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Abstract: This study examines the profitability and reliability of a virtual power plant (VPP) with
the existence of a diesel genset (DG) in the day-ahead (DA) and intra-day (ID) power markets. The
study’s unique contribution lies in integrating the VPP system with non-spinning reserve DG while
limiting the DG operation via minimum running time and maximum number of switching times
(on/off) per day. This contribution decreases the renewables’ uncertainty and increases the VPP’s
reliability. Moreover, the study proposes an optimization model as a decision-making support tool
for power market participants to choose the most profitable short-term market. The proposed model
suggests choosing the DA market in 62% of time (from 579 days) based on estimated VPP power
supply, and market prices. Even though there is uncertainty about VPP power supply and market
prices, the division between the plan and actual profits is 1.8 × 106 Japanese yen [JPY] per day
on average. The share of surplus power sold from the mentioned gap is 5.5%, which implies the
opportunity cost of inaccurate weather forecasting. The results also show that the reliability of the
VPP system in the presence of a DG increases from 64.9% to 66.2% for 14 h and mitigates the loss of
power load by 1.3%.

Keywords: virtual power plant; mixed integer programming; short-term power market; spinning
reserves

1. Introduction

In recent years, the integration of distributed energy resources (DERs) into power
systems has been in the spotlight of energy management systems’ scholars. The virtual
power plant (VPP) is a cloud-based distributor that aggregates power generation data from
several DERs (wind, solar, etc.) to facilitate electricity trading and power load balancing
efficiently. The feasibility of a VPP model depends on the operation strategy of DERs
(technical VPP) and the electricity trading system (commercial VPP) [1]. On the one hand,
the technical VPP is highly affected by weather conditions and technologies’ failures, which
requires a strict power planning system [2]. On the other hand, the power trading system
deals with the way electricity is sold and bought between generators and suppliers to
ensure the fulfilment of basic requirements (the selling/buying price, transaction volume of
power, delivery time and its period, as well as block order types) of the power market [3].

Japan Electric Power Exchange (JEPX) is a trading platform for the Japan power
market with forward (year/month/week), day-ahead (day), and intra-day (hour/minute)
markets [4]. The JEPX was established in 2003 to facilitate financial transactions and
enhance competition among market participants. Japan’s retail electricity market has been
fully liberalized since April 2016. A total of 738 retailers accounted for 21.3% of the total
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electricity volume sold in March 2022, while the share of JEPX was 30% (327.2 [TWh]) of
national power trading [5]. The day-ahead (DA) and intra-day (ID) markets are among the
most attractive short-term markets compared to the forward power market. According
to JEPX in 2022 [6], a total of 23 contracts were signed in the forward market to supply
5.9 [MW] of power for 221.6 h with the price of 23.89 [JPY/kWh]. The minimum tradable
amounts in the Japan DA and ID markets are 1 [MW] and 0.1 [MW] with a settlement
period of half an hour, respectively [4].

Participants in the DA market submit their bids one day ahead, which includes power
supply and price for 48 settlement periods (half an hour), before the gate closure [7]. The
real electric power will be supplied the next day, while it may deviate from bid data due
to uncertainty and/or contingency. As a participant in the DA and ID markets, a VPP not
only needs to meet the minimum requirements of these markets but also needs to reduce
its uncertainty [8] and contingency [9].

Major sources of VPP uncertainty include DERs’ power generation, market price,
and demand load [10,11]. Although environmental protection and maximum usage of
renewables are among the initial aims of the VPP system [12], the non-spinning reserve DG
decreases VPP uncertainty and increases its reliability and profitability. The main reason to
integrate the DG unit with VPP is the limited usage time of a DG as a non-spinning reserve.
The advantage of a non-spinning reserve DG is that it synchronizes with the VPP system for
a limited time to trade off among uncertainty, market price, and fossil fuel cost. Moreover,
the limited usage of a non-spinning reserve DG in the VPP system caps its carbon footprint
compared to fully using it as the main VPP generator [13,14].

The purpose of this research is to investigate the effect of a non-spinning reserve DG
on VPP reliability and profitability. To this end, the first step is to limit the usage time
of a DG in the optimization model. This step is carried out via the minimum running
time and maximum number of DG switching on/off times per day. The second step is
to prioritize the usage of renewable generators. This step is figured out through a binary
variable defined for the DG unit. Finally, the third step compares the fuel cost of DG
power generation with grid power supply costs at dispatch time and decides about diesel
operation. This step’s calculations are conducted via an objective function and input power
price data.

The paper structure is as follows: Section 2 reviews the relevant literature on VPP and
its interaction with the short-term power markets. Section 3 introduces the VPP system
and an optimization model to calculate the profitability and reliability of the VPP system.
Section 4 describes the results of the proposed VPP model. Section 5 discusses the research
results and implications of the proposed model in policymaking as well as future research.
Section 6 provides a summary of the main results.

2. Literature Review

The VPP was conceptualized initially to use renewables effectively with combined heat
and power (CHP) to deliver low-priced and reliable power to the market [12]. Depending
on the VPP objectives, different optimization models have been proposed, as follows:

- Techno-economic optimization models (deterministic): The main aim of these models
is to decide about VPP generation units and the economic dispatch of the selected
units. These models maximize total VPP profit by minimizing capital costs and/or
generation costs [15–17].

- Techno-economic optimization models (stochastic): In addition to unit commitment [18]
and economic dispatch, stochastic-based optimization models uncertainties in renew-
able energy generation [19], generation forecasting [20], demand load forecasting [21],
and market price uncertainty [22]. Chance-constraint optimization, scenario-based
optimization, and stochastic robust optimization are among three well-known VPP
operating optimization methods under uncertainty [23].
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- Multi-objective optimization models: These models trade off the VPP objective against
other contradictory objectives such as system operation cost, carbon emissions, grid
stability, power loss reduction, and demand response problems [24–26].

A summary of the different mathematical models used in VPPs is given in [1], includ-
ing linear programming (LP), mixed-integer LP, nonlinear programming (NLP), mixed-
integer NLP, heuristic methods, and simulation models. Regardless of the stochastic models,
several approaches have been proposed to reduce uncertainty in the VPP system, as follows:

Leaving the DA and ID markets: Some researchers have investigated VPP success in a
low-uncertainty market. The balancing and real-time markets are popular low-uncertainty
markets in which the VPP signs a contract and quickly delivers power [27,28]. In other
words, shortening the time between final bid submission and power delivery is a way to
reduce uncertainty.

Staying in the DA and ID markets: Some researchers have proposed staying in the
DA and ID markets and working to reduce uncertainty [29]. Aggregation of several
DERs [30,31], co-production of renewables [32], utilization of energy storage, and demand
load management [33] are among the proposed ways to reduce uncertainty and smooth the
unexpected fluctuation between demand and supply.

Other approaches: Some studies proposed information management among market
participants (using information to adjust their bidding strategies, such as unplanned power
outage information) to avoid unexpected bids in the ID market [34]. Coupling of DA
markets [35] or ID markets [36] are among the other approaches to supply DER power
between two countries with different demand load profiles. Although the integrated DA
or ID markets increase transmission losses, these markets have a huge capacity to absorb
surplus power with flexibility in bid price.

Position of this study: The idea of this study is to stay in the DA and ID markets, reduce
the VPP uncertainty (without using stochastic models [18,19,21,22]), and measure the VPP
profitability. The main differences between this study and previous research [29,30,32,33]
are as follows:

- Unlike previous research, which has focused on energy storage (supply or discharge),
this study utilizes energy storage along with a diesel generator (produce) to reduce un-
certainty. To cap CO2 emissions, this study proposes a non-spinning reserve DG. The
proposed DG’s operation is limited based on two additional constraints: (I) minimum
running time and (II) maximum number of switching times per day.

- Moreover, this study suggests a mixed integer optimization model to support electric
market participants in choosing the most profitable market between the DA and ID
markets. The market selection is figured out in terms of power income in both markets,
selling surplus power, shortage costs, and the operation costs of technologies.

Based on the two ideas mentioned, this study investigates how to reduce the VPP
uncertainty and increase the profitability of the VPP system in the short-term power market.
To this end, the research simulates the profitability and reliability of a centralized VPP in
the Tokyo Metropolitan Area. The VPP accounted for 9.1% of the whole demand load in
the Tokyo Metropolitan Area, which was 15.8 [GW] on average per 30-minute settlement
period from April 2022 to October 2023 [37]. The DERs of the VPP system include solar
and wind facilities, along with battery storage.

3. Materials and Methods

Figure 1 illustrates the flows of data and power in the proposed centralized virtual
power plant. The VPP itself is not the owner of the DERs, but it manages their power
production and sells it in the JEPX short-term markets. The VPP in Figure 1 includes
commercial and technical VPPs. The technical VPP monitors the actual operation of the
DERs, their operation costs, and their utilization. In contrast, the commercial VPP interacts
with the power market via the estimation of bid data that are extracted from DERs planning
capacity, demand load estimation, and weather forecasting [2]. The commercial VPP
enters the short-term power markets (DA and ID markets) through a single daily power
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generation profile. The single daily power generation profile is created by aggregating all
profiles received from the technical VPP. The proposed VPP optimizes its profit via prior
and posterior information and switching between day-ahead and intra-day markets.
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Short-term market with prior information: The commercial VPP will participate in the
DA market if the estimated single-day power generation profile and discharge energy from
the battery meet the minimum power requirements of the DA market. The mixed integer
optimization model is used in this phase to maximize the estimated VPP profit by selecting
either the DA or ID market.

Short-term market with posterior information: The commercial VPP will participate
in the ID market if either of the following conditions is met:

- The estimated VPP power supply does not meet the minimum tradable amount of the
DA market, or

- The optimization model suggests the ID market.

The actual VPP profit is calculated based on posterior information at the end of the
next day. The gap between this phase and the estimated phase is widened by poor weather
forecasting data, which increases the VPP cost.

3.1. Descriptions of VPP Models

The VPP model maximizes its profit (total income—total cost) at the end of the “Actual
phase” as shown in Figure 2. If the VPP meets the DA market requirements, then part of
or whole of the estimated demand, DTotal,E

t , will be fulfilled by the VPP supply. In other
words, if the VPP size is large enough to satisfy the estimated demand, then the entire
demand will be considered a VPP demand. Otherwise, a portion of the estimated demand
will be assumed to be a VPP demand. The portion of the estimated demand, which is called
the bidding data, SVPP,Bid

t , is clarified after conducting auctions in the power market. The
bidding data includes paired data as (SVPP,Bid

t , P*
t ) by which the total expected VPP profit

is calculated for the “Planning phase”. The term P*
t indicates the market power price which

the * sign implies either the ‘DA’ or ‘ID’ terms.
This paper uses Equation (1) to calculate the VPP demand load data (because the scope

of the current research is not to propose the best bidding strategy):
DDA

t = SVPP,Bid
t where S

VPP,Bid
t = max(Φ_DA, SVPP,E

t )

DID
t = SVPP,Bid

t where S
VPP,Bid
t = max(Φ_ID, SVPP,E

t )

(1)
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It is worth noting that if SVPP,E
t = 0, then SVPP,Bid

t will be equal to zero. The actual
profit is calculated at the end of the “Actual phase” based on the following cases:

- The actual power supply by the VPP (SVPP,A
t ) is equal to SVPP,Bid

t : In this case, the
actual profit is the same as the expected profit,

- SVPP,A
t > SVPP,Bid

t : In this case, the actual profit will be greater than the expected
profit due to selling the surplus power. The generation cost of surplus power should
be deducted from the selling price,

- SVPP,A
t < SVPP,Bid

t : In this case, the unmet demand should be supplied by energy stor-
age and either a non-spinning reserve DG or grid power. The actual profit decreases
in terms of power purchases from the grid, diesel operation costs, and a drop in the
selling price compared to the planning price (P∗

t ).
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3.2. VPP Mathematical Model

This section represents the mathematical equations of the proposed model, which
include two objective functions and constraints such as power balance, the VPP’s resource
generation, energy storage, and DG constraints.

3.2.1. VPP Objective Function

The following formula is used to calculate the expected profit in the planning phase:

Max
48
∑

t=1
[BDA(DDA

t PDA
t − max(ΦID, DDA

t − SVPP,E
t )PID

t ) + (1 − BDA)(DID
t PID

t

−max (ΦID, DID
t − SVPP,E

t )PID
t )− (GWind,E

t + GSolar,E
t )CVPP]

(2)
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where (D ∗
t − SVPP,E

t ) is the estimated grid power supply or Sgrid,E
t . Moreover, the term

max(ΦID, D∗
t − SVPP,E

t ) is considered in the objective function if Sgrid,E
t > 0, otherwise, it

will be equal to zero. It is worth mentioning that the value of the second max function in
Equation (2) is specified before running the initial max function. The gap between PDA

t and
PID

t implies the magnitude of the opportunity cost (“The loss of other alternatives when
one alternative is chosen”, Oxford dictionary). The opportunity cost can occur here via
switching from the best market to another due to limited information about weather data
(uncertainty in DER power generation).

The expected profit function is implemented in the presence of VPP constraints, except
for Equations (8) and (25)–(44). Furthermore, power supply by the DG (SDG

t ) is excluded
from Equation (7), and the variable Sgrid,p

t is replaced with Sgrid,A
t . The DA market will be

selected if the unknown binary variable, BDA, is equal to one; otherwise, the ID market will
be chosen. At the end of the next day, the actual profit is calculated as follows:

Max
48
∑

t=1
[BDADDA

t PDA
t + (1 − BDA)DID

t PID
t + SuVPP,max

t PID
t Sushare − Sgrid,A,max

t PID
t

−(GWind,A
t + GSolar,A

t )CVPP − SDG,A
t CDG]

(3)

where Sgrid,A
t is equal to (D ∗

t − SVPP,A
t ), and Sgrid,A,max

t is equal to max (Sgrid,A
t , ΦID). It is

worth mentioning that in Equation (3), the binary variable, BDA, is known and replaced
by the expected profit calculation. The model’s constraints will determine if the unmet
demand is fulfilled by DG power or grid power. Once the VPP relies on grid power to fulfill
its shortage of electricity, it is charged the imbalance cost by the system operator. This study
uses the average seasonal ID price (PID

t ) as a proxy for the imbalance cost. Furthermore,
the model assumes any shortage or surplus power is settled in the ID market before gate
closure (not the real-time market).

3.2.2. VPP Constraints

The “+” sign in Equations (4)–(9) is replaced with “A” or “E” for the actual and
estimated profit objective functions, respectively. The solution of the VPP model must
satisfy several constraints, as follows:

A. Supply–demand balancing constraint:

SVPP,+
t − SlNegative

t + SlPositive
t = BDAD

DA
t + (1 − BDA)DID

t (4)

SlNegative
t × SlPositive

t ≤ 0 (5)

SBat,ch
t + SuVPP

t ≤ SlNegative
t (6)

SBat,disch
t + Sgrid,p

t + SDG,p
t ≤ SlPositive

t (7)

Sgrid,p
t × SDG,p

t ≤ 0 (8)

SVPP,+
t = GWind,+

t + GPV,+
t + SBat,disch

t − SBat,ch
t (9)

The balance between demand and supply is guaranteed via Equations (4)–(9).
Equation (4) specifies that the total power supply from the VPP technologies, grid, DG
(transmission and distribution losses can be added here), and battery charge/discharge
must be equal to the total demand in each period, t. In the planning phase, the right-
hand side of Equations (4) is DDA

t , while in the actual phase the amount of BDA will be
known and either of DDA

t or DID
t will be selected. Equations (5)–(8) assure either of the

following cases:

- Charging power into the battery and surplus power, or
- Discharging power from the battery and either the grid or DG power supply.
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Equation (9) represents that VPP power supply consists of power generation by DERs,
and battery discharging minus battery charging power.

B. Technological constraints of DERs:

The “+” sign in Equations (10) and (11) is replaced with “A” or “E” for the actual and
estimated profit objective functions, respectively.

0 ≤ GWind,+
t ≤ GWind

max (10)

0 ≤ GSolar,+
t ≤ GSolar

max (11)

Equations (10) and (11) imply that the output power of solar panels and wind turbines
must be less than the value of their nominal capacity. This study uses SVPP,A

t data directly
(without access to DER generation separately), but to keep the generality of the model,
Equations (9)–(11) are given here.

C. Energy storage constraints:

SBat,ch
t ≤ Battery capacity (12)

SBat,disch
t ≤ SBat,disch

max (13)

SBat,disch
t ≤ SOCBat

t−1 (14)

SBat,disch
t ≤ SlPositive

t (15)

SBat,disch
t ≥ SOCBat

t−1 − M1 × (1 − BBat,disch
t ) (16)

SBat,disch
t ≥ SlPositive

t − M1 × BBat,disch
t (17)

SBat,ch
t ≤ Battery capacity − SOCBat

t−1 (18)

SBat,ch
t ≤ SlNegative

t (19)

SBat,ch
t ≥ (Battery capacity − SOCBat

t−1)− M1 × (1 − BBat,ch
t ) (20)

SBat,ch
t ≥ SlNegative

t − M1 × BBat,ch
t (21)

SOCBat
t = SOCBat

t−1 − S
Bat,disch
t + SBat,ch

t (22)

SOCmin ≤ SOCBat
t ≤ SOCmax (23)

SOCBat
t=0 = Initial SOC (24)

Equations (12) and (13) set the upper bounds for charging and discharging battery
power in each period. The amount of SBat,disch

max is calculated from battery capacity and
three autonomy hours. Equations (14) and (21) confine the amount of discharging and
charging power from/into the battery while considering the SOC of the battery. For
example, Equations (14) and (17) are equal to SBat,disch

t = min(SOCBat
t−1, SlPositive

t ). The
term M1 specifies an arbitrary large value greater than the maximum value of charging
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and discharging. For confidence, the value of M1 is set to be the battery capacity 589,200.
Equations (22) and (23) represent the energy balance of the battery and its boundaries.
Equation (24) finally assigns an initial value to the SOC of the battery.

D. Non-spinning reserve diesel generator constraint:

GDG
min ≤ GDG

t ≤ GDG
max (25)

GDG
t ≥ SDG,p

t (26)

BDG,i
t ≤ (1 + SDG,p

t − ε) (27)

SDG,p
t ≤ M2 × BDG,i

t (28)

InDG,cmrt
t = BDG,i

t × (InDG,cmrt
t−1 + 1), InDG,cmrt

t=0 = 0, InDG,cmrt
t ∈ {0, 1, . . . , 48} (29)

InDG,csmrt
t−1 = InDG,cmrt

t−1 × (1 − BDG,i
t )× BDG,i

t−1 , InDG,csmrt
t=0 = 0, BDG,i

t=0 = 0, InDG,csmrt
t

∈ {0, 1, . . . , 48}
(30)

BDG,m
t−1 × M2 ≥ (InDG,csmrt

t−1 − L) + ε, BDG,m
t=0 = 0 (31)

(1 − B DG,m
t−1 )× M2 ≥ (L − InDG,csmrt

t−1 )− ε (32)

InDG,csmso
t = InDG,csmso

t−1 + BDG,m
t−1 , InDG,csmso

t=0 = 0 (33)

BDG, f
t−1 × M2 ≥ (In

DG,soo

max − InDG,csmso
t−1 ), BDG, f

t=0 = 0 (34)

BDG, f
t−1 × M2 ≥ (ε − InDG,csmso

t−1 ) (35)

t

∑
i=t−k+1

BDG
t = k ∀ t ∈ [1, .., 48] where {BDG,i

t × BDG,m
t × BDG, f

t = 1} (36)

SDG,A
t = SDG,p

t × BDG
t (37)

Sgrid,A
t =(SBat,disch

t + Sgrid,p
t + SDG,p

t ) − SDG,A
t (38)

E. Additional constraints to adjust the actual profit objective function:

Sgrid,A,max
t ≥ Sgrid,A

t (39)

Sgrid,A,max
t ≥ ΦID (40)

Sgrid,A,max
t ≤ Sgrid,A

t + M1Bgrid
t (41)

Sgrid,A,max
t ≤ Sgrid,A

t + M1(1 − Bgrid
t ) (42)

SuVPP,max
t = BSu

t Su
VPP,A
t (43)

SuVPP,A
t − (ΦID − ε) ≤ M1BSu

t (44)

Equation (25) sets the minimum and maximum loading limits for the DG to avoid
overconsumption of DG fuel. Equation (26) guarantees that the power supply by the DG is
less than or equal to its generation. The diesel genset is turned on if the following conditions
are met:
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1. The initial binary variable of the DG becomes one, or BDG,i
t = 1: Equations (27) and (28)

assign a binary value for the initial DG indicator by which the DG’s operation
is tracked.

2. Minimum running time of the DG, or InDG,mrt
min = L × ∆t: The minimum running

time is used to avoid starting the DG on and off frequently because of inefficient
fuel burning in the startup, warmup, unload, and cool-down phases. The minimum
running time depends on several factors, such as fuel price, diesel capacity, the
control unit of the VPP, and so on (at least 30 min is required because the startup and
warmup phases take at least 4 minutes, and the shutdown and cool-down phases
take more than or equal to 6 min) [38,39], but 30 min is the lowest value. Equation
(33) finds the startup time for the DG via the InDG,mrt

min variable if the DG is called
on. Equations (29)–(32) count the number of consecutive settlement periods to ensure
that their cumulative values are greater than or equal to L. The terms InDG,cmrt

t and
InDG,csmrt

t−1 calculate the count and cumulative sum of the consecutive settlement
periods. The middle binary variable of the DG, BDG,m

t , represents if the DG meets the
minimum running time constraint. The ε and M2 indicate the epsilon (small value)
and a big value (upper bound), respectively. This study sets 0.0005 and 48 for ε and
M2, respectively.

3. Maximum switching on/off times per day, or InDG,soo
max : Equations (33)–(36) figure out

if the number of GD switching times is less or equal to its threshold. The variable
InDG,csmso

t adds up the cumulative sum until its value is less than the InDG,soo
max value

using the middle binary variable of the DG. The final binary variable of the DG,
BDG, f

t , specifies the settlement periods in which the DG is allowed to operate based
on the maximum switching times’ condition. Equation (36) finally calculates the DG
indicator, which represents which settlement period is turned on.

Equations (37) and (38) update the power supply by the DG and grid network.
Equations (39)–(44) guarantee that the selling/buying power requirement to/from the
ID market is met. According to Equations (43) and (44), if SuVPP,A

t is greater than or equal
to ΦID, then the amount of selling surplus will be equal to SuVPP,A

t , otherwise, it will
be zero.

3.3. Reliability and Profitability of the VPP System

Reliability: The VPP system is 100% reliable if it supplies power based on its commit-
ment (bidding data) without relying on grid data. Thus, the failure rate of the VPP system,
λ, is defined as the percentage of grid power incorporation needed to fulfill the bidding
data as follows:

λVPP
t =

Sgrid,A
t
D∗

t
=⇒ λ =

∑T
t=1 λVPP

t
T

(45)

Equation (45) considers the time and the amount of power purchased from the grid
in the reliability calculation. Based on Equation (45), any power purchase from the grid
network is considered a downtime [40] of the VPP system. Therefore, the following
equation is used to calculate the reliability of the VPP system:

Rh = e−λ×h × 100, 0 ≤ h ≤ 24 h (46)

The term Rh indicates the reliability of the VPP system or the probability of the VPP
system supplying continuous power for a specific hour without relying on grid power.

Profitability: The VPP will earn all its profit if it generates all declared bidding data
without relying on grid power; otherwise, its profit will decline. The VPP will keep its
profit and fulfill its bidding if the DG generates power at a cheaper cost than the ID market
price. Thus, the DG profit protection is calculated as follows:

Pro f it Protection = SDG,A
t

∣∣∣PDA
t − PID

t

∣∣∣ (47)
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3.4. Model Data

As shown in Table 1, the scope of data in this research is limited to market and power
generation data. The former data was obtained from the JEPX website. The latter data
was downloaded from the Tokyo Electric Power Company’s website (TEPCO). Power
generation data consisted of actual and estimated data, which indirectly considered the
weather impact on DERs power generation and demand load variations.

Table 1. Data types and their sources.

Data Type of Data Data Collected
Period

Data
Resolution Reference

Demand load
Estimated

1 April 2022–31
October 2023

30-min [37]

Actual

Renewable power
generation

Estimated
Actual

Non-renewable power
generation

Estimated
Actual

Electric power prices
Day-ahead

1 April 2022–31
October 2023

30-min [6]
Intra-day

Electric power volume
Day-ahead
Intra-day

4. Results

The proposed model maximizes the daily profit calculated from selling electric power
in both the DA and ID markets, operation and maintenance costs of technologies, and
power purchased from the grid. Table 2 represents operation costs and the initial values of
the model’s parameters, as well as additional data about VPP unit supply cost and capacity
calculation for the DG and battery.

Table 2. Initial values of the optimization model’s parameters.

Unit Parameters Initial Value Reference

Battery
Initial SOC [kWh] 117,840 Assumed
Max discharge * [kWh] 196,400 Assumed
Capacity * [kWh] 589,200 Estimated

Diesel

Maximum capacity [kW] 84,400 Estimated
Min power generation [kW] 0.3 × 84,400 [41]
Natural gas fuel cost [JPY/kWh] 9.75587 ** [42]
Min diesel running time [min] L × ∆t = 30

[38]
Warmup and cool-down time [min] 10
Max switching on/off per day 2 Assumed

VPP Supply cost [JPY/kWh] 2.6208 Estimated

Market Minimum DA requirement [kW] 1000 [4]

Surplus power Selling surplus power in ID market [%] 100 Assumed
* Three hours of autonomy ** = 0.067 × 145.61 (as of 13 December 2023, the exchange rate is 1 USD = 145.61 JPY).

VPP supply cost: According to [43], the operation and maintenance costs of wind
turbines account for 20–25 percent of the total levelized cost per kWh produced over their
lifespan. In 2022, the levelized cost of wind energy was 20 [JPY/kWh] [44]. Therefore, the
estimated operation and maintenance cost of wind energy will be equal to 4.5 [JPY/kWh].
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According to [45], Japan installed 8767 [MW] solar power capacity by 2020, and its
annual generation was 89,279.55 [GWh] [46]. The operation and maintenance costs of
utility-scale solar power are around 4200 [JPY/kW] [47]. Therefore, the estimated operation
and maintenance cost of solar power is 2.45 [JPY/kWh].

The shares of solar and wind power in Japan’s total electricity generation were 9.9%
and 0.9%, respectively, in 2022 [48]. Therefore, the estimated VPP operation and mainte-
nance cost in this study is 2.6208 [JPY/kWh].

It is worth mentioning that the storage operation and maintenance costs were in-
significant compared to the wind and solar costs. The estimated variable operation and
maintenance cost of a battery is 0.3 [cents/kWh/year], while its fixed value ranges between
$6–20/kW/year [49]. To this end, this research skipped considering it in the calculations.

Diesel and battery capacity: To calculate the DG and battery capacity, first the average
actual and estimated power generation for each settlement were calculated (Figure 3) from
April 2022 to October 2023. If the actual renewable power in a specific settlement was
greater than the estimated power, then their difference was assumed to charge into the
battery. If the actual renewable power in a specific settlement was less than the estimated
power, then their difference was considered discharging power. After that, the following
calculations were used to extract the battery capacity:

Battery capacity = autonomy hours × min (charging power, discharging power)

charging power = max (charging power1, . . . , charging power48)

discharging power = max (discharging power1, . . . , discharging power48)
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This study assumed three hours of autonomy for battery discharge. If the discharge
value was greater than the SOC value, then their difference was assumed to be fulfilled via a
diesel generator. The maximum amount of these difference values was considered the diesel
capacity (84,400 [kW]). The rational designing method proposed in [50,51] was applied to
avoid DG oversizing. According to Figure 3, the DG capacities based on estimated and
actual power generation are 85,126 [kW] and 98,286 [kW], which imply that the selected
DG size is acceptable.

4.1. VPP Optimization Model’s Results

The proposed optimization model was implemented in GEKKO [52] for 579 days
(Table 1). According to the expected optimization model (Equations (2) and its constraints),
the VPP is recommended to participate in the ID market for 217 days. The importance of
the expected optimization model in market selection arises from the closeness of the VPP
power generation and minimum power requirement of the market, as well as the DA and
ID price variations.



Energies 2024, 17, 2121 12 of 19

A time series of the actual power generation of the DERs and demand load data for
four days are shown in Figure 4 (upper half). It is worth noting that the DERs’ estimation
power is assumed to be the demand load in this study by considering the lower bounds
for the DA and ID markets given in Equation (1). This is an important issue because the
daily and annual profits depend on demand load (or the DERs’ estimation power in this
study). The actual power generation in the early hours of four days is slightly greater than
the bidding data, while there is a large gap between them in the afternoons and evenings.
The lower half in Figure 4 displays the share of energy storage, the DG, and grid power in
balancing the demand load. As shown in the lower half of Figure 4, significant power was
purchased from the grid network in the afternoon and evening of the last two days. The
DG generated power for two consecutive hours on 11 August and for four hours on 12 and
14 August, while the power shortage on 10 August was supplied by the battery and grid
power. DG production depends on the shortage of electricity, the SOC of the battery, the
DG capacity, and the DG constraints (minimum running time and maximum switching
on/off times per day).
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Figure 4. The upper half of the graph represents the demand load and actual renewable energy
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power, as well as battery charge and discharge.

Figure 5 demonstrates the expected and actual profit of the VPP system based on
the proposed optimization model, which switches between the DA and ID markets. The
expected value indicates the amount of profit based on either the DA or ID data in the
planning phase one day ahead. The actual value also represents the total profit calculated
at the end of the day. The gap between the monthly data for these two metrics implies the
estimation or uncertainty of DER generation. The total expected and actual profits over
19 months were 561,979 and 560,918 million JPY, respectively. The share of selling surplus
power accounted for 5.5% of the expected profit, which implies an underestimation of
DER generation. If the VPP submitted the best bid, it would increase the actual profit to
30,937 × 106 JPY. In other words, the opportunity cost of inaccurate weather forecasting
was 5.5%, or 5.3 × 106 JPY per day.
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Figure 5. Monthly power generation costs plus expected and actual profit of the VPP system.

Figure 5 shows that the highest cost of the system belongs to DER technologies,
followed by grid cost (power purchased from the grid). The monthly cost of the DG is not
remarkable compared to the DERs and grid costs because of the DG’s constraints. In other
words, the defined DG’s constraints do not allow the DG to generate power anytime.

4.2. VPP Reliability and Profitability Results

Figure 6 depicts the failure rates and reliability curves with and without a diesel
generator in the VPP system. The curve implies the probability of supplying continuous
power (without relying on grid power) for 24 h. As shown in Figure 6, the minimum daily
reliability of the current VPP system is 48%, which indicates the stability of the proposed
VPP system to fulfill the whole bidding data in a day. For any period, shorter than 24 h,
the reliability of the VPP power supply increases. For example, the VPP system is reliable
enough to supply continuous power for 14 h with a probability of 64.9% without the DG.
In contrast, the probability of generating less power than the demand load (bidding data)
in 14 h is 36% (the loss of load). Adding the DG with an 84,400 [kW] capacity increases the
reliability of the VPP system by 66.2% and mitigates the loss of power load by 1.3%. In other
words, the DG with an 84,400 [kW] capacity compensates 1.3% of the DER uncertainty. The
reliability of the VPP system will reach 68% if the diesel generator capacity increases to
253,200 [kW]. The VPP system will be more stable if its failure rate decreases (reducing its
dependency on grid power). Generally, the VPP system’s reliability increases if the gap
between bidding and estimated renewable power generation data narrows.

Energies 2024, 17, x FOR PEER REVIEW 13 of 19 
 

 

 
Figure 5. Monthly power generation costs plus expected and actual profit of the VPP system. 

Figure 5 shows that the highest cost of the system belongs to DER technologies, fol-
lowed by grid cost (power purchased from the grid). The monthly cost of the DG is not 
remarkable compared to the DERs and grid costs because of the DG’s constraints. In other 
words, the defined DG’s constraints do not allow the DG to generate power anytime. 

4.2. VPP Reliability and Profitability Results 
Figure 6 depicts the failure rates and reliability curves with and without a diesel gen-

erator in the VPP system. The curve implies the probability of supplying continuous 
power (without relying on grid power) for 24 hours. As shown in Figure 6, the minimum 
daily reliability of the current VPP system is 48%, which indicates the stability of the pro-
posed VPP system to fulfill the whole bidding data in a day. For any period, shorter than 
24 hours, the reliability of the VPP power supply increases. For example, the VPP system 
is reliable enough to supply continuous power for 14 hours with a probability of 64.9% 
without the DG. In contrast, the probability of generating less power than the demand 
load (bidding data) in 14 hours is 36% (the loss of load). Adding the DG with an 84,400 
[kW] capacity increases the reliability of the VPP system by 66.2% and mitigates the loss 
of power load by 1.3%. In other words, the DG with an 84,400 [kW] capacity compensates 
1.3% of the DER uncertainty. The reliability of the VPP system will reach 68% if the diesel 
generator capacity increases to 253,200 [kW]. The VPP system will be more stable if its 
failure rate decreases (reducing its dependency on grid power). Generally, the VPP sys-
tem’s reliability increases if the gap between bidding and estimated renewable power gen-
eration data narrows. 

 
Figure 6. Reliability curves for the VPP system under three different DG capacities. 

As shown in Figure 7, the annual profit protection of the DG in the VPP system is 223 
× 106 [JPY] with an 84,400 [kW] DG capacity. The annual profit protection increases by 
more than the proportional change in the DG capacity. The results of the annual DG profit 
protection imply that variable returns scale with an increase in the capacity of the DG. 

Figure 6. Reliability curves for the VPP system under three different DG capacities.

As shown in Figure 7, the annual profit protection of the DG in the VPP system is
223 × 106 [JPY] with an 84,400 [kW] DG capacity. The annual profit protection increases
by more than the proportional change in the DG capacity. The results of the annual DG
profit protection imply that variable returns scale with an increase in the capacity of the
DG. Furthermore, the findings of reliability and profitability infer that the VPP system can
increase its profit by adding the DG to the system. Selection of the correct DG capacity is



Energies 2024, 17, 2121 14 of 19

very important in the uncertainty reduction of the VPP system, which depends on the DG
constraints set on the optimization model, bidding data, and accurate estimation of DER
power generation.
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5. Discussion

The technical and commercial VPP should work closely together to reduce the VPP’s
uncertainty. The former one indicates the VPP’s operation strategy of DERs, and the latter
one focuses on the electric power trading market. A successful VPP system attempts to
decrease the uncertainty of the VPP system and increase profitability and reliability.

VPP profit after switching between the DA and ID markets: According to the proposed
model, a VPP system will be able to stay in the short-term market if it combines various
DER technologies to meet the minimum power requirement of the market. A successful
policy implementation involves establishing a large VPP generation capacity or reducing
the minimum power requirement of the market. These two factors provide a competitive
power market with further VPP systems that are trying to increase their profitability
and reduce their uncertainty. This study proposed a VPP system with 1.5 GW average
generation capacity to meet the DA power market. The model selected either the DA or ID
markets by calculating and comparing their daily profits. The model selected 217 days out
of 579 days to take part in the ID market, while for the remaining days, the DA market was
beneficial to the VPP.

VPP profit with the existence of a non-spinning DG: Although the optimization model
chose the market with extra profit, uncertainty in weather forecasting (DER generation
capacity) changed the final profit notably. The final VPP profit was more than the expected
profit because of a slight bias toward underestimating the DER generation capacity. The
proposed non-spinning reserve DG was able to compensate for a part of the forecasting
error (1.3%). The non-spinning reserve DG protected some profit that could have been lost
(annual profit protection was 223 × 106 JPY). Thus, it is proposed to use a diesel generator
in the VPP system to make up for a part of the forecasting error and increase the reliability
of the VPP system.

Future work will investigate small-scale VPP constraints under the current JEPX
system, particularly the long consecutive bid interval and minimum power requirement.

6. Conclusions

This research investigated the profitability and reliability of a VPP model with a 1.5 GW
generation capacity in Tokyo Metropolitan Area, Japan. To calculate the profitability of the
VPP system, a two-step optimization model was proposed. In the first step, a profitable
daily market between the day-ahead (DA) and intra-day (ID) markets was selected based
on estimated generation and declared bidding data one day ahead (expected profit). In the
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second step, the actual generation data was used to calculate the actual profit at the end
of the day. Then, the reliability of the VPP system in the selected market was calculated.
Although the reliability of the VPP system was highly influenced by its capacity, the non-
spinning reserve diesel generator (DG) was used for compensating a part of the weather
forecasting division (renewable power generation). Two constraints of minimum running
time and maximum switching on/off times per day were applied to limit the DG power
generation to profitable hours as well as to cap the carbon footprint of the DG.

The proposed optimization model suggested the ID market for 217 days out of
579 days (38%). Participating in the DA market generated a greater profit for the VPP in
the remaining days. The total expected and actual profit were 561,979 and 560,918 million
JPY for 19 months, respectively (in this study 1 USD = 145.61 JPY). The share of surplus
power selling was 30,937 × 106, which implied the opportunity cost of inaccurate weather
forecasting. Inaccurate weather forecasting (DER power generation) caused the VPP to
submit bid data that was different from the best bid.

The reliability analysis data showed that the proposed VPP was able to fulfill the
bidding data continuously for 24 h with a probability of 48%. The reliability of the VPP
system varied exponentially for a period of less than 24 hours. The daily reliability of the
VPP system to supply continuous power for 14 h was 64.9%. In contrast, the probability of
generating less power than the demand load in 14 h was ~36% (the loss of load). Adding a
DG with an 84,400 [kW] capacity increased the reliability of the VPP system by 66.2% and
mitigated the loss of power load by 1.3%. The annual profit protection of the DG with the
stated DG capacity was 223 × 106 JPY. An increase in the DG capacity increased the annual
profit protection by more than a proportional change, which implied increasing returns to
scale profit protection.
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Nomenclature

Nomenclature

Majority of variables’ format: AB,D
C

A refers to Demand, Generation, Supply, Price, Surplus, State of charge (SOC), Cost, Integer/Binary/Slack variables,
B specifies source of power supply (technology), demand sources, market types, share of selling power, negative/positive
slack variable
C indicates settlement period, minimum or maximum capacity for a technology, and
D represents additional information such as estimated or actual power supply,
For example, Sgrid,E

t : represent estimated grid supply power at settlement period t.

https://www.tepco.co.jp/en/forecast/html/download-e.html
https://www.jepx.jp/electricpower/market-data/spot/
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Input Variables Description Unit

DTotal,E
t Total estimated demand load at period t kW

DDA
t VPP day-ahead (DA) demand load at period t kW

DID
t VPP intra-day (ID) demand load at period t kW

GWind,A
t Actual power generation by wind turbine at period t kW

GWind,E
t Estimated power generation by wind turbine at period t kW

GSolar,A
t Actual power generation by solar panel at period t kW

GSolar,E
t Estimated power generation by solar panel at period t kW

GDG
t Power generation by tDG at period t kW

PDA
t Day-ahead power price at period t $/kW

PID
t Intra-day power price at period t $/kW

SVPP,E
t Estimated VPP power supply at period t kW

SVPP,Bid
t VPP power supply based on bid data at period t kW

SVPP,A
t Actual VPP power supply at period t kW

Intermediate Variables Description Unit

SOCBat
t Battery state of charge at period t kW

Decision variable Description Unit

Continuous

SBat,disch
t Discharging power from battery at period t kW

SBat,ch
t Charging power into battery at period t kW

Sgrid,E
t Estimated supply power by grid at period t kW

Sgrid,p
t Possible supply power by grid at period t kW

Sgrid,A
t Actual supply power by grid at period t kW

Sgrid,A,max
t Maximum between Sgrid,A

t and ΦID at period t kW

SDG,p
t Possible supply power by DG at period t kW

SDG,A
t Actual supply power by DG at period t kW

SuVPP
t VPP surplus power at period t kW

SuVPP,max
t Maximum between SuVPP

t and ΦID at period t kW

Binary

BDA Binary variable for day-ahead market

Bgrid
t Binary variable for grid power selling at period t

BSu
t Binary variable for surplus power selling at period t

BDG
t Binary variable for DG at period t

BDG,i
t Initial binary variable for operation of DG at period t

BDG,m
t Middle binary variable for operation of DG at period t

BDG, f
t Final binary variable for operation of DG at period t

BBat,ch
t Binary variable for battery charging at period t

BBat,disch
t Binary variable for battery discharging at period t
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Integer

InDG,cmrt
t Counting number of running times for each possible operation period at period t

InDG,csmrt
t Cumulative sum of running times for a day until period t

InDG,csmso
t Cumulative sum of maximum switching on/off times until period t per day

InDG,mrt
min Minimum running time of DG operation (minute)

InDG,soo
max Maximum number of DG switching on/off times per day

Slack variable Description Unit

SlNegative
t Negative slack variable at period t kW

SlPositive
t Positive slack variable at period t kW

Model Parameters Description Unit

SBat,disch
max Maximum discharging power from battery at period t kW

SOCmax Maximum SOC of battery (80% of battery capacity) kWh

SOCmin Minimum SOC of battery (20% of battery capacity) kWh

CDG Operation cost of DG $/kW∆t

CVPP Operation cost of VPP $/kW∆t

GDG
max Maximum power generation capacity of DG kW

GWind
max Max power generation capacity of wind turbine kW

GSolar
max Max power generation capacity of solar panel kW

GDG
min Minimum power generation of DG kW

Sushare Share of selling surplus power in ID market %

Other symbols Description

Rh VPP system reliability at hour h %

λVPP
t VPP system failure rate at period t %

λ Failure rate of the VPP system %

∆t Settlement period (here 30 min) minute

ε Epsilon or small value (here ε = 0.0005)

M1 Big number or Big-M (here M1 = 589,200)

M2 Big number or Big-M (here M2 = 48)

T Time horizon of optimization (Number of days × settlement periods)

ΦDA Minimum tradable amount in DA market kW

ΦID Minimum tradable amount in ID market kW
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