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Abstract: An optimization model that may be applied to analyze building retrofit strategies is
presented in this research. The aim of this research paper is to identify the optimal thermal envelope
configuration that will assure the minimum energy requirement for heating in the case of a residential
building, while also considering price restrictions obtained through a specific market survey. To
achieve this, several values for the following parameters are considered: thermal insulation materials’
conductivities and thicknesses, windows’ overall heat transfer coefficients and total solar energy
transmittance and doors’ thermal proprieties. Additionally, this paper presents a method used to
find the best option from among the available heat pumps that could cover most of the energy
requirements for heating and domestic hot water systems, also considering the products’ prices.
The proposed method is based on a Non-dominated Sorting Genetic Algorithm II (NSGA-II) model
developed in the Pymoo (Multi-Objective Optimization in Python) library. The result shows that
the energy requirement for heating can be reduced by up to approximately 75% compared to that
obtained in the case of a non-insulated building by using suitable insulation materials and doors and
windows with superior thermal proprieties chosen by the NSGA-II.

Keywords: non-dominated sorting genetic algorithm II; optimization techniques; building refurbishment
process; cost-efficient strategies

1. Introduction

Buildings, as significant energy consumers that are steadily growing, are a crucial
actor in the European Union’s (EU’s) energy plan. Buildings account for over 40% of the
total energy consumed in the EU sectors [1]. Approximately 45% of the total primary
energy consumption in Romania is attributed to the country’s building stock, which mainly
consists of old and energy-inefficient buildings [2]. Approximately 75% of all building
structures in the EU are residential, and the large majority (80%) were built before 1991,
when no energy-efficiency guidelines were available, suggesting inadequate or nonexistent
thermal insulation [3]. These facts highlight the necessity of appropriate and prompt action
aimed at mitigating the energy impact of buildings across the EU. For these reasons, new
methods for improving the energy efficiency of existing buildings are continuously studied.

A comprehensive literature survey showed that different optimization methods have
been successfully applied for analyzing buildings’ energy infrastructure, but few publica-
tions have taken price constraints into consideration. For example, in ref. [4], a compre-
hensive study regarding combining EnergyPlus V8.4.0 (building energy simulation tool)
simulation results with the NSGA-II was presented, thus obtaining the optimal solutions
to improve the building’s energy performance. Additionally, the effects of the building
orientation, window sizes and the overhang specifications on the annual cooling and light-
ing building energy demands were studied in Iran’s four climate zones. The objective
functions were minimizing the annual cooling and lighting energy consumptions. The
results showed that the optimum configuration reduced the total annual building energy
consumption by up to 23.8%.
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The refurbishment process optimization was analyzed in a region of Finland, where
a building constructed in 1960s was considered [5]. Here, an NSGA-II was developed
to identify the best refurbishment strategies for the energy performance of the building,
while also considering the minimization of the implicit life-cycle costs. The following
renovation solutions were analyzed: the thermal insulation of the external walls, the use
of PV production systems and several heat pump systems. The results underlined that
the ground source heat pump has the greatest economic feasibility and causes the biggest
improvement in the energy performance of the building.

A Non-dominated Sorting Genetic Algorithm II was also developed in the case of a
residential building located in the Bahamas to optimize the carbon emissions and life-cycle
costs [6]. The variables used in this algorithm were the type of thermal insulation used for
the walls and the type of roof construction (standard, insulated, reflective and reflective–
insulated), both the type of window glazing and the lighting systems, the surface, the tilt,
and azimuth angles of the photovoltaic panels, and finally, the storage battery capacity.
The results showed that the optimal solutions are obtained when using insulation with
thermal resistance between 6 and 7 (m2·K)/W for the interior walls and between 6 and
10 (m2·K)/W for the roof, and double-glazed windows with a low emissivity coating.

A comprehensive thermal envelope optimization strategy was analyzed for a residen-
tial building located in Turkey, also using the NSGA-II developed in MATLAB [7]. The
objective functions were minimizing the energy required for heating and cooling under
investment cost constraints. The optimization algorithm was developed considering the
fallowing variables: the building’s orientation, thermal envelope’s material types and
thickness, and windows’ type and dimensions. The results underlined that non-dominated
solutions were in the range of $135,000 to $205,000 in terms of the initial investment cost in
the case of this heating climate zone. The optimal energy required for heating and cooling
varied between 211,000 and 272,000 kWh.

A similar approach was considered for a building located in France [8]. Here, the
objective functions were minimizing the building’s primary energy consumption for heating
and lighting and the degree–hours of summer thermal discomfort. The results showed
that the optimal solution for the northern regions of France was obtained when using
a well-insulated envelope, small skylight area, and standard roof. In the case of the
southern region, the optimal solutions had a non-insulated ground slab, reflective cool
roof, and large skylight area. The optimal building energy consumption varied between
18.9 kWh/m2/year in case of the southeastern area and 65.7 kWh/m2/year in case of the
northeastern area.

An NSGA-II algorithm written in the Java programming language was used to opti-
mize the heating and cooling energy consumption in the study from ref. [9]. The variables
used in this algorithm were the windows’ properties and configuration and the rooms’
position, floor height and wall orientation. The selection of an appropriate window size
and orientation was made considering the facts that it must assure proper daylighting
and natural ventilation and decrease or increase the solar radiation gained, depending
on the season. The optimal configuration was a window positioned at the center (1.1 m
away from the edge) having around a 48% window-to-wall ratio (WWR) with a horizontal
configuration. By using this configuration, a reduction of 26.1% in the annual energy
consumption was obtained in the case of a room located on the 15th floor compared to the
baseline room model.

The GBDT (Gradient-Boosting Decision Tree) and NSGA-II algorithms were com-
bined to optimize the energy consumption and thermal comfort of residential buildings
in China [10]. Twenty passive design parameters were analyzed, including the effects
of windows on natural ventilation. According to the optimization results, there was an
88.2% energy savings rate and a 37.8% improvement in thermal comfort compared to the
base-case construction.

A Non-dominated Sorting Genetic Algorithm-II was combined with a Multilayer
Perception Artificial Neural Network (MLPANN) metamodel to maximize the energy
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efficiency and thermal comfort of a building in China [11]. The results pointed out that,
by using the optimal building design, the heating energy consumption could be reduced
by up to 78.2% and the cooling energy consumption decreased by 71.3% compared to the
initial configuration.

A recent study presented in ref. [12] combines a Bayesian optimization with extreme
gradient-boosting trees (BO-XGBoosts) with an NSGA-II to optimize a residential building’s
performances. The objective functions were minimizing the building’s energy consumption
and maximizing the daylighting performance and indoor thermal comfort. The results
showed that by using the optimal configuration, the energy consumption was decreased by
44.1%, thermal comfort index was reduced by 10.9%, and daylighting performance was
improved by 1.7% compared to the initial configuration.

Starting from this literature survey, the present paper proposes a method for determin-
ing the optimal thermal envelope configuration in the case of a generic building located
in Bucharest, Romania, considering two requirements: obtaining the minimum energy re-
quirement for heating and also considering the price restrictions obtained through a specific
market survey. The current research is an improved version of the optimization method
studied in the article entitled “Optimization of energy rehabilitation processes of existing
buildings”, authors: A.E. Nicolae, H. Necula, and B. Cărut,as, iu, in which a simplified model
to optimize the energy required for heating and the cost of the insulation materials was
presented [13]. The differences between the simplified model and the improved variant are
the following:

• In the simplified model, a Genetic Algorithm (GA) was used, while the current ap-
proach proposes a Non-dominated Sorting Genetic Algorithm (NSGA-II).

• The simplified model did not use the Pymoo (Multi-Objective Optimization in
Python) library.

• The simplified model had fewer variables and input data than the improved model;
thus, the windows’ overall heat transfer coefficients and total solar energy trans-
mittance and the doors’ thermal proprieties were not initially simulated and prede-
termined thermal proprieties were used. The search space was represented by only
thickness–thermal conductivity pairs. In addition, the exterior walls and the floor were
insulated with expanded polystyrene and extruded polystyrene, but the roof-ceiling
was not insulated.

• In the simplified model, the computational outdoor temperature was considered
−15 ◦C, according to the SR1907-1 Standard [14]. The average value of the solar
radiation intensity was considered to be 77.03 W/m2 [15]. The current model uses the
monthly average solar radiation intensity and the monthly average outdoor temperature.

• In the simplified model, the average ground temperature was considered to be
θground = 10 ◦C at a depth of 2 m (δp) according to [16].

• The simplified model did not include the heat pump-choosing algorithm.

The current research is structured as follows. Section 2 presents the steps taken in
developing an NSGA-II (Non-dominated Sorting Genetic Algorithm II). Section 3 places
an emphasis on the application of a Non-dominated Sorting Genetic Algorithm II in the
case of the studied building, with the exterior walls insulated with expanded polystyrene,
the floor insulated with extruded polystyrene and the roof–ceiling insulated with mineral
wool. The NSGA-II model was developed in the Pymoo (Multi-Objective Optimization
in Python) library. It was used to find the optimal choice among a considered search
space comprising different values of thicknesses and thermal conductivities for insulation
materials, and thermal properties for both windows and doors. The model indicates the
materials that ensure the lowest energy requirement for heating, while also considering
price restrictions obtained through a specific market survey. Finally, Section 4 presents
a method, implemented in Python V3.11, to find the best heat pumps that cover most
of the energy requirements for heating and domestic hot water systems, considering
two important variables: the energy performances and the unit price.
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2. The Steps of the Non-Dominated Sorting Genetic Algorithm II

The Non-dominated Sorting Genetic Algorithm II was developed by Deb et al. in
2002 [17]. The algorithm is very similar to the GA. The NSGA-II differs from the simple GA
in the way of selecting the parents, because the NSGA-II uses non-dominated sorting and
crowding-distance sorting. The NSGA-II model’s development requires implementing the
following procedures:

1. Establishing the input parameters: the population size, the number of generations,
crossover probability, and mutation probability [18]. A random initial population
is generated. The objective functions are evaluated. The parents are selected using
crowding binary tournament selection.

2. Creating the offsprings from the initial parents using the standard operators of the
GA (crossover and mutation); thus, a combined population consisting of parents and
offspring is created [19].

3. Sorting the combined population based on the non-dominated ranks and crowding-
distance. Several non-dominated fronts (Pareto fronts) are produced. Each member in
each front has assigned a fitness value or rank [20].

“Pareto Front is a set of nondominated solutions, being chosen as optimal, if no
objective can be improved without sacrificing at least one other objective” [21]. The
dominance principle is as follows: “A solution x is said to dominate the other solution y if
the solution x is no worse than y in all objectives and the solution x is strictly better than y
in at least one objective” [18].

If the size of the first front is less than N, where N represents the size of the population,
all the individuals from this front will be chosen for the new generation. The remaining
individuals, calculated as a difference between the size N of the population and the number
of individuals belonging to the first non-dominant front, are chosen from the next non-
dominated fronts in the order of their rank, maintaining the same rule. Some of the
individuals from the last front are selected to pass into the next generation using the
crowding-distance comparison operator in descending order [17]. In other words, only
some of the individuals belonging to the first dominant front pass into the next generation.
The best N individuals with higher diversity are selected using the non-dominated sorting
and crowding-distance sorting, while discarding the rest of the solutions [22]. The whole of
this complex process is summarized in Figure 1.
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Figure 1. Non-dominated Sorting Genetic Algorithm II.

Elitism is also used to ensure that the individuals belonging to the higher-ranking
fronts are kept and passed to the next generation. According to the elitism paradigm,
the best individuals from the previous generation are copied into the next generation
without any changes. In this way, the convergence speed of the algorithm increases [23]. In
crowding-distance sorting, individuals are ranked inside a front based on how far apart
their two closest neighbors are from one another. It is preferable that the crowding distance
has a large value [24].
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4. Application of crossover and mutation to the new population of size N to produce a
new combined population consisting of parents and offspring. The algorithm keeps
running from step 2 until the maximum number of generations is achieved [25].

3. Case Study

In this study, a hypothetical facility located in Bucharest, Romania, emulating a single-
family residential building, was proposed. The monthly average solar radiation intensity
for the Bucharest area was considered according to Methodology MC001—Part I, annex
A.9.6, the monthly average of the outdoor temperatures according to SR4839 Standard,
while the ground temperature was obtained from the RETScreen software V9.0 [26,27].
These data are summarized in Table 1.

Table 1. Climate data from the Bucharest area.

Month
The Monthly Average

Solar Radiation Intensity
[W/m2]

The Monthly
Average Outdoor
Temperature [◦C]

Ground
Temperature [◦C]

January 59.3 −1.4 −2.2
February 87.3 0.1 0.0

March 91.4 5.1 5.5
April 91.6 11.1 12.0
May 86.0 16.8 18.3
June 92.8 20.7 23.1
July 89.9 22.6 26.0

August 123.8 21.8 25.6
September 119.1 16.5 19.5

October 104.1 10.5 12.2
November 57.4 4.5 5.2
December 53.0 −0.3 −0.7

According to the national SR1907-2 standard [28], the computational indoor tempera-
ture was considered to be 20 ◦C for the heating period. The aim of this study was not to
analyze the thermal coupling of the interior thermal zones between different rooms. Thus,
the building was considered a single thermal zone, having a constant interior temperature
of 20 ◦C. Moreover, it was considered that the heating season lasts 4536 h per year: 744 h in
January, March, October and December, 720 h in November, 672 h in February and 168 h
in April. Based on the SR 4839 standard, the heating season in the Bucharest area lasts
189 days, assuming an average outdoor temperature of 12 ◦C and a computational indoor
temperature of 20 ◦C [27].

In the case of the non-insulated building, it was considered that the windows have
an overall heat transfer coefficient (Uw—value) of 5.4 W/(m2·K) and total solar energy
transmittance of 0.85. The door has an overall heat transfer coefficient of 2.47 W/(m2·K).
The U values of the exterior walls, of the floor and of the roof–ceiling before the thermal
insulation of the envelope were 0.723 W/(m2·K), 0.485 W/(m2·K) and 2.718 W/(m2·K).
These values were obtained considering the heat transfer by conduction and convection
and the thermal resistance of the ground. The energy requirement for heating in the case
of the non-insulated building was 385.128 kWh/m2/year (this value was obtained before
applying the thermal renovation measures). This value took into consideration the heat
losses by infiltration and the heat transfer by transmission between the heated space and the
outside environment due to temperature differences but did not consider the thermal mass,
thermal inputs from solar radiation and internal heat gains from occupants, equipment,
and lighting.

To reduce this value, the exterior walls, floor, and roof–ceiling were insulated with
expanded polystyrene, extruded polystyrene and mineral wool, respectively. The door and
the windows were replaced with ones with superior thermal proprieties, as presented in
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Section 3.3. Figure 2 specifies the construction materials in the case of the non-insulated
and insulated buildings (the insulation materials are written in the red boxes).
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Furthermore, a Non-dominated Sorting Genetic Algorithm II is developed in Pymoo,
aiming to identify the optimal choice among the various values of thicknesses and ther-
mal conductivities for the insulation materials, and the thermal properties for both the
windows and doors, considering two requirements: obtaining the lowest energy require-
ment for heating and also considering the price restrictions obtained through a specific
market survey.

3.1. Optimization Problem Development

The first step in the simulation was to define the problem optimization inherited
from the ElementwiseProblem (object-oriented definition, which implements a function
evaluating a single solution at a time) object. The problem’s properties, such as the number
of variables (n_var), objectives (n_obj) and constraints (n_constr), were set [29]. An objective
function was defined (minimizing the function of energy requirement for heating) with
five price inequality constraints, so n_obj = 1 and n_constr = 5. The aim was to find the best
solutions that satisfy all the constraints associated with the objective function [30]. The
variables (n_var = 9) used in the simulation were the following:

• Thermal conductivities and thicknesses of expanded polystyrene, extruded polystyrene
and mineral wool in case of the walls, floor and roof–ceiling.

• Overall heat transfer coefficient and total solar energy transmittance for the windows.
• Overall heat transfer coefficient in case of the door.

A function named _evaluate was implemented to evaluate the objective function. The
output of this customed function is written to the dictionary output with the key F as a
NumPy array object [29]. G is the key for the constraints. The optimization problem to be
implemented is given by:

minQheating(δins1, λins1, δins2, λins2, δins3, λins3, Uw, g, U2)

= ∑k hk·
[

∆Tk·HV + q1k(δins1, λins1)·(A1+A2 + A3 + A4) + q2k(λins2, δins2)
·A5 + q3k(λins3, δins3)·A6 + q4k(g, Uw)·A7 + q5k(U2)·A8

] [
kWh
year

] (1)

k = January, February, March, April, October, November, December.
In Pymoo, it is necessary to formulate the inequality constraints as less than zero.

This will be applied when dealing with price constraints. Consequently, a survey was
conducted and several price combinations for each configuration (consisting of different
pairs of thermal properties) were obtained from manufacturers’/retailers’ websites. Hence,
Pi (δins i, λins i) represents the prices of insulation materials for different combinations of
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thicknesses (δins i) and thermal conductivities (λins i). Similarly, P4 (g, Uw) represents the
prices of windows, while P5 (U2) contains the prices of different types of doors. These
values were further used to compute the mean values of the prices for each configura-
tion (consisting of different pairs of thermal properties), resulting the following values:
42.41 RON/m2—for expanded polystyrene, 78.91 RON/m2—for extruded polystyrene and
91.09 RON/m2—for mineral wool. In the case of the windows and doors, these prices were
set at 1500 RON/piece and 6574.63 RON/piece. The current exchange rate of Euro (€) to
Romanian leu (RON) is EUR 1 = RON 4.97. Consequently, the five price constraints are
defined as follows:

P1(δins1, λins1)− 42.41 ≤ 0
[
RON/m2

]
(2)

P2(δins2, λins2)− 78.91 ≤ 0
[
RON/m2

]
(3)

P3(δins3, λins3)− 91.09 ≤ 0
[
RON/m2

]
(4)

P4(g, Uw)− 1500 ≤ 0 [RON] (5)

P5(U2)− 6574.63 ≤ 0 [RON] (6)

The lower (xl) and upper (xu) variable boundaries are:

20 ≤ δins1 ≤ 150 [mm] (7)

0.036 ≤ λins1 ≤ 0.042 [W/(m·K)] (8)

10 ≤ δins2 ≤ 100 [mm] (9)

0.031 ≤ λins2 ≤ 0.039 [W/(m·K)] (10)

30 ≤ δins3 ≤ 200 [mm] (11)

0.034 ≤ λins3 ≤ 0.038 [W/(m·K)] (12)

0.4 ≤ g ≤ 0.85 [-] (13)

0.6 ≤ Uw ≤ 5.4
[
W/

(
m2·K

)]
(14)

0.7 ≤ U2 ≤ 2.47
[
W/

(
m2·K

)]
(15)

where Qheating = the energy requirement for heating [kWh/year]; hk = the heating period
[hours]; HV = the heat loss coefficient of the building through ventilation [W/K]; ∆Tk = the
temperature difference [◦C]; δins1, δins2, δins3 = the thickness of the expanded polystyrene,
extruded polystyrene and mineral wool [mm]; λins1, λins2, λins3 = the thermal conductivities
of the expanded polystyrene, extruded polystyrene and mineral wool [W/(m·K)]; Uw,
U2 = the overall heat transfer coefficients of windows and doors [W/(m2·K)]; g = the total
solar energy transmittance [-]; A1, A2, A3, A4, A5, A6, A7, A8 = the areas of the construction
elements (western, eastern and northern walls, unglazed surface of the southern wall, floor,
roof–ceiling, door and windows [m2]; q1k (δins1, λinsl1), q2k (δins2, λins2), q3k (δins3, λins3),
q4k (g, Uw), q5k (U2) = the heat fluxes through the walls, floor, roof–ceiling, windows and
door [W/m2].

The linear dimensions of the studied single-floor building are presented in Figure 3.
The areas of the construction elements are: A1 = A2 = 15.6 m2; A3 = 48.0 m2; A4 = 35.4 m2;
A5 = A6 = 130.0 m2; A7 = 10.8 m2; A8 = 1.8 m2.

The heat loss through ventilation coefficient of the building, HV, is determined using
the relation (16):

HV =
ρacanaV

3.6

[
W
K

]
(16)



Energies 2024, 17, 2022 8 of 19

where ρa = the air density; ca = the specific heat of air; na = the average number of air
changes; V = heated volume. These parameters are considered: ρa = 1.2 kg

m3 ; V = 312 m3;

ca = 1.005 kJ
kgK ; na = 0.6 h−1 [31].
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In the case of the heat fluxes, the Fourier unidirectional conduction equation is written
for each of the building’s components: walls (relation 17), floor (relation 18) and roof–
ceiling (relation 19). The heat fluxes q4k (g, Uw) and q5k (U2) for the windows and door are
computed using relations (20) and (21).

q1k(δins1, λins1) =
θin − θ out k

1
α1in

+ δ1
λ1

+ δ2
λ2

+ δ3
λ3

+ δins1
λins1

+ 1
α1out

[
W
m2

]
(17)

q2k(δins2, λins2) =
θin − θground k

1
α2

+ δ1
λ1

+ δ2
λ2

+ δ3
λ3

+ δ4
λ4

+ δins2
λins2

+
δ1p
λ1p

+
δ2p
λ2p

[
W
m2

]
(18)

q3k(δins3, λins3) =
θin − θ out k

1
α3in

+ δ1
λ1

+ δ2
λ2

+ δ3
λ3

+ δins3
λins3

+ 1
α3out

[
W
m2

]
(19)

q4k(g, Uw) = Uw·(θin − θ out k) + Gk·g
[

W
m2

]
(20)

q5k(U2) = U2·(θin − θ out k)

[
W
m2

]
(21)

where θin = computational indoor temperature [◦C]; θout k = monthly average outdoor
temperature presented in Table 1 [◦C]; θground k = ground temperature presented in Table 1
[◦C]; α1in, α1out, α2, α3in, α3out = convection heat transfer coefficient [W/(m2·K)]; δ1, δ2, δ3,
δ4 = thickness of the construction materials in case of exterior walls, floor or roof–ceiling
shown in Figure 2 [mm]; λ1, λ2, λ3, λ4 = thermal conductivities of the construction ma-
terials in the case of exterior walls, floor or roof–ceiling shown in Figure 2 [W/(m·K)];
δins1, δins2, δins3 = thickness of the expanded polystyrene, extruded polystyrene and min-
eral wool [mm]; λins1, λins2, λins3 = thermal conductivities of the expanded polystyrene,
extruded polystyrene and mineral wool [W/(m·K)]; δ1p, δ2p = depth in the ground [mm];
λ1p, λ2p = ground thermal conductivity [W/(m·K)]; Uw, U2 = the overall heat transfer coef-
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ficients [W/(m2·K)]; g = total solar energy transmittance [-]; Gk = monthly average solar
radiation intensity presented in Table 1 [W/m2].

For computing q1k (δins1, λins1), the convection heat transfer coefficients are considered:
α1in = 8 W/(m2·K) and α1out = 24 W/(m2·K) [15]. According to [16], the convection heat
transfer coefficient used to calculate the thermal resistances of construction elements in
contact with the ground is: α2 = 6 W/(m2·K). At the depth of 1.2 m (δ1p), thermal con-
ductivity has the value λ1p = 2 W/(m·K), and at the depth of 4 m (δ2p), it is considered
λ2p = 4 W/(m·K) [16]. To compute q3k (δins3, λins3), the convection heat transfer coefficients
are considered: α3in = 8 W/(m2·K) and α3out = 12 W/(m2·K) [15].

Several types of glazing are considered, such as clear float glass; double-glazed insu-
lating glass units (IGUs) consisting of two float glasses separated by a compact layer of air;
double-glazed IGUs with one float glass and one low emissivity (low—E) glass separated
by air or argon; four seasons (4S) double-glazed IGUs consisting of a float glass and a
4S glass separated by argon; triple-glazed IGUs with three float glasses separated by a
compact layer of air; triple-glazed IGUs with two 4S glasses and one float glass, separated
by argon; triple-glazed IGUs with one float glass and two low—E glass, separated by argon
or krypton; triple-glazed IGUs with two float glasses and one low—E glass, separated by
argon; triple-glazed IGUs with one 4S glass, one float glass and one low—E glass, separated
by argon; triple-glazed IGUs with one 4S glass and two float glasses separated by argon
or air. Moreover, we considered wood, glass, metal, medium-density fiberboard (MDF),
polyvinyl chloride (PVC) and plasticized polyvinyl chloride (UPVC) doors.

3.2. Initialize the NSGA-II

Sampling was used to create the initial population. The function np.random.random_sa-
mple() was implemented for performing random sampling in numpy. The population
size was set at 40 individuals. The studied NSGA-II only generates 10 offspring in each
generation. A Steady State Selection was used. Two parents were randomly selected to
produce children, and then the children resulting from the processes of crossover and
mutation were introduced into the population [32]. The size of the population must remain
constant, so a sorting of individuals according to their fitness was carried out. If the children
are more adapted than the two weakest individuals in the population, then they replace
them so that the population remains constant [33].

Additionally, a duplicate check was implemented to verify if the algorithm produces
offspring that differ from the current population in terms of their variable vectors as well
as from themselves [29]. The NSGA-II was set to stop after considering 200 generations.

In the case of crossover, we used the Simulated Binary Crossover (SBX) with the probabil-
ity distribution equal to 0.9. First, a random number u between 0 and 1 was generated [34].
Then, the spreading factor βq was calculated using (22), (23) and (24) [35].

βq(u) =

 (u·α)
1

η+1 , i f u ≤ 1
α(

1
2−u·α

) 1
η+1 , otherwise

(22)

α = 2 − β−(η+1) (23)

β = 1 +
2

p2 − p1
·min[(p1 − pl), (pu − p2)] (24)

where pl and pu represent the lower and the upper boundaries and the distribution index
has the value: η = 15.

The distance between the parent and the offspring generated is determined by a non-
negative variable called the spreading factor, or βq [36]. If βq = 1, this distance is equal to
zero and the offspring is the same distance to the parent. If βq < 1, the distance between the
parent and the offspring generated is small. Solutions that are close to their parents have a
higher chance of being selected as offspring than solutions that are far from them [37].
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The offspring are then calculated as:

c1 = 0.5·
[(

1 + βq(u)
)
·p1 +

(
1 − βq(u)

)
·p2

]
(25)

c2 = 0.5·
[(

1 − βq(u)
)
·p1 +

(
1 + βq(u)

)
·p2

]
(26)

where (p1, p2) = the parent pair that participated in the crossing process; (c1, c2) = the
descendants.

For the mutation operation, the Polynomial Mutation was used, considering the
mutation probability equal to 0.9 and a distribution index of 20 (η = 20). For a random
number u between 0 and 1 and for a given parent solution p in a bounded range of [pl, pu],
the mutated solution was created using relations (27) and (28) [35]. The offspring was
calculated using relation (29).

δq =


[
2u + (1 − 2u)·(1 − δ)η+1

] 1
η+1 − 1, i f u ≤ 0.5

1 −
[
2(1 − u) + 2(u − 0.5)(1 − δ)η+1

] 1
η+1 , otherwise

(27)

δ =
min[(p − pl), (pu − p)]

pu − pl
(28)

c = p + δq (pu − pl) (29)

3.3. Results

A minimize function was called with two instances, the problem and the algorithm, as
described in Sections 3.1 and 3.2. The minimize function produces a Result object when the
algorithm stops. The Result object contains the non-dominated set of solutions [29].

The result after running the algorithm showed that the expanded polystyrene that
satisfies all the constraints associated with the objective function has the conductivity
of 0.038 W/(m·K) and thickness of 100 mm. The extruded polystyrene that fulfilled
the technical and financial conditions has a thermal conductivity of 0.031 W/(m·K) and
thickness of 100 mm. The mineral wool obtained has a conductivity of 0.038 W/(m·K)
and thickness of 200 mm. The result of the NSGA-II showed that the optimal solution is
achieved by using triple-glazed IGUs with two 4S glasses and one float glass, separated
by argon. This type of window has an overall heat transfer coefficient of 0.6 W/(m2·K)
and total solar energy transmittance of 0.4. In the case of the door, the NSGA-II chose
one made of oak covered with stainless steel, with an overall heat transfer coefficient of
0.7 W/(m2·K).

Table 2 shows a comparison between the values of the overall heat transfer coefficients
in the case of the non-insulated building and in the case of the insulated building.

Figure 4 shows the improvement of the energy requirement for heating when the
NSGA-II is running. The optimal value of the energy requirement for heating in the case of
the insulated building is 12,486.16 kWh/year or 96.05 kWh/m2/year.

Table 2. The values of the overall heat transfer coefficients (U-values).

Element Thickness
[mm]

Thermal
Conductivity

[W/(m·K)]

R-Values,
Non-Insulated

Building
[(m2·K)/W]

* U-Values,
Non-Insulated

Building
[W/(m2·K)/]

R-Values,
Insulated
Building

[(m2·K)/W]

* U-Values
Insulated
Building

[W/(m2·K)/]

Exterior wall

Interior plaster 20 0.80 0.025

0.723

0.025

0.249

Autoclaved
aerated
concrete

350 0.30 1.166 1.166

Exterior plaster 20 0.80 0.025 0.025
Expanded

polystyrene 100 0.038 - 2.632
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Table 2. Cont.

Element Thickness
[mm]

Thermal
Conductivity

[W/(m·K)]

R-Values,
Non-Insulated

Building
[(m2·K)/W]

* U-Values,
Non-Insulated

Building
[W/(m2·K)/]

R-Values,
Insulated
Building

[(m2·K)/W]

* U-Values
Insulated
Building

[W/(m2·K)/]

Floor

Reinforced
concrete 150 2.03 0.074

0.485

0.074

0.189

Self-levelling
concrete 25 0.46 0.054 0.054

The
polyethylene

foam
3 0.05 0.06 0.06

Parquet 14 0.13 0.107 0.107
Extruded

polystyrene 100 0.031 - 3.226

The
roof–ceiling

Plater 25 0.80 0.031

2.718

0.031

0.178

Reinforced
concrete 150 2.03 0.074 0.074

Self-leveling
concrete 25 0.46 0.054 0.054

Mineral wool 200 0.038 - 5.263

* The U-values of the exterior walls, roof–ceiling, and floor were obtained considering the heat transfer by
conduction and convection and the thermal resistance of the ground.
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Figure 4. Energy requirement for heating [kWh/year].

The determined energy demand for heating considers the heat losses by infiltration
and heat transfer by transmission between the heated space and the outside environment
due to temperature differences but does not consider the thermal mass, thermal inputs
from solar radiation and internal heat gains from occupants, equipment, and lighting. By
using expanded polystyrene, extruded polystyrene, and mineral wool with the thermal
characteristics presented in Table 2, and by using triple-insulating windows with U-value
of 0.6 W/(m2·K) and a door with an overall heat transfer coefficient of 0.7 W/(m2·K),
this energy requirement for heating is reduced by up to 75% compared to the energy
requirement for heating obtained in the case of a non-insulated building.

4. Heat Pump Model Optimization
4.1. The Energy Consumption for Domestic Hot Water Preparation

The energy consumption for domestic hot water preparation (Qam) was computed
using the following Equations (30)–(34), while neglecting the losses in the distribution
pipes [15].
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Qam = Qac + Qac,c

[
kWh
year

]
(30)

Qac =
n

∑
i=1

ρ·cw·Vac·(θac − θar)

[
kWh
year

]
(31)

Vac =
a·Nu

1000

[
m3

]
(32)

Qac,c = ∑ ρ·cw·Vac,c·(θac,c − θar)

[
kWh
year

]
(33)

Vac,c = Vac· f1· f2 − Vac

[
m3

]
(34)

where Qac = the energy required for domestic hot water preparation [kWh/year]; Qac,c = the
heat losses related to the waste of domestic hot water [kWh/year]; ρ = the density of water
[kg/m3]; cw = the specific heat capacity of liquid water [kJ/(kg·K)]; Vac = the required
volume of domestic hot water for the considered period [m3]; Vac,c = the volume corre-
sponding to losses and waste of hot water [m3]; θac = the hot water preparation temperature
[◦C]; θar = the temperature of cold water entering the hot water preparation system [◦C];
θac,c = the temperature of supply/use of hot water at the point of consumption [◦C]; i = the
calculation index for consumer categories [-]; a = the specific demand for domestic hot
water at 60 ◦C [m3]; Nu = number of people [-].

These parameters were considered as stipulated in the national Romanian standards:
ρ = 983.2 kg/m3; c = 4.183 kJ/(kg·K); θac = 60 ◦C; θar = 10 ◦C; θac,c = 50 ◦C; f 1 = 1.3 (a
coefficient that depends on the type of installation to which the consumption point is
connected); f 2 = 1.1 (a coefficient that depends on the technical condition of the armatures
where hot water is consumed) [26]. Nu is considered to be 6 and a is considered equal to
50 L/person/day. This value represents the specific hot water consumption needs of one
person in a residential buildings, according to [26].

The results were: Qam = Qac + Qac,c = 6254.77 + 2151.64 = 8406.41 kWh
year .

4.2. Heat Pump Simulation

Another important step in the simulation was the selection of the appropriate water–
water heat pumps in a closed circuit to guarantee the energy requirements for heating and
hot water preparation.

The database used was created based on the RETScreen Expert Software V9.0 informa-
tion. A total of 345 heat pump models from 30 different manufacturers were compared in
Python, considering the following characteristics:

1. Simulation 1: A maximum cost that can be allocated to heat pumps is set and the
heat pumps falling within this cost limit are compared according to the coefficient of
performance (COP), thermal load of the capacitor and number of pumps needed to
ensure the energy requirements for heating and hot water preparation:

• Criterion 1: Cost pumps ≤ RON 34,600.
where RON 34,600 represents the maximum cost that can be allocated to heat pumps.
This cost was obtained through a specific market survey. The heat pumps chosen from
among 345 heat pumps models after applying the financial criterion are presented in
Table 3.

• Criterion 2: 1 ≤ Npumps < 3;

Npumps =
Qctotal
Qcpump

[-] (35)

Qctotal =
Qheating + Qam

hpumps
[kW] (36)
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where Npumps = the number of pumps selected to cover most of the energy requirements for
heating and hot water preparation for the studied building [-]; Qcpump = the thermal load
of the capacitor for every studied pump [kW]; Qctotal = 14.52 kW represents the thermal
load for heating and hot water preparation in the case of our simulation; Qheating = the
energy requirement for heating [kWh/year] (relation 1); Qam = the energy consumption for
domestic hot water preparation [kWh/year] (relation 30); hpumps = 1512 h/year represents
the operating hours of the pump.

Table 3. The heat pumps chosen according to criterion 1.

Manufacturer Model Npumps
[-]

Qcpump
[kW]

Qopump
[kW]

Ppump
[kW]

COP
[-]

Qc total
[kW]

Q0 total
[kW]

Ptotal
[kW]

Cost
[RON]

Carrier 38YZA01832 3 4.92 2.52 2.40 2.05 14.76 7.56 7.20 34,922
Econar GC180 3 4.84 3.42 1.42 3.40 14.52 10.25 4.27 34,354

FHP EMO0241CS 3 4.84 3.42 1.42 3.40 14.52 10.25 4.27 34,354
Hydro Delta 03068WTARHE 1 14.59 9.73 4.86 3.00 14.59 9.73 4.86 34,519

Trane GSUF024ICM 3 4.87 3.19 1.68 2.90 14.61 9.57 5.04 34,567
York

International YZE02411N1VSB16 2 7.30 5.13 2.17 3.36 14.60 10.25 4.35 34,543

To establish hpumps, it was considered that a heat pump has two cycles per hour, with a
twenty-minute off period between cycles. The heat pumps chosen after applying the second
criterion were: one heat pump from Hydro Delta manufacturer, model 03068WTARHE and
two heat pumps from York International, model YZE02411N1VSB16. These heat pumps
are presented in Table 3.

• Criterion 3: COP ≥ 3;

COP =

∣∣Qcpump
∣∣

Ppump
=

∣∣Qcpump
∣∣∣∣QCpump

∣∣− Qopump
[-] (37)

Qototal = Qopump· Npumps [kW] (38)

Ptotal = Ppump· Npumps [kW] (39)

where COP = the coefficient of performance [-]; Qopump = the refrigerating power of the
evaporator for every studied pump [kW]; Qototal = the total refrigerating power of the
evaporators [kW]; Ppump = the power consumed by the compressor for every studied pump
[kW]; Ptotal = the total power consumed by the compressors [kW]. Both heat pumps from
the Hydro Delta and York International manufacturers satisfy the third criterion.

• Criterion 4: 14.52 ≤ Qctotal ≤ 15.

The heat pumps from the Hydro Delta and York International manufacturers, as
presented in Table 3, also satisfy the fourth criterion.

2. Simulation 2: the heat pumps were compared based on their technical characteristics,
as presented at simulation 1 (COP, Qctotal, Npumps), and then it was verified that the
selected pumps respect the maximum cost limit. The simulation result shows that
two heat pumps with the specifications presented in Figure 5a or one heat pump
with the specifications presented in Figure 5b must be installed to guarantee the
14.52 kW thermal load needed for heating and hot water preparation, according to
the technical criteria.

Figure 6 shows the characteristics of the heat pumps (two heat pumps from York
International and one heat pump from Hydro Delta) that were selected from the Python
simulation according to the technical and financial requirements to guarantee the 14.52 kW
thermal load needed for heating and hot water preparation.
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5. Conclusions

An NSGA-II model was developed in the Pymoo (Multi-Objective Optimization in
Python) library and used to find the optimal choice among the following parameters:
thermal insulation materials’ conductivities and thicknesses, windows’ overall heat trans-
fer coefficients and total solar energy transmittance and doors’ thermal proprieties. This
algorithm finds the materials that ensure the lowest energy requirement for heating, also
considering the price restrictions obtained through a specific market survey. A survey was
conducted and several price combinations for each configuration (consisting of different
pairs of thermal properties) were obtained from the manufacturers’/retailers’ websites.
These values were further used to compute the mean values of the prices for each configu-
ration (consisting of different pairs of thermal properties).

The energy requirement for heating before the walls, floor and roof–ceiling thermal
insulation was 385.128 kWh/m2/year. This energy requirement for heating considered
the heat losses by infiltration and heat transfer by transmission between the heated space
and the outside environment due to temperature differences but did not consider the
thermal mass, thermal inputs from solar radiation and internal heat gains from occupants,
equipment, and lighting. This value was reduced with 75% by using:

• expanded polystyrene with δins1 = 100 mm and λins1 = 0.038 W/(m·K);
• extruded polystyrene with δins2 = 100 mm and λins2 = 0.031 W/(m·K);
• mineral wool δins3 = 200 mm and λins3 = 0.038 W/(m·K);
• triple-glazed IGUs with two 4S glasses and one float glass, separated by argon with

Uw = 0.6 W/(m2·K) and g = 0.4;
• one door made of oak covered with stainless steel, with U2 = 0.7 W/(m2·K).

Additionally, this paper presents the method used in finding the best option from
among the available heat pumps that could cover most of the energy requirements for
heating and domestic hot water systems, also considering the products’ prices. The heat
pumps chosen after applying the technical and financial criteria are one heat pump from
Hydro Delta manufacturer, Hudson, FL, USA, model 03068WTARHE and two heat pumps
from York International manufacturer, York, PA, USA, model YZE02411N1VSB16.

The result of running the NSGA-II described in this paper shows that this model can
be successfully utilized to identify the optimal thermal envelope configuration that will
ensure the minimum energy requirement for heating in the case of a residential building,
while also considering the price restrictions obtained through a specific market survey.

The presented research is ongoing and, in the future, we will use a complex database
including different insulation materials and equipment for the energy calculation of buildings.
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Nomenclature

a The specific demand for domestic hot water at 60 ◦C [m3]
A1 The area of the western wall [m2]
A2 The area of the eastern wall [m2]
A3 The area of the northern wall [m2]
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A4 The area of unglazed surface of the southern wall [m2]
A5 The area of the floor [m2]
A6 The area of the roof–ceiling [m2]
A7 The area of the windows [m2]
A8 The area of the door [m2]
BO-XGBoost Bayesian optimization with extreme gradient-boosting trees
c Offspring
ca Specific heat of air [kJ/(kg·K)]
COP Coefficient of performance [-]
Cost pumps Maximum cost that can be allocated to heat pumps [RON]
cw Specific heat capacity of liquid water [kJ/(kg·K)]
EU European Union
*f 1 Coefficient that depends on the type of installation to which the

consumption point is connected [-]
*f 2 Coefficient that depends on the technical condition of the armatures

where hot water is consumed [-]
g Total solar energy transmittance [-]
GA Genetic Algorithm
GBDT Gradient-Boosting Decision Tree
Gk Monthly average solar radiation intensity [W/m2]
hk The heating period [h]
hpumps The operating hours of the pump [h/year]
HV The heat loss coefficient of the building through ventilation [W/K]
i The calculation index for consumer categories [-]
k Months in the heating period
MLPANN Multilayer Perception Artificial Neural Network
N The size of the population [-]
na The average number of air changes [h−1]
n_constr The number of constraints [-]
n_obj The number of objectives [-]
*Npumps The number of pumps selected to cover most of the energy

requirements for heating and hot water preparation [-]
NSGA-II Non-dominated Sorting Genetic Algorithm II
Nu The number of people using hot water [-]
n_var The number of variables [-]
p Parent
P1 (δins1, λins1) The prices of the expanded polystyrene [RON]
P2 (δins2, λins2) The prices of the extruded polystyrene [RON]
P3 (δins3, λins3) The prices of the mineral wool [RON]
P4 (g, Uw) The prices of windows [RON]
P5 (U2) The prices of door [RON]
Ppump The power consumed by the compressor for every studied pump [kW]
Ptotal The total power consumed by compressors [kW]
Pymoo Multi-Objective Optimization in Python
Qac The energy required for domestic hot water preparation [kWh/year]
Qac,c The heat losses related to the waste of domestic hot water [kWh/year]
*Qam The energy consumption for domestic hot water preparation

[kWh/year]
Qcpump The thermal load of the capacitor for every studied pump [kW]
Qctotal The thermal load for heating and hot water preparation [kW]
Qheating The energy requirement for heating [kWh/year]
q1k (δisns1, λins1) The heat flux through the insulated wall [W/m2]
q2k (δins2, λins2) The heat flux through the insulated floor [W/m2]
q3k (δins3, λins3) The heat flux through the insulated roof–ceiling [W/m2]
q4k (g, Uw) The heat flux through the windows [W/m2]
q5k (U2) The heat flux through the door [W/m2]
Qopump The refrigerating power of the evaporator for every studied pump [kW]
Qototal The total refrigerating power of evaporators [kW]
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SBX Simulated Binary Crossover
u Random number between 0 and 1
U2 The overall heat transfer coefficient of the door [W/(m2·K)]
Uw The overall heat transfer coefficient of the windows [W/(m2·K)]
V The heated volume [m3]
Vac The required volume of domestic hot water [m3]
Vac,c The volume corresponding to losses and waste of hot water [m3]
WWR The window-to-wall ratio
Greek symbols
α1in, α1out, α2, α3in, α3out The convection heat transfer coefficient [W/(m2·K)]
βq The spreading factor [-]
∆Tk The temperature difference [◦C]
*δ1, δ2, δ3, δ4 The thickness of the construction materials in case of exterior walls, floor,

or roof–ceiling [mm]
δizol1 The thickness of the expanded polystyrene [mm]
δizol2 The thickness of the extruded polystyrene [mm]
δizol3 The thickness of the mineral wool [mm]
δ1p, δ2p The depth in the ground [mm]
η The distribution index [-]
θac The hot water preparation temperature [◦C]
*θac,c The temperature of supply/use of hot water at the point of

consumption [◦C]
*θar The temperature of cold water entering the hot water preparation

system [◦C]
θground k The ground temperature [◦C]
θin The computational indoor temperature [◦C]
θout k The monthly average outdoor temperature [◦C]
*λ1, λ2, λ3, λ4 thermal conductivities of the construction materials in case of exterior

walls, floor, or roof–ceiling [W/(m·K)]
λins1 The thermal conductivity of the expanded polystyrene [W/(m·K)]
λins2 The thermal conductivity of the extruded polystyrene [W/(m·K)]
λins3 The thermal conductivity of the mineral wool [W/(m·K)]
λ1p , λ2p The ground thermal conductivity [W/(m·K)]
ρ The density of domestic water [kg/m3]
ρa The air density [kg/m3]
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