the high network connection costs with G3.



Energies 2024, 17, 2159 16 of 19

Energies 2024, 17, x FOR PEER REVIEW  17  of  21 
 

 

 

 

(a)  (b) 

Figure 7. (a) Heatmap representing the NPV of each cluster in the second network extension. (b) 

Cost–benefit analysis. 

The model calculates  the NPV of  the  remaining  loads,  including SBs,  in  the  third 

iteration. All  feasible  loads  are  served  by  the NT-DHC  system with  15 MW  thermal 

capacity. Zones in the southern part of the FU are not connected to the network (Figure 8) 

and can use reversible A/W HPs at a lower cost than the NT-DHC solution (Figure 9). The 

process concludes if a better scenario cannot be reached compared to the BaU case or if 

the NT-DHC fully serves the FU. The expansion pathways for the NT-DHC system are 

shown in Figure 10. 

 

Figure 8. Clusters 13, 14, and 17 produce unfeasible scenarios, as they generate insufficient revenue 

to offset the high network connection costs with G3. 

 

Figure 9. Cost comparison of H&C options. A/W HPs are preferred in Clusters 13, 14, and 17 over 

NT-DHC due to their lower cost. 

Figure 9. Cost comparison of H&C options. A/W HPs are preferred in Clusters 13, 14, and 17 over
NT-DHC due to their lower cost.

Energies 2024, 17, x FOR PEER REVIEW  18  of  21 
 

 

 

 

 

 
 

(a)  (b)  (c) 

Figure 10. Methodology outputs.  (a) First optimal extension: 1.6 MW thermal power.  (b) Second 

iteration: 6 MW WH available. (c) Third stage: optimal extension with 15 MW thermal heat. 

5. Conclusions 

This work presents a comprehensive methodology for modeling NT-DHC systems 

which includes technical and economic factors. A knapsack optimization approach was 

used  to  identify  the best spatial expansion scenarios. The core  techno-economic model 

was validated using data from a demo case but has general applicability. It combines a 

spatial clustering method for H&C loads and a simplified method for estimating network 

length, coupling  the effective width approach with a star-like backbone geometry. The 

techno-economic model  can yield accurate estimates of  the main energy metrics, even 

with simplified default inputs. With the adopted simplifications and for the considered 

case (100 initial hectare-size cells), the entire model can be run in a few tens of seconds on 

a standard laptop. 

The results show that NT-DHC systems are better suited for densely populated urban 

areas, while individual air-source HP systems may be a more cost-effective solution for 

areas with low heat density. Despite having low building heat density compared to larger 

cities, feasible scenarios were still identified for the case study of Ospitaletto; in particular, 

out of the 19 resulting spatial clusters composing the considered 1 km2 urban functional 

unit, only 3 clusters were excluded as non-feasible for NT-DHC. The expanded network 

could then cover more than 90% of the 35.7 GWh/y of  load of the entire unit. It  is also 

worth noting that, while the non-feasible clusters have a low heat density, they are not the 

lowest density ones. It is indeed a combination of heat density and distance from sources 

which determines the competitiveness of NT-DHC with respect to individual solutions. 

The proposed model offers a detailed analysis of the conditions that make NT-DHC 

an  attractive  solution  compared  to  individual H&C  technologies.  It  helps  to  evaluate 

different  business  models  and  to  determine  the  tipping  points  of  viability.  The 

methodology  aims  to minimize  energy  demand  risk  and  provide more  certainty  in 

network expansion plans. It can be used for the early-stage planning and design of NT-

Figure 10. Methodology outputs. (a) First optimal extension: 1.6 MW thermal power. (b) Second
iteration: 6 MW WH available. (c) Third stage: optimal extension with 15 MW thermal heat.

5. Conclusions

This work presents a comprehensive methodology for modeling NT-DHC systems
which includes technical and economic factors. A knapsack optimization approach was
used to identify the best spatial expansion scenarios. The core techno-economic model
was validated using data from a demo case but has general applicability. It combines a
spatial clustering method for H&C loads and a simplified method for estimating network
length, coupling the effective width approach with a star-like backbone geometry. The
techno-economic model can yield accurate estimates of the main energy metrics, even with
simplified default inputs. With the adopted simplifications and for the considered case
(100 initial hectare-size cells), the entire model can be run in a few tens of seconds on a
standard laptop.
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The results show that NT-DHC systems are better suited for densely populated urban
areas, while individual air-source HP systems may be a more cost-effective solution for
areas with low heat density. Despite having low building heat density compared to larger
cities, feasible scenarios were still identified for the case study of Ospitaletto; in particular,
out of the 19 resulting spatial clusters composing the considered 1 km2 urban functional
unit, only 3 clusters were excluded as non-feasible for NT-DHC. The expanded network
could then cover more than 90% of the 35.7 GWh/y of load of the entire unit. It is also
worth noting that, while the non-feasible clusters have a low heat density, they are not the
lowest density ones. It is indeed a combination of heat density and distance from sources
which determines the competitiveness of NT-DHC with respect to individual solutions.

The proposed model offers a detailed analysis of the conditions that make NT-DHC an
attractive solution compared to individual H&C technologies. It helps to evaluate different
business models and to determine the tipping points of viability. The methodology aims to
minimize energy demand risk and provide more certainty in network expansion plans. It
can be used for the early-stage planning and design of NT-DHC networks, contributing to
a deeper understanding of its opportunities and constraints.

Further research could expand the approach to locations with higher heat density or
varied climatic conditions (with more significant cooling requirements). Research could
also compare NT-DHC to 4GDH, where heat pumps are located at sources rather than at
user substations and the network temperature stays higher. Finally, studying the effects of
introducing different types of storages at different locations would allow for analyses of
system resilience with respect to source fluctuations and maximize low-grade heat recovery.
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