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Abstract: This paper considers the estimation of SOC and SOH for lithium batteries using multi-
innovation Levenberg–Marquardt and adaptive weighting unscented Kalman filter algorithms.
For parameter identification, the second-order derivative of the objective function to optimize the
traditional gradient descent algorithm is used. For SOC estimation, an adaptive weighting unscented
Kalman filter algorithm is proposed to deal with the nonlinear update problem of the mean and
covariance, which can substantially improve the estimation accuracy of the internal state of the
lithium battery. Compared with fixed weights in the traditional unscented Kalman filtering algorithm,
this algorithm adaptively adjusts the weights according to the state and measured values to improve
the state estimation update accuracy. Finally, according to simulations, the errors of this algorithm
are all lower than 1.63 %, which confirms the effectiveness of this algorithm.

Keywords: multi-innovation Levenberg–Marquardt algorithm; adaptive weighting unscented Kalman
filter; SOC estimation; SOH estimation

1. Introduction

Lithium batteries have significant advantages, such as good safety performance, excel-
lent discharge characteristics, and high energy density [1,2]. These qualities make them
crucial to the future direction of energy production. To ensure high reliability and opera-
tional safety, the battery management system (BMS) must track and control the electrical
system in real-time [3,4]. The state of charge (SOC) and state of health (SOH) are crucial
factors in the BMS that influence the battery’s energy management distribution. SOC refers
to the current remaining charge of the battery, and its effective estimation is essential to the
operating process of a lithium battery. SOH means the health of the lithium battery, usually
expressed as resistance or capacity. In summary, the accuracy of SOC and SOH estimation
helps to better manage and maintain a lithium battery, ensuring the safety and reliability of
the battery [5,6].

Lithium battery models can be used to describe the electrical behavior and charac-
teristics of the battery, which can enhance understanding of how lithium batteries work,
facilitating prediction of the SOC and lifetime of lithium batteries. Currently, there are
four prevalent types of battery models: electrochemical models [7–9], neural network
models [10], alternating current (AC) impedance models [11,12], and the equivalent circuit
model [13]. Compared with the AC impedance and electrochemical models, the equivalent
circuit model can simplify the complex internal structure and improve computational
efficiency. It can directly reflect the dynamic processes and state changes inside the bat-
tery. Compared to the neural network model, the equivalent circuit model has enhanced
precision in predicting the SOC, the SOH, and the remaining useful life (RUL) based on
known internal battery parameters [14,15], and black-box effects, and over-fitting can be
avoided [16].
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The open circuit voltage method is one of the most prevalent methods for estimating
the SOC, but the results estimated by this method can be confounded by environmental
factors and require a longer test time. Therefore, the method is generally not considered for
practical applications. Zhang et al. proposed a particle filter in the battery SOC and the
open circuit voltage (OCV) estimation, which can avoid the influence of noise generated
during battery terminal voltage measurement and current drift [17]. The ampere-time
integration method requires the use of high-precision test equipment to obtain accurate
data. Moreover, the initial values are not easy to determine and this model is not suitable
for rapid testing of the lithium battery state in a short period of time. Liu et al. linked
the EKF and Ah-integral algorithms to apply the fuzzy-extended Kalman filter-ampere-
hour algorithm. The serious estimation error in the strong nonlinear interval of the EKF
algorithm and the accumulated error generated by the sampling accuracy of the ampere-
time integration algorithm may both be successfully resolved by the fused algorithm [18].
Support vector machines are based on vectors to construct a decision boundary, so data
interference has a more significant impact on them than other methods; therefore, it is
important to ensure thorough data cleaning. Kim et al. utilized basic building blocks,
such as the residual and leverage statistics, to represent the Cook distance, using simple
descriptive statistics and approximation measures. They proposed application of the
deletion method and the infinitesimal perturbation method to address outlier effects in
vector machines [19]. The neural network has many parameters to identify, which can lead
to a more complex network structure that is not easily optimized, moreover, the model
itself is less interpretable. Talha et al. proposed a neural network (NN) simplified state
estimation algorithm that can directly estimate the SOC and SOH online in the absence
of the internal parameters of the battery. Finally, the reliability of this algorithm was
demonstrated through experiments [20].

The model-based method offers higher flexibility compared to conventional and
data-driven methods. Combining models and filters to estimate the SOC is a prevalent
modeling method. Based on the dual-polarization model, Tan et al. proposed the EKF
algorithm to calculate the SOC and SOP of lithium batteries. Simulations showed that
the EKF algorithm can achieve high predictive values under any operating conditions,
reflecting the effectiveness of this algorithm [21]. However, this method is not suitable
for solving problems with special noise and unknown uncertainty. In order to solve the
problem of low accuracy of the EKF algorithm, Li et al. proposed the forgetting factor
stochastic gradient-multi-innovation extended Kalman filter (FFSG-MIEKF) algorithm for
parameter identification and SOC estimation. Simulations were used to demonstrate the
effectiveness of this algorithm [22]. However, the MIEKF algorithm introduces covariance
matrix repair and an update operation, which increases the calculation required and the
complexity of the algorithm. El Din et al., combining an unscented transform and Kalman
filter using covariance estimation for the sampling point state noise and observation noise,
proposed an unscented Kalman filter (UKF) to improve the state estimation accuracy.
Finally, experiments were undertaken to confirm the effectiveness of this algorithm [23].
As the UKF algorithm needs to use sigma points, the amount of computation and the
accuracy of calculation are affected during state estimation. In order to reduce the effect
of interference on the SOC accuracy, in this paper, the mean and observation weights are
adaptively adjusted according to the state and observation residual vectors so that this
algorithm has better weight stability in state estimation.

The parameter estimation of battery models is very important for battery performance
analysis and the parameters of battery models can be identified through some identification
methods [24–29] from observation data such as the gradient-based algorithms [30–34] and
the least squares-based identification methods [35–38]. In practical applications, the SOH
plays a very important role in maintaining the performance and extending the life of a
battery. Relatively speaking, the SOH and the internal resistance have a more direct link,
so the internal resistance is chosen as the state variable for estimating the SOH [39–41].
In current research, most studies have considered the SOC and SOH separately, with the
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interaction between them rarely considered in the process of estimating the state parameters
of the battery. Consequently, we propose an adaptive weighting unscented Kalman filter
algorithm (AWUKF) algorithm. This algorithm is based on the SOC for SOH estimation,
and can greatly reduce the problem of decreased accuracy of state estimation caused by
environmental changes. The main contributions of the paper are as follows:

• The AWUKF algorithm reselects the particles using the unscented transformation, and
the adaptive weights are brought into the UKF framework to reduce the sensitivity
to noise.

• This algorithm is utilized to attenuate the deviation of the SOC values under measure-
ment and state noise disturbances; moreover, the SOC is used as a basis for estimating
the SOH values.

• Simulations are carried out under different experimental conditions to assess the
practicality and effectiveness of this algorithm.

The paper is organized as follows: Section 2 describes the circuit model of the lithium
battery. The construction of the multi-innovation Levenberg–Marquardt (MILM) algorithm
to determine the internal parameters of the battery is described. Section 3 considers the
AWUKF algorithm, and uses this algorithm for joint estimation of the SOC and SOH.
Section 4 subjects the traditional EKF, the UKF, and the AWUKF algorithms to experimental
simulation under different experimental conditions. Finally, Section 5 summarizes the main
conclusions and presents some perspectives.

2. Battery Model
2.1. Integral Second-Order RC Model

Vocv is the open-circuit voltage, V0 is the terminal voltage, and I is the load current.
The first RC network describes the polarization characteristics, Rp1 denotes the polariza-
tion resistance, and Cp1 represents the polarization capacitance. The second RC circuit
represents the dynamic behavior of the lithium battery related to the concentration polar-
ization, Rp2 represents the concentration polarization resistance, and Cp2 represents the
capacitance [42–44]. The second-order RC equivalent circuit model is shown in Figure 1.

R0

RP1 RP2

CP1 CP2
VOCV

VR

-

+

+ -

VP1 VP2

+

-

V0

Figure 1. Circuit structure of the second-order RC equivalent circuit model.

The electrical characteristics of the model can be expressed as

V0 = Vocv − VR − Vp1 − Vp2,

Vp1 = IRp1 − Cp1
dVp1

dt
,

Vp2 = IRp2 − Cp2
dVp2

dt
,

where Vp1 and Vp2 are the terminal voltages of the Rp1Cp1 and Rp2Cp2 circuits, respectively.
By Laplace transformation, we get the electrical characteristic equation:
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V0(s)− Vocv(s) = I(s)

[
R0 +

Rp1

1 + Cp1Rp1s
+

Rp2

1 + Cp2Rp2s

]
. (1)

It follows the discretization expression:

V0(s)− Vocv(s)
−I(s)

=
R0(1 + τ1s)(1 + τ2s) + Rp1(1 + τ2s) + Rp2(1 + τ1s)

(1 + τ1s)(1 + τ2s)
. (2)

Applying the bilinear transformation to (2), we get the differential equation for the system:

V0(t) = θ1V0(t − 1) + θ2V0(t − 2) + θ3 I(t) + θ4 I(t − 1) + θ5 I(t − 2) + θ6, (3)

where 

θ1 = −(τ1 + τ2),
θ2 = −τ1τ2,
θ3 = −(R0 + Rp1 + Rp2)
θ4 = −(R0τ1 + R0τ2 + Rp1τ2 + Rp2τ1),
θ5 = −R0τ1τ2,
θ6 = (1 + τ1 + τ2 + τ1τ2)Vocv,

(4)

where τ1 and τ2 represents the time constants, which can be obtained by Rp1Cp1 and Rp2Cp2,
respectively. θ1 to θ6 are equivalent expressions of the correlation coefficients. The internal
resistance R0, the polarization resistors Rp1 and Rp2, and the polarization capacitors Cp1
and Cp2 are obtained based on the measured data. Then, the optimization algorithm is
used to identify θi (i = 1, 2, 3, 4, 5, 6). The parameter optimization algorithm is described in
detail in the next section. The proposed parameter estimation algorithms in this paper are
based on the identification model in (3). Many identification methods are derived based on
the identification models of the systems [45–49] and these methods can be used to estimate
the parameters of other linear systems and nonlinear systems [50–54] and can be applied to
other fields [55–59] such as chemical process control systems.

2.2. Parameter Identification Based on MILM Method

The traditional LM algorithm combines gradient descent insensitivity to initial values
and Gaussian–Newton global optimality characteristics. Based on this property, the solu-
tion efficiency of the LM algorithm in between the two methods can be determined [60].
Therefore, based on multi-innovation theory, by extending a single innovation into a
multi-innovation vector containing both past moment and current moment data, an MILM
algorithm is proposed to improve the accuracy of battery parameter identification. The
specific process used is as follows:

First, the recognition model is as follows:

V0(t) = φT(t)θ + ν(t), (5)

where V0 are the observed output data, φ(t) = [V0(t− 1), V0(t− 2), I(t), I(t− 1), I(t− 2), 1]T

is composed of the terminal voltage and current input data, θ = [θ1, θ2, θ3, θ4, θ5, θ6]
T is the

parameter vector to be identified, and ν(t) is zero mean random noise.
According to the LM algorithm, the quadratic criterion function for the nonlinear

system is given by

J(θ) =
1
2
∥V0(t)− φT(t)θ∥2. (6)
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According to (5) and (6), the first-order partial derivative and the second-order partial
derivative of J(θ) with respect to θ are defined as

∇J(θ) =
∂J(θ)

∂θ
= −φT(t)ν(t), (7)

H(θ) =
∂2 J(θ)
∂θ∂θT = φ(t)φT(t), (8)

According to (7) and (8), the introduction of the damping factor µ decreases the sensitivity
to the initial values problem and enables the Gaussian–Newton characteristics to converge
quickly around the optimum. Thus, we can obtain the LM algorithm:

θ̂(t) = θ̂(t − 1)− [H(θ̂(t)) + µI]−1∇J(θ̂(t)).

Using the multi-innovation identification theory [61–68], the single innovation is expanded
into multi-innovation:

ν(t) = V0(t)− φT(t)θ, (9)

ν(p, t) =


ν(t)

ν(t − 1)
· · ·

ν(t − p + 1)

 =


V0(t)− φT(t)θ

V0(t − 1)− φT(t − 1)θ
· · ·

V0(t − 1)− φT(t − 1)θ

, (10)

where p is the innovation length.
The input data matrix Φ(p, t) and output terminal voltage vector V0(p, t) are defined as

Φ(p, t) = [φ(t), φ(t − 1), · · · , φ(t − p + 1)]T, (11)

V0(p, t) = [V0(t), V0(t − 1), · · · , V0(t − p + 1)]T. (12)

Combining (9)–(12), the multi-innovation vector can be expressed as

ν(p, t) = V0(p, t)− ΦT(p, t)θ̂(t − 1), (13)

where the state ν(p, t) is optimized by expanding V0(t) to V0(p, t) and φ(t) to Φ(p, t). There-
fore, the MILM algorithm can capture more information, and identifying the parameters is
more accurate than for the LM algorithm.

In summary, the MILM algorithm is as follows:

θ̂(t) = θ̂(t − 1)− [H(θ̂(t)) + µI]−1∇J(θ̂(t)), (14)

I = eye(size(Q)), Q = H(θ̂(t)), (15)

∇J(θ̂(t)) =
∂J(θ(t))

∂θ
= −ΦT(p, t)ν(p, t), (16)

H(θ̂(t)) =
∂2 J(θ(t))

∂2θ
= Φ(p, t)ΦT(p, t). (17)

3. The SOC and SOH Estimation Method
3.1. SOC Estimation Based on the AWUKF Algorithm

This paper proposes an adaptive weight method to adjust the system noise and
measurement noise. Compared with the fixed weight in traditional UKF, the method
adaptively adjusts the state estimation weight based on the state and measurement residual
vector, which can improve the SOC estimate accuracy and convergence.

From the battery model, the state relationship equation is defined as{
ẋ = Ax + BI,
y = Cx + DI,
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where

A =

1 0 0
0 e−α 0
0 0 e−α

,

B =

 −
∫ t

t0 ηdt
QN

Rp1 − Rp1e−α1

Rp2 − Rp2e−α2

, α1 =
△ t

Rp1Cp1
, α2 =

△ t
Rp2Cp2

,

C = [
docv

dsoc
− 1 − 1], D = −R0,

x =

SOC
Vp1
Vp2

, y = V0, x ∈ R3.

The state equation and measurement equation are given by

xk+1 = f (xk, uk) + ωk, (18)

yk+1 = h(xk+1, uk+1) + υk, (19)

where f (xk, uk) is the nonlinear state equation, h(xk, uk) is the nonlinear measurement
equation, uk is the current, xk is the state variable, subscript k denotes the kth discrete
sampling, ωk is the state noise, and υk is the measurement noise. According to (18) and (19),
the calculation process of the AWUKF algorithm is as follows.

The first values of the state and the error covariance matrix are given by

x̂0 = E[(x0)],

P0 = E[(x0 − x̂0)(x0 − x̂0)
T].

Select 2n + 1 sample points:
x0

k−1 = x̂k−1,

x(i)k−1 = x̂k−1 + (
√
(n + λ)Pk−1), i = 1, 2, · · · , L,

x(i)k−1 = x̂k−1 − (
√
(n + λ)Pk−1), i = L, L + 2, · · · , 2L,

(20)

where i is the number of sample points.
Calculation of the weights coefficient:

λ = α2(n + κ)− n,
ω
(0)
c = λ

n+λ , ω
(i)
c = λ

2(n+λ)
, i = 1, 2, · · · , 2L,

ω
(0)
m = 1

n+λ + 1 − α2 + β, ω
(i)
m = 1

2(n+λ)
, i = 1, L + 1, · · · , 2L,

(21)

where λ is a scaling coefficient, κ is an optional parameter, ωm is the weighted value of
the particle mean value, ωc is the weighted value of the particle variance, and subscript i
represents the ith discrete sampling. In the traditional algorithm, the weighting coefficient
is a fixed value, but in practical applications, both the measurement noise and the state noise
are random, being easily affected by temperature, voltage, and other factors. Therefore, an
adaptive weights coefficient is proposed to adjust the state noise and the measurement noise.
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Using (18), (20) and (21), the a priori state values and state covariance matrix for the
2n + 1 sample points are denoted by

x(i)k|k−1 = f (x(i)k−1, uk−1), i = 0, 1, 2, · · · , 2L, (22)

x̂k|k−1 =
M

∑
i=1

ω
(i)
m x(i)k|k−1, (23)

Pk|k−1 =
M

∑
i=1

ω
(i)
c (x̂k|k−1 − x(i)k|k−1)(x̂k|k−1 − x(i)k|k−1)

T + Qk−1, (24)

where the system noise covariance matrix uses Qk−1 at moment k − 1.
According to the one-step predicted values in (23) and (24), the new sampling points

are produced by the unscented transform:

x(i)k|k−1 = [x̂k|k−1, x̂k|k−1 +
√
(n + λ)Pk|k−1, x̂k|k−1 −

√
(n + λ)Pk|k−1]. (25)

Combining (19) and (25), the mean values and covariance matrix of the predicted observa-
tion are obtained by the weighted summation:

y(i)k|k−1 = h(x(i)k|k−1, uk), i = 0, 1, 2, · · · , 2L, (26)

ŷk|k−1 =
M

∑
i=1

ω
(i)
m y(i)k|k−1, (27)

P(ŷk ,ŷk)
=

M

∑
i=1

ωc
(i)(ŷk|k−1 − y(i)k|k−1)(ŷk|k−1 − y(i)k|k−1)

T + Rk, (28)

P(x̂k ,ŷk)
=

M

∑
i=1

ωc
(i)(x̂k|k−1 − x(i)k|k−1)(ŷk|k−1 − y(i)k|k−1)

T, (29)

where P(yk ,yk)
is the predicted measurement covariance matrix, P(xk ,yk)

is the state and
measurement cross-covariance matrix, and Rk is the observation noise covariance matrix at
moment k.

According to (28) and (29), update the Kalman gain by

Kk = P(x̂k ,ŷk)
P−1
(ŷk ,ŷk)

. (30)

Use (23), (24), (27) and (30) to update the system state vector and covariance matrix:

x̂k = x̂k|k−1 + Kk(yk − ŷk|k−1),

Pk|k = Pk|k−1 − KkP(ŷk ,ŷk)
KT

k .

Adaptive weights are given by

∆xj = xk − x̂k|k−1,
∆yj = yk − ŷk|k−1,

∥∆xj∥ =
√

∆xT
j ∆xj,

∥∆yj∥ =
√

∆yT
j ∆yj,

λj = ∥∆xj∥∥∆yj∥,

ωj =
λj

∑2L
k=0 ∥∆xj∥∥∆yj∥

,

ωj = ω
(i)
m = ω

(i)
c , j = 1, 2, 3, · · · , 2L.



Energies 2024, 17, 2145 8 of 20

3.2. SOH Estimation

The SOH of a lithium battery degrades over time until it can no longer meet the power
and energy requirements. So, we need to predict the SOH of lithium batteries to ensure
their safety and reliability. With increase in the number of charge and discharge cycles, a
lithium battery will inevitably degrade. Therefore, the SOH of a battery can be indirectly
computed using the ohmic internal resistance and the maximum available capacity.

Based on the SOH estimation of the ohmic internal resistance, the state of charge and
Vocv of the battery are taken as known values, and the state space equation of the system is
established as

R0(k + 1) = R0(k) + r(k), k = 1, 2, 3, · · · , 2L, (31)

where r is the process noise of the system, the mean is 0, and the covariance is σr.
The observation equation is as follows:

V0(k) = Vocv(k)− I(k)R0(k)− Vp1 − Vp2 + ε(k), (32)

where ε is the observed noise of the system, the mean value is 0, and the covariance is σε.
According to (31) and (32), define the state relationship:

x1(k + 1|t) = x1(k) + r(k), (33)

y1(k) = Ex1(k) + F + ε(k), (34)

where E = −I(k) and F = Vocv(t)− Vp1 − Vp2. The SOC and SOH estimation algorithm
proposed in this paper can combine some estimation algorithms [69–72] for studying new
methods for linear and nonlinear stochastic systems with colored noises [73–77] and can
be applied to other literatures such as industrial control systems [78–82], the information
processing and communication systems and so on.

4. Simulation Experiment
4.1. Experimental Condition

When utilizing the MILM-AWUKF algorithm for lithium battery parameter identifica-
tion and state estimation, it is necessary to construct a test platform for experimentation.
This platform consists of a programmable temperature chamber, a battery operated device,
and a computing machine. The subject is a lithium battery. The battery specifications are
shown in Table 1.

Table 1. Battery information.

Information Type Data

Rate Voltage 3.2 V
Operation Voltage 2.7 V–4.2 V
Capacitance 3600 mAh
Rate Charge current 0.72 A
Max Discharge current 3.6 A

This paper uses the standard constant-current-constant-voltage charging and dis-
charging mode, presenting a nonlinear relationship curve between SOC and OCV. Using
sixth-order fit, the SOC-OCV fitting curve is presented in Figure 2 and the fitting equation
in (35).

Vocv(SOC) = 6.4291 ∗ SOC6 − 14.0566 ∗ SOC5 + 9.0118 ∗ SOC4 − 0.5504 ∗ SOC3

− 0.9967 ∗ SOC2 + 0.8016 ∗ SOC1 + 3.5414.
(35)
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Figure 2. The experimental OCV-SOC curve.

4.2. Battery Parameters Identification Results

According to the second-order RC equivalent circuit model, the MILM algorithm is
used to identify the resistance and capacitance parameters of the equivalent circuit model.
The parameter identification results are shown in the figure. Figure 3 shows the MILM
parameter identification under the federal urban driving schedule (FUDS). The results show
that the parameter identification values converge quickly to stable values at a count of 112
and fluctuate within a small error range. Figure 4 shows the predicted and true values of the
terminal voltage. It is clear that the predicted values of the terminal voltage closely follow
the true values, with root mean square error (RMSE) values of about 0.0606% and mean
absolute error (MAE) values of about 0.0345%. Figure 5 shows that the terminal voltage
error range is consistently within 0.5%, indicating that this algorithm can characterize the
dynamic characteristics and internal parameters of the battery model very well.

2000 4000 6000 8000 10000 12000 14000 16000
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2000 4000 6000 8000 10000 12000 14000 16000
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Figure 3. Results of MILM parameter identification under FUDS.
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Figure 4. Results of voltage under FUDS.
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Figure 5. Results of voltage error under FUDS.

Figure 6 shows the MILM parameter identification results under dynamic stress testing
(DST). Unlike the FUDS experiment, the equivalent model parameter identification results
are not smooth and exhibit relatively large fluctuation except for R0. The equation of each
parameter is derived from (4), which is associated with the characteristics of the input
voltage and current under the DST experiment. We infer from these results that the voltage
and current do not vary at most moments and the voltage and current values are too large
at a certain moment.

However, from subsequent comparison of the predicted and true values of the terminal
voltage, we conclude that the errors obtained when using this algorithm are still very small
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under complex conditions, verifying the reliability and safety of this algorithm.
Figures 7 and 8 present the predicted values and errors of the terminal voltages

during DST. The predicted values of the terminal voltages converge to the true values at
187 sampling periods, with an error of about 0.015%, which represents a small range of
change. In summary, even though the fluctuation in the identification parameters is large
under current shock, it can be seen from the RMSE value of 0.012% and the MAE value
of 0.002758% that there is minimal deviation between the predicted and true values of
the voltages, which enables us to rely on these predictions with more confidence for the
SOC and SOH estimation decisions. This accurate estimation can improve the system’s
understanding of the battery state, thus enhancing the performance and efficiency of the
battery management system, reflecting the algorithm’s excellent performance in modeling
and predicting complex systems.

Figure 6. Results of MILM parameter identification under DST.

Figure 7. Results of voltage under DST.
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Figure 8. Results of voltage error under DST.

4.3. SOC Prediction Results

First, the initial values of SOC are set to 0.93. From Figures 9 and 10, with regard to the
convergence speed and accuracy, it can be concluded that the EKF has the worst estimation
performance, the AWUKF algorithm is better, and the UKF algorithm performance is
between these two algorithms. In terms of SOC prediction, the SOC estimated by the
AWUKF algorithm overlaps with the true values after 217 cycles in the battery state
retention time interval, and the SOC estimated by the UKF algorithm overlaps with the
true value for the first time after 662 cycles. In terms of error, After 106 cycles, the error of
the AWUKF algorithm remains at about 0.1% and the error of the UKF algorithm remains
within 3.5%. The SOC estimation accuracy under the DST experimental conditions shows
that the proposed algorithm can not only improve the dynamic performance, but can also
increase the estimation convergence speed.

Figure 9. SOC estimation under DST test.
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Figure 10. SOC estimation error under DST test.

The two indicators RMSE and MAE are used for evaluation. As shown in Table 2,
the values of RMSE and MAE for the AWUKF algorithm are about 1%. Therefore, the
estimation error can be greatly reduced by using this algorithm for state estimation.

Table 2. SOC estimation results under DST conditions.

RMSE MAE

AWUKF 0.0133 0.0011
UKF 0.0299 0.0211
EKF 0.0442 0.0350

Firstly, the initial values of SOC are set to 0.95; then, the EKF, UKF, and AWUKF
algorithms are used to estimate the SOC under FUDS experimental conditions. Figure 11
shows the SOC prediction results using the different algorithms. It can be seen that the
curves of the AWUKF and UKF algorithms are closest to the true values. However, with
delay in time, compared to the UKF algorithm, the AWUKF algorithm can track the actual
values well. Figure 12 shows the error curves for the different algorithms. It is clear that
the UKF algorithm has an increasing error, while the AWUKF algorithm error becomes
smaller and smaller, with a maximum error of about 2.5% after 5000 cycles. This confirms
the accuracy and convergence of this algorithm.

As can be seen from Table 3, using RMSE and MAE to evaluate SOC estimation errors,
the AWUKF algorithm has the smallest error among the three algorithms. This indicates
that this model has good predictive ability for SOC estimation of lithium batteries.

Table 3. SOC estimation results under FUDS conditions.

RMSE MAE

AWUKF 0.0285 0.0188
UKF 0.0584 0.0324
EKF 0.0907 0.0774
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Figure 11. SOC estimation under FUDS test.
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Figure 12. SOC estimation error under FUDS test.

4.4. SOH Prediction Results

Combining (33) and (34), using the EKF, UKF, and AWUKF algorithms to calculate the
internal resistance. From Figures 13 and 14, it can be seen that the EKF algorithm provides
the worst estimation curve. The estimation curves of the UKF and AWUKF algorithms
are very close. Because the resistor itself is small, as can be seen by examination of the
local zoomed-in image, the AWUKF algorithm is closer to the true value. It is clear from
the error curves that the AWUKF algorithm quickly converges to a range close to the true
values, and the error decreases.
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Figure 13. SOH estimation under DST test.
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Figure 14. SOH estimation error under DST test.

Figures 15 and 16 show the values of the internal resistance and error curves estimated
by each algorithm under FUDS experimental conditions. It can be seen from the figures that
the highest error of the AWUKF algorithm is 0.0041, that of the UKF algorithm is 2.15 times
higher than the AWUKF algorithm, and that of the EKF algorithm is 4.68 times higher.
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5. Conclusions

In this paper, an equivalent circuit model is adopted to simplify the chemical processes
inside lithium batteries. The parameters of lithium batteries are obtained using the MILM
algorithm, which provides superior parameter estimation results and lays a foundation
for SOC estimation. The AWUKF algorithm is applied to address the sensitivity to noise
issue by adaptively adjusting the sigma point weights based on state and measurement
residual vectors, which improves the convergence speed of SOC estimation. The simulation
indicates that the SOC estimation error of the AWUKF algorithm is below 5.79% for the
FUDS experiment and 0.0376 % for the DST experiment. At the same time, the SOH of the
battery is estimated using the AWUKF. From the results, we can conclude that the AWUKF
algorithm shows faster convergence. In other words, this algorithm has strong applicability
under any experimental conditions, and can achieve the detection and estimation of electric
vehicles battery properties in real-time.
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