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Abstract: Accurate and timely fault detection is crucial for ensuring the smooth operation and lon-

gevity of rotating machinery. This study explores the effectiveness of image-based approaches for 

machine fault diagnosis using data from a 6DOF IMU (Inertial Measurement Unit) sensor. Three 

novel methods are proposed. The IMU6DoF-Time2GrayscaleGrid-CNN method converts the time 

series sensor data into a single grayscale image, leveraging the efficiency of a grayscale representa-

tion and the power of convolutional neural networks (CNNs) for feature extraction. The IMU6DoF-

Time2RGBbyType-CNN method utilizes RGB images. The IMU6DoF-Time2RGBbyAxis-CNN 

method employs an RGB image where each channel corresponds to a specific axis (X, Y, Z) of the 

sensor data. This axis-aligned representation potentially allows the CNN to learn the relationships 

between movements along different axes. The performance of all three methods is evaluated 

through extensive training and testing on a dataset containing various operational states (idle, nor-

mal, fault). All methods achieve high accuracy in classifying these states. While the grayscale 

method offers the fastest training convergence, the RGB-based methods might provide additional 

insights. The interpretability of the models is also explored using Grad-CAM visualizations. This 

research demonstrates the potential of image-based approaches with CNNs for robust and inter-

pretable machine fault diagnosis using sensor data. 

Keywords: machine fault diagnosis; vibrations of rotary machines; image-based diagnostics; 6DOF 

IMU sensor; interpretability in machine learning 

 

1. Introduction 

Modern environments are teeming with complex electromechanical machinery, from 

factories to cities to homes. These systems are crucial for our way of life, but require effec-

tive maintenance to ensure their longevity and prevent unnecessary waste. Industrial ma-

chinery, in particular, presents a unique challenge due to its intricate nature. Proactive 

fault diagnosis strategies are essential to prevent production disruptions and equipment 

damage, ultimately leading to cost savings and environmental benefits. Machine fault di-

agnosis plays a pivotal role in ensuring the reliability and longevity of industrial machin-

ery. Vibration analysis is a widely adopted technique for detecting faults in rotating ma-

chinery due to its sensitivity to subtle changes in a machine’s condition. In recent years, 

the application of deep learning techniques, particularly convolutional neural networks 

(CNNs), has shown promising results in automating fault diagnosis processes. The field 

of fault diagnosis is constantly evolving, with advancements in data sharing through the 

Internet of Things (IoT) and machine learning paving the way for more sophisticated so-

lutions. This research explores the potential of image-based diagnostics using sensor data 

and convolutional neural networks (CNNs) for robust and interpretable fault detection in 

industrial machinery. 
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Effective fault diagnosis in electromechanical machines relies on selecting the appro-

priate sensors and signals. The choice depends on the specific machine and the fault char-

acteristics it aims to detect. Common sensors are divided by the type of measurement: (a) 

mechanical quantities like vibration (a popular choice due to its sensitivity to faults) [1–

5], displacement [6], torque [7,8], and angular velocity/position [9,10]; (b) electrical quan-

tities like current [11,12] and voltage [13,14], can reveal issues related to power delivery 

and motor health; and (c) other signals like temperature (inner/outer) [15,16], sound [17–

19], and even chemical analysis [20,21] can be valuable for specific fault types. Beyond 

traditional sensors, recent research explores image-based diagnostics using cameras [22–

25] and signals converted into virtual images [12,26–30]. This versatility in sensor selection 

allows for a comprehensive approach to machine health monitoring and fault detection. 

This article focuses on the utilization of vibration analysis coupled with CNNs for 

machine fault diagnosis. Specifically, it explores the transformation of vibration time se-

ries data into grayscale and red, green, and blue channel (RGB) images to leverage the 

power of image recognition algorithms. By converting time series data into image formats, 

it aims to exploit the multiaxis information inherent in vibration signals, which can en-

hance the discriminatory power of CNNs in fault detection. The use of CNNs for image 

recognition offers several advantages, including the ability to automatically learn hierar-

chical features from raw data and the robustness to variations in input signals. By training 

CNNs on a dataset comprising both normal and faulty vibration patterns, the model can 

learn to differentiate between different fault types and accurately classify unseen data. 

Vibration signals contain valuable information about the condition of machinery, reflect-

ing changes in mechanical components such as bearings, gears, and shafts. Vibration anal-

ysis involves the study of these signals to identify abnormal patterns indicative of faults 

or anomalies. Traditional methods include Fourier transform-based techniques like Short-

Time Fourier Transform (STFT) [1] and Continuous Wavelet Transform (CWT) [31], which 

provide insights into the frequency content of vibration signals. 

The proposed methods of IMU6DoF-Time2GrayscaleGrid-CNN, IMU6DoF-

Time2RGBbyType-CNN, and IMU6DoF-Time2RGBbyAxis-CNN draw inspiration from 

successful applications of image conversion and convolutional neural networks (CNNs) 

in fault diagnosis tasks. Prior research, particularly a study on six-switch and three-phase 

(6S3P) topology inverter faults [12], demonstrated the effectiveness of converting phase 

currents into RGB images for fault classification. This approach achieved superior accu-

racy compared to traditional machine learning methods such as decision trees, naive 

Bayes, support vector machines (SVMs), k-nearest neighbors (KNNs) or even simpler neu-

ral networks. In 6S3P inverter fault diagnosis research [12], each channel of the RGB image 

represented a different phase of the inverter current. This approach serves as a foundation 

for this work, but a key challenge arises when dealing with multiaxis data from a 6DOF 

IMU sensor. Unlike single-dimensional currents, data from multiple axes (accelerometer, 

gyroscope) need a well-defined conversion strategy for effective image representation. 

The existing literature acknowledges a gap in knowledge regarding how to optimally con-

vert multiaxis data from IMU sensors into an image format suitable for CNN-based fault 

classification. Although some studies such as the one by Zia Ullah et al. [26] explore signal-

to-image conversion, they often employ limited approaches. For instance, their work on 

Permanent Magnet Synchronous Motor (PMSM) fault diagnosis utilizes a two-channel 

RGB image, where blue represents one axis of the accelerometer, red represents the spec-

trum of the stator current, and green remains unused for a three-class classification task 

(a healthy, irreversible demagnetization fault, and a bearing fault). Similarly, Tingli Xie et 

al. [28] addressed multisensory fusion and CNNs by converting only three chosen signals 

into an RGB image. This approach was validated on various datasets, including one with 

three classes (an inner ring fault, an outer ring fault, and a normal condition). Yuqing 

Zhou et al. [29] investigated the diagnosis of rotating machinery using a three-channel 

RGB image formed by merging the permutation entropy from sensor data. This approach 

aimed to recognize one of five classes of tool wear (initial wear, slight wear, stable wear, 
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serious wear, and failure). Ming Xu et al. [30] proposed a method for diagnosing bearing 

failure by converting the raw signals from three 1-axis accelerometers (located at the drive 

end, fan end, and base) into the R, G, and B channels of an RGB image. Converting high-

dimensional sensor data to RGB images with only three channels can lead to information 

loss. Important details of the original signal might be discarded during the conversion 

process, potentially impacting the accuracy of the fault classification. Existing methods 

like those of Zia Ullah et al. [26] and Tingli Xie et al. [28] utilize two or three channels, 

failing to fully capture the richness of the multi-dimensional data from a 6DOF IMU sen-

sor. This limited approach highlights the need for a more comprehensive strategy for han-

dling multiaxis data from IMU sensors. The IMU6DoF-Time2GrayscaleGrid-CNN, 

IMU6DoF-Time2RGBbyType-CNN, and IMU6DoF-Time2RGBbyAxis-CNN methods ad-

dress this gap by proposing a novel approach for converting 6DOF IMU data into gray-

scale, RGB by sensor, and RGB by axis alignment images that effectively capture the tem-

poral characteristics of the vibration signals across all axes. This method paves the way 

for leveraging the power of CNNs for accurate fault classification in scenarios involving 

complex multidimensional sensor data. Additional improvement is needed in the presen-

tation of the interpretability of CNNs, which is missing in the referred articles. 

In this paper, a comprehensive investigation into the application of CNNs for ma-

chine fault diagnosis through vibration analysis is presented. The performance of the pro-

posed method was evaluated on real-world datasets and compared with existing tech-

niques to demonstrate its effectiveness in detecting and classifying machine faults. Addi-

tionally, the interpretability of the CNN model’s decision-making process is discussed, 

providing insights into the detected fault patterns and contributing to the overall trust-

worthiness of the diagnostic system. All three proposed methods (IMU6DoF-Time2Gray-

scaleGrid-CNN, IMU6DoF-Time2RGBbyType-CNN, and IMU6DoF-Time2RGBbyAxis-

CNN) achieved high accuracy in classifying different operational states (idle, normal, 

fault) using sensor data converted into grayscale or RGB images. This suggests that image-

based diagnostics using CNNs can be a viable approach for machine fault diagnosis. The 

grayscale method (IMU6DoF-Time2GrayscaleGrid-CNN) exhibited the fastest training 

convergence. This means it required fewer training epochs to achieve a desired level of 

accuracy compared to the RGB methods. The axis-aligned RGB method (IMU6DoF-

Time2RGBbyAxis-CNN) might offer a more intuitive interpretation of the features 

learned by the CNN for fault detection. This is because each channel in the image directly 

corresponds to a specific axis of the sensor data. These findings highlight the potential of 

the use of image-based diagnostics with CNNs for machine fault diagnosis. 

The manuscript is organized into distinct sections. In the Introduction, the research 

objectives and the importance of fault diagnosis in electromechanical systems are out-

lined. The paper starts with a broader context in Section 2, discussing “Machine Fault Di-

agnosis through Vibration Analysis” and highlighting the use of image conversion tech-

niques (grayscale and RGB) for analysis. Section 3 then focuses on practical implementa-

tion by introducing a “Demonstrator of Machine Fault Diagnosis”. The core of the re-

search is presented in Section 4, “Results of Time Series Conversion…”. This section dives 

deeper into the different methods used: Section 4.1 details the IMU6DoF-Time2Gray-

scaleGrid-CNN method, explaining its approach. Sections 4.2 and 4.3 follow the same 

structure, presenting the IMU6DoF-Time2RGBbyType-CNN method and the IMU6DoF-

Time2RGBbyAxis-CNN method, respectively, with a focus on their specific functionali-

ties. Section 5 provides a discussion of the findings, comparing the different methods and 

their effectiveness. Finally, Section 6 offers conclusions summarizing the key takeaways 

and potential future directions of the research. 
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2. Machine Fault Diagnosis through Vibration Analysis with Time Series Conversion 

to Greyscale and RGB Images 

Machine fault diagnosis is a critical aspect of predictive maintenance in various in-

dustries. Vibration analysis has emerged as a prominent technique for detecting and di-

agnosing faults in rotating machinery due to its sensitivity to changes in machine condi-

tions. Traditional methods often rely on a time-frequency analysis of vibration signals, 

requiring expert knowledge for the accurate selection of window length and window 

shape. In response to these challenges, in this section was proposed a novel approach for 

machine fault diagnosis using vibration analysis, coupled with time series conversion to 

greyscale and RGB images. Time series data from sensors such as Inertial Measurement 

Units (IMUs) play a crucial role in capturing the dynamics of machinery. By converting 

time series data from IMUs, specifically six-degrees-of-freedom (6DOF) sensors, into a 

spatial format, it enables the application of image processing methods for feature extrac-

tion and analysis. The goal is to transform the temporal information contained in the time 

series into a spatial representation that can be effectively analyzed using image processing 

techniques. By leveraging image recognition techniques, particularly convolutional neu-

ral networks (CNNs), this method aims to enhance fault detection accuracy while provid-

ing interpretable insights into fault patterns. 

IMUs provide measurements of acceleration and angular velocity along three orthog-

onal axes, resulting in six channels of time series data. The proposed methods were veri-

fied at the fan demonstrator described in the next section. Each frame of data consists of 

256 samples, with a one-sample overlap between consecutive frames. The high-resolution 

nature of IMU data allows for the detailed capture of machine vibrations and movements. 

The 16-by-16 sub-images (256 samples) are arranged in a grid pattern to form a larger 

greyscale image with dimensions of 48 by 32 pixels. Each pixel in the greyscale image 

corresponds to a specific sample in the original time series data, capturing the temporal 

evolution of machine behavior. Figure 1 depicts a method for recognizing a grayscale im-

age using data from a 6DoF IMU sensor. The method, called IMU6DoF-Time2Gray-

scaleGrid-CNN, converts time series data into a grayscale image for recognition by a con-

volutional neural network (CNN). The procedure consists of these steps: 

1. The system collects data from the gyroscope and accelerometer of the 6DoF IMU sen-

sor. Both sensors provide data in the time domain. 

2. The time series data for each axis (X, Y, and Z) is divided into segments with 256 

samples each. These segments are then reshaped into 16 × 16 matrices. 

3. The reshaped 16 × 16 matrices from each axis (X, Y, and Z) are then combined to form 

a single grayscale image of a 48 × 32 size. 

4. The grayscale image is fed into a convolutional neural network for classification. The 

CNN architecture consists of convolutional layers, batch normalization, ReLU acti-

vation, fully connected layers, and a softmax layer for classification. 

Overall, the IMU6DoF-Time2GrayscaleGrid-CNN method transforms time series 

data from a 6DoF IMU sensor into a suitable format for recognition by a CNN. 

Grayscale images provide a compact and efficient way to represent the temporal evo-

lution of sensor data. This allows for faster processing and potentially lower computa-

tional demands compared to more complex representations. The proposed IMU6DoF-

Time2GrayscaleGrid-CNN method demonstrates a promising approach for machine fault 

diagnosis by leveraging the strengths of both vibration analysis and image recognition 

techniques. By converting vibration time series data into grayscale images, it allows CNNs 

to effectively learn features and classify faults in rotating machinery. This chapter outlines 

the theoretical foundation and practical implementation of this method, paving the way 

for further research in predictive maintenance and industrial fault diagnosis. 
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Figure 1. The proposed method, named IMU6DoF-Time2GrayscaleGrid-CNN, as a grid of six gray-

scale images of 16-by-16 pixels recognized by s CNN with a given architecture. 

Figure 2 shows the method named IMU6DoF-Time2RGBbyType-CNN for convert-

ing time series data into an RGB image for image recognition. The method involves the 

following steps: 

1. Acquire time series data of 256 × 6 samples from the IMU 6DoF sensor. 

2. Reshape the time series data into a 2D image. For instance, a 256-sample time series 

would be reshaped into a 16 × 16 image. 

3. Three separate 2D images are then concatenated along the color channel to form a 

single RGB image. In this way, each channel of the RGB image represents the data 

from a single axis (X, Y, and Z) of the IMU sensor. 

4. The resulting RGB image can then be used for image recognition tasks using a con-

volutional neural network (CNN). The architecture of the CNN is shown in Figure 2, 

and consists of a convolutional layer, batch normalization, an ReLU layer, a fully con-

nected layer, a soft max layer, and a classification layer. 

 

Figure 2. The proposed method, named IMU6DoF-Time2RGBbyType-CNN, with sub-images of 16-

by-16 pixels aligned by sensor type and recognized by a CNN with a given architecture. 
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Figure 3 depicts a method named IMU6DoF-Time2RGBbyAxis-CNN for recognizing 

images using data from a 6DoF IMU sensor. This method converts time series data into 

RGB images for recognition by a convolutional neural network (CNN). A breakdown of 

the process is illustrated in Figure 3: 

1. Data Acquisition. The system collects data from the gyroscope and accelerometer of 

the 6DoF IMU sensor. Both provide data in the time domain. 

2. Data Preprocessing. The time series data for each axis (X, Y, and Z) is segmented into 

256 samples each. These segments are then reshaped into 16 × 16 matrices. 

3. RGB Image Formation. The reshaped 16 × 16 matrices from each axis (X, Y, and Z) 

are stacked together to form a single RGB image of a 48 × 16 × 3 size. 

4. Image Recognition using CNN. The RGB image is fed into a convolutional neural 

network for classification. The specific CNN architecture is provided in Figure 3; it 

consists of convolutional layers, batch normalization, ReLU activation, fully con-

nected layers, and a softmax layer for classification. 

 

Figure 3. The proposed method, named IMU6DoF-Time2RGBbyAxis-CNN, with sub-images of 16-

by-16 pixels aligned by axis and recognized by a CNN with a given architecture. 

Overall, the IMU6DoF-Time2RGBbyAxis-CNN method transforms time series data 

from a 6DoF IMU sensor into a format suitable for recognition by a CNN. 

3. Demonstrator of Machine Fault Diagnosis 

This section focuses on demonstrating the feasibility of the proposed methods, 

IMU6DoF-Time2GrayscaleGrid-CNN, IMU6DoF-Time2RGBbyType-CNN, and 

IMU6DoF-Time2RGBbyAxis-CNN, for image-based recognition using IMU data. A dedi-

cated demonstrator, depicted in Figure 4, was constructed to verify their effectiveness. 

This proof-of-concept setup consisted of the following components: microcontroller 

STM32F746ZG at a NUCLEO board is responsible for collecting data from the IMU sensor 

and transmitting it in a JSON (JavaScript Object Notation) format via the MQTT (Message 

Queuing Telemetry Transport) protocol to the computational unit; a MPU6050 sensor 

which is a 6DoF IMU sensor that captures motion data along the X, Y, and Z axes; a com-

puter fan acts as the target for vibration investigation; and a blue paper clip is attached to 

the fan blade to create an imbalance, thereby inducing controlled vibrations during oper-

ation. 
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Figure 4. Microcontroller-based demonstrator of machine fault diagnosis. 

The demonstrator mimics a real-world scenario where an IMU sensor can be 

mounted on a machine to capture vibration data for fault diagnosis. The controlled vibra-

tions generated by the imbalanced fan blade simulate potential machine faults that the 

proposed methods can learn to identify. This experimental setup provides a practical val-

idation platform to assess the performance of the proposed CNN-based approaches for 

image recognition from IMU data. 

The proof of concept was verified in the demonstration with the Yate Loon Electronics 

(Taiwan) fan model GP-D12SH-12(F) DC 12 V 0.3 A. Nominal velocity was 3000 RPM (rev-

olutions per minute), which is equivalent to 50 revolutions per second. The fan was sup-

plied with 5 V, which is related to around 21 revolutions per second. This highlights the 

method’s potential to handle a range of operating conditions. The proposed method was 

investigated for constant rotational speed applications, which are prevalent in many in-

dustrial settings. Example applications include centrifugal pumps and blowers, machine 

tool spindles, conveyor belts, cooling fans in electronics, and duct fans in air conditioning. 

Furthermore, the potential extends beyond applications with strictly constant speeds. 

With its ability to handle variations in operating conditions, the IMU6DoF-Time2Gray-

scaleGrid-CNN, IMU6DoF-Time2RGBbyType-CNN, and IMU6DoF-Time2RGBbyAxis-

CNN approaches could be applicable to scenarios with controlled speed changes or slight 

fluctuations, allowing their use in a wider range of industrial machinery. 

IMU data was continuously acquired at a constant sampling rate of 200 Hz, corre-

sponding to a sampling interval of 5 milliseconds (ms). This resulted in a buffer containing 

256 samples, representing a total acquisition time of 1.28 s. In other words, it took 1.28 s 

to collect the 256 data points from the six-degrees-of-freedom (DOF) IMU sensor. The col-

lected measurement data is sent from the microcontroller client to an MQTT broker on the 

laptop using the MQTT protocol. This communication flow is depicted in Figure 5. 

 

Figure 5. Data transmission via MQTT. 

Aliasing can be a significant concern when dealing with vibration data analysis. The 

key is the presence of built-in digital low-pass filters (DLPFs) within the MPU-6050 sensor. 

These filters play a crucial role in mitigating aliasing by attenuating high-frequency com-

ponents beyond the sensor’s Nyquist rate (half the sampling rate). The configurable band-

width settings (260 Hz, 184 Hz, 94 Hz, 44 Hz, etc.) in the sensor allows us to adjust the 

DLPF cutoff frequency to suit the specific requirements of the application. The vibration 

frequency range of interest was carefully considered for fan blade imbalance detection. To 

ensure that the relevant vibration components were adequately captured without aliasing, 
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the sampling rate was selected as at least twice the highest frequency of interest. The built-

in DLPFs of the MPU-6050 were used to attenuate high-frequency noise beyond the de-

sired bandwidth. 

To evaluate the effectiveness of the proposed methods, data were collected for three 

distinct operational classes: idle, normal operation, and fault. In the fault class, a paperclip 

was attached to the fan blade to induce an imbalance and generate controlled vibrations, 

simulating a potential machine fault scenario. Time series data for each class are presented 

in Figure 6. Each segment of 256 IMU samples captured time series data for each of the 

three axes (X, Y, and Z) of the accelerometer and gyroscope, resulting in a total of six data 

streams per segment (256 × 6). 

 

Figure 6. Time series data in one segment of 256 samples for the three axes of the accelerometer and 

gyroscope. 

For each captured segment containing 256 time series samples from the three accel-

erometer axes (X, Y, and Z) and the three gyroscope axes (X, Y, and Z), a separate fre-

quency domain representation was obtained using a technique like Fast Fourier Trans-

form (FFT). This transformation converts the time-based signal from each axis into its con-

stituent frequency components, allowing for an analysis of the dominant frequencies pre-

sent in the data. The single-segment time series data converted into frequency domains 

for three axes of the accelerometer and gyroscope for each class are shown in Figure 7. 

The idle class exhibits a dominant peak at 0 Hz, signifying the absence of significant vi-

bration. Normal operation is characterized by the presence of small vibrations spread 

across a frequency range of 20 Hz to 90 Hz, potentially due to motor operation or envi-

ronmental factors. In contrast, the fault condition is distinguished by a dominant fre-

quency of 20 Hz appearing specifically in the X-axis of the accelerometer data and the Z-

axis of the gyroscope data. This targeted presence of a specific frequency suggests a char-

acteristic signature induced by the imbalanced fan blade attached in the fault scenario. 
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Figure 7. The single-segment time series data for each class converted into frequency domains for 

the three axes of the accelerometer and the three axes of the gyroscope. 

4. Results of the Time Series’ Conversion to Greyscale and RGB Images and Recogni-

tion via Convolutional Neural Networks 

CNNs are powerful tools for image recognition. This section evaluates three pro-

posed methods for image-based recognition using data from a 6DoF IMU sensor: 

IMU6DoF-Time2GrayscaleGrid-CNN, IMU6DoF-Time2RGBbyType-CNN, and 

IMU6DoF-Time2RGBbyAxis-CNN. The methods were described in Section 2. Each sub-

section presents a representative input image for each class (idle, normal operation, and 

fault) to illustrate the processed data used by the corresponding CNN model. Addition-

ally, the training progress of the CNN, visualized as a curve depicting loss or accuracy 

over training epochs, is provided to demonstrate the learning behavior of the model. Fur-

thermore, confusion matrices for both the test and validation datasets are included to as-

sess the classification performance of each method. Finally, to gain insights into the deci-

sion-making process of the CNNs, an interpretability analysis using techniques like Grad-

CAM, occlusion sensitivity, and LIME is presented in each subsection. 

For each method, a total of 7680 images were generated, with each class (idle, normal 

operation, and fault) equally represented by 2560 images. These images were then split 

into training and test sets using an 80/20 ratio. This means 80% (2048 images per class) 

were used to train the CNN models, while the remaining 20% (512 images per class) were 

used for testing and evaluating their performance. 

4.1. The IMU6DoF-Time2GrayscaleGrid-CNN Method 

This method transforms the time series data from each axis (X, Y, and Z) into a 16 × 

16 grid of grayscale values. These grids are then stacked to form a single grayscale image 

for classification by a CNN. For the IMU6DoF-Time2GrayscaleGrid-CNN method, repre-

sentative grayscale images are presented for each class (idle, normal operation, and fault) 

in Figure 8. These grayscale images visually depict how the time series data from the 6DoF 

IMU sensor are transformed into a format suitable for classification by the CNN. The im-

ages provide insights into the patterns and variations observed in the data across different 

operational states. 
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Figure 8. Greyscale images for each class of the IMU6DoF-Time2GrayscaleGrid-CNN method. 

Figure 9 depicts the training progress of the convolutional neural network (CNN) 

used in the IMU6DoF-Time2GrayscaleGrid-CNN method. The training lasted for 150 

epochs, which corresponds to a total of 7200 iterations. The learning rate was set to 0.001. 

The graph shows two subplots, one representing the training loss and the other represent-

ing the training accuracy. Ideally, the training loss should decrease over time as the CNN 

learns to improve its performance on the training data. Conversely, the training accuracy 

should increase as the model becomes better at correctly classifying the images. By ana-

lyzing this graph, how effectively the CNN model was trained can be assessed. A good 

training curve would show a steady decrease in loss and a corresponding increase in ac-

curacy over the course of the training epochs. 

 

Figure 9. The training progress of the CNN for the IMU6DoF-Time2GrayscaleGrid-CNN method. 

Figure 10 depicts a confusion matrix, which is a table that visualizes the performance 

of a classification model on a test dataset. In this case, the confusion matrix shows the 

results of a CNN model trained to classify images generated using the IMU6DoF-

Time2GrayscaleGrid-CNN method. The left side of the matrix represents the actual class 

labels for the test images (ground truth), while the bottom side represents the classes pre-

dicted by the CNN model. Each row of the matrix corresponds to a true class (idle, normal, 

fault), and each column represents a predicted class. The ideal scenario is to have high 

values along the diagonal of the matrix, indicating that the model correctly classified most 

of the images. Conversely, high values off the diagonal indicate classification errors. By 

analyzing the distribution of values in the confusion matrix, you can gain insights into the 

strengths and weaknesses of the CNN model. For instance, a high value in the top-left 

corner (a fault class predicted as a fault) suggests good performance in identifying fault 

images. However, a high value in the middle-right place (an idle class predicted as nor-

mal) would indicate that the model sometimes confuses idle images with normal opera-

tion images. 
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Figure 10. The matrix of confusion after training IMU6DoF-Time2GrayscaleGrid-CNN (training—

left; testing—right). 

Figure 11 showcases the interpretability analysis of the IMU6DoF-Time2Gray-

scaleGrid-CNN method using various techniques. Each row corresponds to a class (fault, 

idle, normal), and the columns present different methods for gaining insights into the 

CNN’s decision-making process. The CNN input image column displays the grayscale 

image generated from the IMU data for each class. These images serve as the input to the 

CNN for classification. The Grad-CAM column likely shows the Grad-CAM visualiza-

tions for each class. The Grad-CAM highlights the regions in the grayscale image that the 

CNN focuses on when making its classification decision. By analyzing these visualiza-

tions, we can understand which parts of the image are most influential for the CNN’s 

prediction. For example, in the fault class, the Grad-CAM highlights specific areas corre-

sponding to axis X of the accelerometer (top-left corner of the image) and axis Z of the 

gyroscope (bottom-right corner of the image) that correspond to the vibrations induced 

by the imbalanced fan blade. The fault condition is distinguished by a dominant frequency 

of 20 Hz appearing specifically in the X-axis of the accelerometer’s data and the Z-axis of 

the gyroscope’s data, as shown in Figure 7. The occlusion sensitivity column depicts the 

results of the occlusion sensitivity analysis. In this technique, different parts of the input 

image are systematically masked or occluded, and the impact on the CNN’s prediction is 

observed. If occluding a particular region significantly alters the prediction, it suggests 

that the CNN relied heavily on that region for classification. By analyzing the occlusion 

sensitivity maps, insights can be gained into which parts of the image are most informa-

tive for the CNN. The occlusion sensitivity analysis in Figure 11 complements the infor-

mation gleaned from Grad-CAM visualizations. While the Grad-CAM highlights the ar-

eas of the grayscale image that receive high activation from the CNN, occlusion sensitivity 

takes a more direct approach. Occlusion sensitivity maps reinforce these findings. By pro-

gressively occluding these highlighted regions and observing the changes in the CNN’s 

predictions for the fault class, the analysis confirms their critical role. If occluding these 

specific areas significantly reduces the model’s confidence in classifying an image as a 

“fault”, it demonstrates that the CNN heavily relies on information from those regions to 

make that classification. In essence, while the Grad-CAM points out the areas of interest, 

occlusion sensitivity quantifies their importance in the CNN’s decision-making process. 

This combined analysis provides a more comprehensive understanding of how the CNN 

leverages the grayscale image data to identify fault conditions. The LIME column shows 

the LIME explanations for each class. LIME generates a localized explanation for a single 

image prediction by introducing interpretable features around the instance of interest. 

Here, these features might be related to specific patterns or statistical properties within 

the grayscale image that influence the CNN’s decision. Analyzing LIME explanations can 

be useful for understanding the reasoning behind the CNN’s prediction for a particular 

image. 
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Figure 11. The interpretability of the proposed IMU6DoF-Time2GrayscaleGrid-CNN method. 

4.2. The IMU6DoF-Time2RGBbyType-CNN Method 

This method, named IMU6DoF-Time2RGBbyType-CNN, directly converts the time 

series data for each axis (X, Y, and Z) of the IMU sensor into separate channels of an RGB 

image. This creates a single image where the red channel represents the X-axis data, the 

green channel represents the Y-axis data, and the blue channel represents the Z-axis data. 

The resulting RGB image is then fed into a convolutional neural network (CNN) for clas-

sification. Figure 12 shows representative input images for each class (idle, normal opera-

tion, and fault). As can be seen, the top half of the image corresponds to the accelerometer 

data (red, green, blue channels for X, Y, and Z), while the bottom half corresponds to the 

gyroscope data (again, red, green, and blue for X, Y, and Z). 

 

Figure 12. The RGB image for each class of the IMU6DoF-Time2RGBbyType-CNN method. 

Similar to the IMU6DoF-Time2GrayscaleGrid-CNN method (Figure 9), the training 

progress of the CNN used in the IMU6DoF-Time2RGBbyType-CNN method can be visu-

alized (Figure 13) using a graph that plots training loss and accuracy over epochs. The 

data has been zoomed in to focus on the first 500 iterations for a clearer comparison be-

tween the two methods. Figure 13 reveals interesting insights into the training behavior 

of the CNNs for both approaches. It is evident that the IMU6DoF-Time2GrayscaleGrid-
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CNN method achieves a training accuracy exceeding 95% faster than the IMU6DoF-

Time2RGBbyType-CNN method does. This observation suggests that the CNN trained 

on the simpler grayscale image representation might converge into a good solution more 

efficiently compared to the model handling the RGB color image. 

 

Figure 13. The training progress of the CNN for the IMU6DoF-Time2RGBbyType-CNN method com-

pared with that of the IMU6DoF-Time2GrayscaleGrid-CNN method (training—left; validation—right). 

The performance of the IMU6DoF-Time2RGBbyType-CNN method can be further 

evaluated using a confusion matrix, shown in Figure 14. Similar to the confusion matrix 

described for the grayscale method (Section 4.1), this matrix is a table with rows repre-

senting the true classes (idle, normal, fault) and columns representing the predicted clas-

ses. The IMU6DoF-Time2RGBbyType-CNN and IMU6DoF-Time2GrayscaleGrid-CNN 

models have similar accuracy around 100%. 

  

Figure 14. The matrix of confusion after training IMU6DoF-Time2RGBbyType-CNN (training—

left; testing—right). 

Convolutional neural networks (CNNs) are powerful tools for image recognition, but 

their inner workings can be difficult to interpret. This makes it challenging to understand 

how a CNN arrives at its classification decisions. In the provided Figure 15, the first col-

umn shows the input RGB image. Similar to Section 4.1, the rows correspond to the classes 

of fault, idle, and normal, respectively. Techniques like Grad-CAM, occlusion sensitivity, 

and LIME were used to aid in CNN interpretability. These methods provide visualizations 

that highlight the regions of the image that the CNN focuses on for classification. By ana-

lyzing these visualizations, researchers can gain insights into the decision-making process 

of the CNN and understand how it differentiates between different classes. Frequency 
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domain analysis (as shown in Figure 7) reveals a characteristic signature of the fault con-

dition. This signature is characterized by a dominant peak at 20 Hz, specifically present in 

the X-axis of the accelerometer data and the Z-axis of the gyroscope data. The Grad-CAM 

and occlusion sensitivity analysis for the IMU6DoF-Time2RGBbyType-CNN method 

point towards the gyroscope data as a dominant factor in distinguishing fault conditions. 

These techniques highlight specific features or channels within the RGB image represen-

tation that correspond to the gyroscope data (particularly the Z-axis), suggesting that the 

CNN heavily relies on information from the gyroscope for accurate fault classification. 

 

Figure 15. Interpretability of the proposed IMU6DoF-Time2RGBbyType-CNN method. 

4.3. The IMU6DoF-Time2RGBbyAxis-CNN Method 

The method named IMU6DoF-Time2RGBbyAxis-CNN adopts a unique approach to 

transform time series data from a 6DoF IMU sensor into a format suitable for image-based 

recognition using a convolutional neural network (CNN). A crucial aspect of this method is 

the alignment of data across axes. By segmenting and reshaping data windows to be the 

same size for each axis (X, Y), the IMU6DoF-Time2RGBbyAxis-CNN model ensures that 

corresponding time points from different axes are positioned together within the RGB im-

age. This alignment potentially allows the CNN to learn the relationships between the 

movements along different axes, which might be beneficial for classification. Representative 

input images for each class (idle, normal operation, and fault) generated using this method 

can be seen in Figure 16. The figure clearly illustrates that the left of the image contains the 

accelerometer X-axis and gyroscope X-axis data, the middle part contains the accelerometer 

Y-axis and gyroscope Y-axis data, and the right part of the image represents the accelerom-

eter Z-axis and gyroscope Z-axis data; moreover, the blue channel was set to zero. 

 

Figure 16. The RGB image for each class of the IMU6DoF-Time2RGBbyAxis-CNN method. 
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Similar to the IMU6DoF-Time2GrayscaleGrid-CNN method (Figure 9), the training pro-

gress of the CNNs used in both IMU6DoF-Time2RGBbyType-CNN (Figure 13) and 

IMU6DoF-Time2RGBbyAxis-CNN can be visualized using graphs that plot training loss and 

accuracy over epochs. The data in Figure 17 has been zoomed in to the first 500 iterations for 

a clearer comparison between the three methods. The training progress reveals interesting in-

sights. As observed previously, the IMU6DoF-Time2GrayscaleGrid-CNN method achieves a 

training accuracy exceeding 95% faster than the IMU6DoF-Time2RGBbyType-CNN method 

does. This suggests that the simpler grayscale image representation might be easier for the 

CNN to learn from compared to the RGB-by-type approach. The IMU6DoF-Time2RGB-

byAxis-CNN method (which utilizes axis-aligned data representations in the RGB image) is 

not trained as fast as the grayscale method; however, it achieves faster convergence than the 

IMU6DoF-Time2RGBbyType-CNN method. This is because the axis-aligned representation 

in RGB by axis inherently captures some relationships between the axes (as data points from 

the same time window are positioned together), potentially simplifying the learning process 

for the CNN compared to the more abstract feature vector used in RGB by type. 

 

Figure 17. The training progress of the CNN of IMU6DoF-Time2RGBbyAxis-CNN compared with 

the that of IMU6DoF-Time2GrayscaleGrid-CNN and that of IMU6DoF-Time2RGBbyType-CNN 

(training—left; validation—right). 

Similar to the evaluation methods used for the other CNN approaches, the perfor-

mance of the IMU6DoF-Time2RGBbyAxis-CNN method can be assessed using a confu-

sion matrix as shown in Figure 18. It is noteworthy that, as previously mentioned, 

IMU6DoF-Time2GrayscaleGrid-CNN, IMU6DoF-Time2RGBbyType-CNN, and 

IMU6DoF-Time2RGBbyAxis-CNN each achieved a high accuracy of around 100%. 

  

Figure 18. The matrix of confusion after training IMU6DoF-Time2RGBbyAxis-CNN (training—

left; testing—right). 
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Understanding how the CNN in the IMU6DoF-Time2RGBbyAxis-CNN method 

makes decisions is crucial for building trust and potentially improving the model. Tech-

niques like Grad-CAM can be applied to visualize the regions within the RGB image that 

the CNN focuses on when classifying a specific operational state (idle, normal, fault), as 

shown in Figure 19. Since the method uses an axis-aligned representation, these visuali-

zations might highlight specific areas within a channel that correspond to movements 

along a particular axis. For example, at the fault class, Grad-CAM highlights in the red 

channel for X-axis movements in the accelerometer data and movements in the green 

channel for the Z-axis in the gyroscope data. This alignment can potentially offer more 

intuitive insights into the features the CNN learns compared to other RGB representation 

methods, as the highlighted regions directly relate to specific axes. In essence, by combin-

ing Grad-CAM visualizations with occlusion sensitivity analysis, we can achieve a more 

comprehensive understanding of how the IMU6DoF-Time2RGBbyAxis-CNN method 

leverages the axis-aligned data representation in the RGB image. This combined analysis 

helps to see how the model effectively distinguishes between different operational states 

based on the sensor data from the specific axes highlighted by Grad-CAM. 

 

Figure 19. The interpretability of the proposed IMU6DoF-Time2RGBbyAxis-CNN method. 

5. Discussion 

The comparison of the proposed methods was conducted in the high-performance 

computing environment of a remote virtual machine provided by the Poznan University 

of Technology. The system utilized VMware for virtualization and offered 16 GB of RAM 

for efficient memory management. The processing power was provided by an AMD EPYC 

7402 processor, with two cores and four threads specifically allocated for this task. It is 

important to note that the CNN training was processed entirely on the CPU for a con-

trolled comparison. The software environment used for this research was MathWorks 

MATLAB R2023a, which provided the necessary tools for data processing, image genera-

tion, CNN implementation, and performance evaluation. 

A paper clip attached to a fan blade can be a valid representation of a real fault for 

proof-of-concept purposes, but with limitations. In this paragraph, we discuss the limita-

tions of this approach while exploring real-world examples of fan blade imbalance in com-

puter and duct fan applications. This approach induces an imbalance that manifests itself 

as an increased vibration, mimicking the signature of a genuine fault. Vibration sensors 

can then detect these changes, allowing the researcher to evaluate the ability of the 

IMU6DoF-Time2GrayscaleGrid-CNN, IMU6DoF-Time2RGBbyType-CNN, and 

IMU6DoF-Time2RGBbyAxis-CNN methods to identify such imbalances through vibra-

tion analysis. However, it is crucial to acknowledge the limitations of this method. A paper 
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clip represents a highly specific type and degree of imbalance. Real-world fan blade fail-

ures can manifest in numerous ways with varying severities. The paper clip might not 

adequately capture the full spectrum of potential imbalances encountered in practical ap-

plications. Real-world imbalances can arise from manufacturing defects (for example, un-

even blade mass distribution), physical damage (for example, bent or cracked blades), or 

foreign object accumulation on a blade. These factors can lead to imbalances that differ 

significantly from the simple addition of mass introduced by a paper clip. The paper clip 

induces a moderate level of imbalance. However, real-world faults can range from very 

slight imbalances, which might not be readily detectable, to severe imbalances that cause 

significant vibration and rapid equipment degradation. A computer fan experiencing 

blade imbalance typically exhibits increased noise levels, vibrations detectable in the com-

puter case, and potentially unstable fan speeds. In severe cases, the imbalance can lead to 

premature fan failure or damage to the mounting bracket. The computer fan imbalance 

can be caused by manufacturing defects, physical damage to a blade (e.g., a bent tip), or 

the accumulation of dust on one side of the blade, which can all contribute to imbalance 

in computer fans. Similarly to computer fans, a duct fan with an imbalanced blade will 

experience increased vibrations and noise levels within the duct system. This can disrupt 

airflow patterns, reduce efficiency, and potentially damage the ductwork due to excessive 

vibrations. Similar to computer fans, imbalance can be caused by manufacturing defects, 

physical damage (e.g., a bent or cracked blade), or debris buildup on a blade, and these 

can all lead to imbalance in duct fans. Additionally, the misalignment of the fan within 

the duct can also cause vibration issues. Introducing an imbalance into a fan system using 

a paper clip attached to an blade is a appropriate method for proof-of-concept studies at 

low technology readiness levels (TRLs) related to basic research [32]. In this regard, each 

proposed method (IMU6DoF-Time2GrayscaleGrid-CNN, IMU6DoF-Time2RGBbyType-

CNN, and IMU6DoF-Time2RGBbyAxis-CNN) itself is under investigation, placing it at a 

relatively low TRL. While the methods are currently under development (low TRLs), sig-

nificant progress can be made to elevate their TRLs towards those of real-world applica-

tion (TRLs 7–9), which are equivalent to development work (product development at busi-

ness). The roadmap of technology readiness at TRL 7 assumes that the demonstration of 

the system prototype in an operational environment was successful. Next, the prototype 

testing is moved to a more realistic operational environment, involving functional com-

puter systems or dedicated fan test stands. The final level is TRL 9, which means that the 

actual system was successfully tested in an operational environment. This requires the 

final system to be deployed in real-world industrial settings for extended periods. This 

allows for real-world data collection and performance evaluation under practical operat-

ing conditions. In addition, system performance is monitored and data are gathered on its 

effectiveness in detecting fan blade imbalance and preventing equipment failures. By pro-

gressing through this TRL roadmap, the proposed methods have the potential to reach a 

high TRL level (TRLs 7–9) and become valuable tools for preventive maintenance and im-

proving equipment reliability in various industrial applications. This manuscript was fo-

cused at a low TRL which allows for a positive verification of the proof of concept of the 

proposed methods. The comparison of the training progress of the proposed methods is 

illustrated in Table 1, highlighting the number of epochs required for each method to reach 

a desired level of accuracy. Additionally, Table 2 provides insights into the image genera-

tion efficiency of each method, which directly impacts the overall processing time for fault 

diagnosis. The reference methods (STFTx6-CNN [1] and CWTx6-CNN [31]) achieved per-

fect validation accuracy (100%), and their training times of several minutes are signifi-

cantly faster compared to the those of the proposed methods, which had training speeds 

exceeding 30 min (IMU6DoF-Time2GrayscaleGrid-CNN, IMU6DoF-Time2RGBbyType-

CNN, and IMU6DoF-Time2RGBbyAxis-CNN). Additionally, the reference methods 

achieved over 90% convergence after five iterations, whereas the proposed methods re-

quire 60 to 150 iterations for similar accuracy. However, this trade-off comes with a sub-

stantial benefit in terms of computational efficiency. The proposed methods offer 



Energies 2024, 17, 1998 18 of 25 
 

 

significantly faster execution times, processing a segment of 256 samples by 6 axes of sen-

sors in less than half a millisecond. This is a considerable improvement compared to the 

reference methods, which require around 9 milliseconds for STFT with 128 × 6 segments 

and a slow 29 milliseconds for CWT with 96 × 6 segments. In real-world applications, 

especially those involving time-critical fault detection, the faster processing speeds of-

fered by the proposed methods become a major advantage. While all methods achieve 

excellent classification accuracy, the ability to perform computations in less than a milli-

second makes the proposed methods more suitable for online monitoring and real-time 

decision making. Future work can explore techniques to further optimize the training pro-

cess of the proposed methods while potentially leveraging interpretability techniques like 

Grad-CAM to gain deeper insights into the features learned by the CNNs for even more 

robust fault classification. 

Table 1. A comparison of the training progress of the proposed methods. 

Method 

Total Number  

of Images for 

Training 

Training 

Time 

Training 

Iterations 

Iteration with  

Validation Accuracy 

More than 90% 

Final Valida-

tion Accuracy 

Reference method STFTx6-CNN 6450 images 1 m 59 s 50 5-th iteration 100% 

Reference method CWTx6-CNN 6528 images 3 m 4 s 51 5-th iteration 100% 

Training CNN recognition of grayscale image 6144 images 33 m 54 s 7200 60-th iteration 99.93% 

Training CNN recognition of RGB-by-type image 6144 images 32 m 47 s 7200 150-th iteration 100% 

Training CNN recognition of RGB with axis align image 6144 images 34 m 33 s 7200 130-th iteration 100% 

Table 2. The image generation efficiency comparison for fault diagnosis. 

Time Measurement  

Condition 

Time Series  

Segment Size 

Total Num-

ber of Images 

Total Time in  

Seconds for All  

Iterations (Ceiling Round) 

Average Time of Single  

Iteration in Milliseconds 

(Ceiling Round) 

Reference method STFTx6-CNN 128 × 6 samples 8064 75.417 s 9.353 ms 

Reference method CWTx6-CNN 96 × 6 samples 8160 232.162 s 28.452 ms 

Time series to grayscale image generation 

(IMU6DoF-Time2GrayscaleGrid) 
256 × 6 samples 7680 2.832 s 0.369 ms 

Time series to RGB image generation by type 

(IMU6DoF-Time2RGBbyType) 
256 × 6 samples 7680 2.544 s 0.332 ms 

Time series to RGB image generation by axis 

(IMU6DoF-Time2RGBbyAxis) 
256 × 6 samples 7680 2.711 s 0.353 ms 

Time series to grayscale image generation 

and save file (IMU6DoF-Time2Gray-

scaleGrid) 

256 × 6 samples 7680 36.832 s 4.796 ms 

Time series to RGB-by-type image genera-

tion and save file 

(IMU6DoF-Time2RGBbyType) 

256 × 6 samples 7680 31.332 s 4.08 ms 

Time series to RGB-by-axis image genera-

tion and save file 

(IMU6DoF-Time2RGBbyAxis) 

256 × 6 samples 7680 29.491 s 3.841 ms 

In real-world applications, it is essential to trust the model’s predictions. Interpreta-

bility techniques can help us understand the reasoning behind the CNN’s decisions, fos-

tering confidence in its performance. Future research can explore advanced interpretabil-

ity techniques specifically designed for image-based CNNs used in sensor-based fault di-

agnosis. Additionally, analytic analysis can be conducted to evaluate the effectiveness of 

these techniques in conveying the model’s reasoning to domain experts. 

The vibration signals in Figure 6 appear to be visually distinct under certain operat-

ing conditions; human interpretation can be subjective and may not capture the full spec-

trum of informative features present in the data. The proposed methods leverage the 
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power of CNNs to address this challenge and achieve more robust and generalizable fault 

classification. CNNs excel at automatically extracting relevant features from complex data 

patterns. By training the CNN on a diverse dataset of vibration signals representing vari-

ous severities and other potential faults, the model learns to identify these subtle features 

and classify them accurately. Traditional machine learning approaches often require ex-

tensive manual feature engineering. CNNs can learn features directly from the raw data, 

reducing development time and potential human bias in feature selection. Furthermore, 

the previous research stage under six-switch and three-phase (6S3P) topology inverter 

faults [12], shows insights that phase currents can be converted into images for fault diag-

nosis and recognized more accurately than other classifiers (e.g., decision trees, naive 

Bayes, SVMs (support vector machines), KNN (k-nearest neighbors) or narrow neural net-

works) despite the fact that the phase currents were visually different. The insights from 

the previous research on 6S3P inverter faults provide strong support for the proposed 

approach of leveraging CNNs for fan blade imbalance detection. By automatically extract-

ing complex features from vibration data, the IMU6DoF-Time2GrayscaleGrid-CNN, 

IMU6DoF-Time2RGBbyType-CNN and IMU6DoF-Time2RGBbyAxis-CNN methods 

have the potential to achieve superior fault classification accuracy and robustness com-

pared to simpler methods, even when some level of visual distinction might be present in 

the raw data. 

In the case of the IMU6DoF-Time2GrayscaleGrid-CNN method, Grad-CAM high-

lights specific areas within the grayscale image corresponding to the fault class shown in 

Figure 11. For instance, these highlighted regions could be located in the top-left corner 

(corresponding to the X-axis of the accelerometer) and the bottom-right corner (corre-

sponding to the Z-axis of the gyroscope) of the image. This visual cue aligns with the 

knowledge that the fault condition is characterized by a dominant frequency of 20 Hz in 

both the X-axis accelerometer and Z-axis gyroscope data (as shown in Figure 7). By high-

lighting these specific areas, Grad-CAM helps us to understand that the CNN focuses on 

data patterns related to these axes when identifying the fault. The IMU6DoF-Time2RGB-

byType-CNN method does not provide a direct visual representation of the data like the 

other frequency domain methods (STFTx6-CNN and CWTx6-CNN); however, interpret-

ability techniques like Grad-CAM can still be applied to an input image as shown in Fig-

ure 15. By analyzing the results of Grad-CAM, we can gain insights into which features 

within the image hold the most significance for the CNN’s decision-making process. If the 

Grad-CAM analysis consistently highlights an image area heavily influenced by the gyro-

scope data, particularly the Z-axis, it might suggest that these movements play a key role 

in differentiating the fault class from other operational states. The interpretability of this 

method allows us to underline and select one dominant sensor for the future optimization 

of data acquisition and data processing. The IMU6DoF-Time2RGBbyAxis-CNN method 

benefits from its axis-aligned representation within the RGB image. In this case, Grad-

CAM visualizations offer intuitive interpretations, as shown in Figure 19. For example, 

for the fault class, Grad-CAM highlights movements along the X-axis in the accelerometer 

data and movements along the Z-axis in the gyroscope data. This direct mapping between 

data and axes in the image makes the interpretation of Grad-CAM results more straight-

forward. Which axes are most influential for the CNN’s decision in the fault class can be 

directly seen, aligning with the understanding that the fault involves vibrations in both 

the X and Z directions. 

The selection of the 200 Hz sampling frequency was arbitrary and should be chosen 

appropriately for other applications in which the proposed method will be applied. The 

system was preliminary investigated at 100 Hz, 200 Hz, 400 Hz, 500 Hz, and 2000 Hz sam-

pling frequencies and 200 Hz was selected, in which frequency components are rich. In 

previous research investigations for mechanical vibrations in direct motor drives, up to 

10,000 Hz samplings of a, b, c currents with multiple mechanical resonances were con-

ducted [33–35]. However, the proof of concept which verifies if the idea is feasible does 

not require a sufficiently high sampling frequency; therefore, 200 Hz was a wise selection. 
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The number of collected samples is several times smaller, allowing the proof of concept to 

be carried out with less computational resources. The sampling period was selected to 

achieve an image of the same size of 16 × 16 pixels, which is equivalent to 256 samples for 

the single axis. The system was preliminary investigated for 11 × 11, 12 × 12 and 16 × 16 

pixels. The second condition was to achieve taking around one second to capture at least 

one period of low-frequency components. 

The proposed methods (IMU6DoF-Time2GrayscaleGrid-CNN, IMU6DoF-

Time2RGBbyType-CNN, and IMU6DoF-Time2RGBbyAxis-CNN) were validated using a 

modified demonstrator (Figure 20) in a second scenario involving different fan velocities 

and a 12V DC supply. The demonstrator in Figure 4 was extended with a P-channel 

MOSFET (metal oxide semiconductor field effect transistor) to control the fan velocity in 

10% increments from 10% to 100% of its nominal speed. Additionally, a second paper clip 

was introduced to simulate a different fault condition. The sampling frequency was set to 

2000 Hz for this scenario. The partial images were reshaped from 576 samples to a size of 

24 × 24 pixels. These data were used to evaluate the performance of the proposed methods. 

Label fault 1 (or fault) was defined as having one paper clip attached and fault 2 (or fault2) 

represented having two paper clips attached. Images of the IMU6DoF-Time2Gray-

scaleGrid-CNN method are shown in Figure 21, Figure 22 shows example input images 

for the IMU6DoF-Time2RGBbyType-CNN method, and Figure 23 shows example images 

for the IMU6DoF-Time2RGBbyAxis-CNN method. A total of 1230 images were generated 

for each velocity level, resulting in a dataset of 36,900 images per method (1230 images/ve-

locity × 10 velocities × 3 class). This dataset was then divided, with 80% being allocated to 

train CNN models and 20% being used for validation. 

 

Figure 20. The modified demonstrator that changes velocity. 

 

Figure 21. The greyscale images for the second scenario with changes in fan velocity for each class 

of the IMU6DoF-Time2GrayscaleGrid-CNN method. 
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Figure 22. The RGB images for the second scenario with changes in fan velocity for each class of the 

IMU6DoF-Time2RGBbyType-CNN method. 

 

Figure 23. The RGB images for the second scenario with changes in fan velocity for each class of the 

IMU6DoF-Time2RGBbyAxis-CNN method. 

The training process for the second scenario, involving different fan velocities, took 

between 233 min (approximately 3.9 h) and 265 min (slightly over 4.4 h). The training 

progress curves (Figure 24) mirrored the observations from the first scenario. As previ-

ously noted, the IMU6DoF-Time2GrayscaleGrid-CNN method achieved training accu-

racy faster than the IMU6DoF-Time2RGBbyType-CNN method did. The confusion matri-

ces for each method after training are presented in Figures 25–27. The final validation ac-

curacy ranged from 99.88% (Figures 25 and 27) to 99.97% (Figure 26), with the IMU6DoF-

Time2RGBbyType-CNN method achieving the highest accuracy. However, these differ-

ences are not statistically significant. The results demonstrate that the proposed methods 

can achieve high accuracies for fault classification even with more complex datasets. How-

ever, the complexity of the data significantly impacts the training time. The first scenario, 

featuring a constant velocity, allowed for faster training compared to the second scenario 

involving varying velocities. In scenario two, training each method required approxi-

mately four hours (around 12 h total—around half a day), which is considerably longer 

than the training time observed in the first scenario with a constant velocity (around 30 

min per method). This highlights the potential benefit of utilizing simpler datasets during 

the initial proof-of-concept stage of model development. This approach facilitates faster 

training and initial validation. Subsequently, the model can be validated on more complex 

datasets that incorporate real-world variations, ensuring its robustness in practical appli-

cations. 

The fan is often installed inside enclosures. There are potential impacts of enclosures 

on vibration frequencies in research on fan blade imbalance detection using the IMU6DoF-

Time2GrayscaleGrid-CNN, IMU6DoF-Time2RGBbyType-CNN, and IMU6DoF-

Time2RGBbyAxis-CNN methods. This raises an excellent point and vibration frequencies 

can indeed be altered when a fan is installed inside an enclosure. The enclosure can act as 

a resonator, amplifying certain vibration frequencies while damping others. This can po-

tentially change the dominant frequencies observed in the vibration data compared to 

those of a freestanding fan. The mounting method and the rigidity of the enclosure can 

influence how the vibrations of the fan are transmitted to the sensors. This can introduce 
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additional complexity into the vibration signal. In future work at higher TRLs, it is 

planned to expand experiments beyond isolated fan setups. Future work will incorporate 

tests with fans mounted within enclosures that are representative of real-world applica-

tions and will be more related to the higher TRLs of a possible business product. This will 

allow researchers to analyze how enclosure effects influence the vibration signatures of 

imbalanced blades. 

 

Figure 24. The training progress of the CNN for the scenario with changes in fan velocity. 

 

Figure 25. The matrix of confusion after training IMU6DoF-Time2GrayscaleGrid-CNN for second 

scenario (training—left; testing—right). 

 

Figure 26. The matrix of confusion after training IMU6DoF-Time2RGBbyType-CNN for second sce-

nario (training—left; testing—right). 
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Figure 27. The matrix of confusion after training IMU6DoF-Time2RGBbyAxis-CNN for second sce-

nario (training—left; testing—right). 

An important question is the economic viability of using the proposed methods for 

monitoring a low-cost fan such as the Yate Loon Electronics model, and it is crucial to 

clarify the context of research at this stage. The current work primarily focuses on estab-

lishing the proof of concept for the IMU6DoF-Time2GrayscaleGrid-CNN, IMU6DoF-

Time2RGBbyType-CNN, and IMU6DoF-Time2RGBbyAxis-CNN methods in detecting 

fan blade imbalance. This initial development stage (at a low technology readiness level, 

TRL) prioritizes demonstrating the technical feasibility of the method. The Yate Loon fan 

serves as a readily available and well-defined test platform for this purpose. The point 

regarding economic feasibility becomes highly relevant when considering higher TRLs 

(TRLs 7–9). At these stages, the focus shifts towards developing a commercially viable 

product suitable for real-world applications. The economic viability depends on the target 

application. Although a low-cost fan like the Yate Loon model might not warrant such a 

system due to its low replacement cost, the method used could be highly cost-effective for 

high-value equipment where fan failure can lead to significant downtime and production 

losses. Examples include industrial fans in critical cooling systems, large server fans in 

data centers, or high-performance fans in wind turbines. As there is a trend towards 

higher TRLs, the technology can be designed to be scalable and adaptable. This could in-

volve developing modular sensor units or offering different levels of services depending 

on the specific needs and budget constraints of the customer. Although the economic fea-

sibility of the method for a low-cost fan such as the Yate Loon model might be limited at 

this stage, the core technology holds promise for providing a cost-effective solution for 

critical equipment in various industrial applications. As the move towards higher TRLs is 

made, economic considerations will become a central focus in developing a commercially 

viable product. 

6. Conclusions 

This investigation explored three image-based approaches for machine fault diagno-

sis using data from a 6DOF IMU sensor. All three methods achieved high accuracy in 

classifying operational states (idle, normal, fault). The IMU6DoF-Time2GrayscaleGrid-

CNN method, which converts time series data into a single grayscale image, demon-

strated the fastest training convergence. However, the methods utilizing RGB representa-

tions, like the IMU6DoF-Time2RGBbyType-CNN and IMU6DoF-Time2RGBbyAxis-CNN 

methods, might offer additional insights. While IMU6DoF-Time2RGBbyType-CNN uti-

lizes features extracted from the data, IMU6DoF-Time2RGBbyAxis-CNN leverages an 

axis-aligned representation within the RGB image. This alignment potentially allows the 

CNN in IMU6DoF-Time2RGBbyAxis-CNN to learn relationships between movements 

along different axes, which might be beneficial for classification. Additionally, the axis-

aligned representation in the Grad-CAM visualizations for IMU6DoF-Time2RGBbyAxis-

CNN could provide more intuitive explanations for the CNN’s decisions compared to 
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other methods. Further research can explore the effectiveness of these interpretability 

techniques and potentially combine them with domain knowledge to refine the under-

standing of the features learned by the CNNs for robust fault classification. 
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