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Abstract: Large-scale fluctuating and intermittent new energy power generation in a new power
system is gradually connected to the grid. In view of the impact of the uncertainty of wind power
on the spinning reserve capacity of thermal power units in the new power system’s day-ahead
dispatching and reserve auxiliary service market, the original dispatching mode and intensity can no
longer meet the system demand. To address this problem, the establishment of a wind power grid-
connected new power system’s standby auxiliary service market reward and punishment assessment
mechanism is undertaken to fundamentally reduce the demand for auxiliary services of the new
power system pressure. In the first part of this paper, a two-stage optimal scheduling strategy
is proposed for the first day of the year that takes into account the operational risk and standby
economics. First, a data-driven method is used to generate the forecast value of the wind power
interval before the day, and a unit start–stop optimization model (the first-stage optimization model)
is established by taking into account the CvaR (conditional value at risk) theory to optimize the
risk loss of wind abandonment and loss of load and the fuel cost of each unit, and an optimization
algorithm is used to carry out the three scenarios and the corresponding four scenarios to optimize
the configuration of the start–stop state and power output of each unit. The optimization algorithm is
used to optimize the starting and stopping status and output of each unit for three circumstances and
four corresponding scenarios. Then, in the second stage, a standby auxiliary service market incentive
and penalty assessment model is established to effectively coordinate the sharing of rotating standby
capacity and cost among thermal power units through the incentive and penalty mechanism so as to
make a reasonable and efficient allocation of wind power output, curtailable load, and synchronized
standby capacity. The new power system with improved IEEE30 nodes is simulated and verified,
and it is found that the two-stage optimization model obtains a scheduling strategy that takes into
account the system operating cost, standby economy, and reliability, and at the same time, through
the standby auxiliary service market incentive and penalty assessment mechanism, the extra cost
caused by standby cost mismatch can be avoided. This evaluation model provides a reference for
the safe, efficient, flexible, and nimble operation of the new power system, improves the economic
efficiency and improves the auxiliary service market mechanism.

Keywords: CvaR; reserve ancillary services; start–stop optimization; assessment mechanism

1. Introduction

As the infiltrate of wind power climbs, the innate randomness and intermittency
of wind electric energy production have exacerbated the volatility of system operation.
Therefore, when formulating dispatch plans, it is necessary to reserve an adequate reserve
capacity to solve the power inequality caused by random oscillates of wind power and load.
Scholars both domestically and internationally have conducted research on optimization
dispatch and reserve allocation issues in new power systems with wind farms.
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The literature [1,2] proposed a multi-source joint dispatch strategy incorporating wind
power, photovoltaic, and load based on predetermined ratios, which reserves spinning
reserve capacity. The literature [3,4] considered CVaR and wind power generation intervals,
devising active dispatch plans and reserve schemes. However, the adoption of an affine
adjustment strategy resulted in only suboptimal solutions, lacking full adaptability. The
literature [5] considered the probability of occurrence of anticipated accidents and pro-
posed the use of risk quantification methods to allocate accident reserve capacity, but this
quantification method has subjective limitations. The literature [6] incorporated expected
power shortage and wind curtailment expectations into the comprehensive optimization
objective and developed a rotational reserve capacity optimization model for the new
power system after wind power integration. However, although the above indicators
consider the uncertainty caused by random factors leading to accidents, they are unable to
comprehensively consider the unit start–stop, operational risks, reserve availability, and
jeopardy brought to the new power system by the volatility of source–load in power flow,
making it difficult to balance economics and reliability in the formulated reserve plan. The
literature [7] proposes a two-layer stochastic optimization model for virtual power plants
to take part in the electricity and standby auxiliary services market, where the upper layer
constitutes a two-stage risk decision model on account of the conditional value-at-risk
theory, and the lower layer carries out the assimilation with the clearing of the electricity
market and standby auxiliary services market after the bidding and offers information
on the known market players. The literature [8] proposes an active distribution network
operation strategy that takes into account the involvement of energy storage assimilations
with energy–standby market trading. Firstly, a general operation model based on a distribu-
tion system operator (DSO) is described. The reserve capacity of the accumulation energy
system is modeled to quantify the reserve capacity that can be continuously called up
under the capacity constraints of the accumulation energy system and the reserve capacity
that can be transferred to the primitive node under the current restraint. Finally, the ability
of the energy storage to get in on the act of the energy market and the market for standby
secondary services is taken into account, and a double-layer optimal scheduling model for
the active distribution network in the developing market environment is established.

In the United States’ electricity market, independent system operators (ISOs) typically
employ a market mechanism where energy and reserve ancillary services are jointly cleared.
The dispatching operator determines the system’s reserve demand based on load forecasts
and predetermined coefficients. When the provision and requirement of reserves in the new
power system are tight, the safety values and scarcity of reserves significantly increase, and
reserve prices soar synchronously with energy prices [9]. In order to form appropriate price
signals under scarcity conditions, major dispatching operators in the United States [10–12]
have designed operating reserve demand curves (ORDCs) considering reserve demand
elasticity based on the values of lost load [13,14]. However, ORDCs are usually predicted by
operating organizations and have poor sensitivity over a certain period [15,16], making it
difficult to truly reflect the demand characteristics and reserve demand elasticity of market
participants. This is not conducive to forming adequate reserve prices and guiding market
participants to exert demand elasticity. At the same time, market participants represented
by new energy sources can substitute reserve demand with load and wind power reduction
when reserve costs are high, demonstrating a certain degree of reserve demand elasticity.
This means that new energy sources can provide ancillary services by adjusting energy
declarations, such as reducing wind power output to reduce reserve demand. Therefore, it
is necessary to explore and establish reserve ancillary services markets where supply and
demand participate simultaneously, which is conducive to guiding and exerting demand
elasticity on the demand side of reserves.

In Europe, electricity spot markets organize energy and reserve clearing separately.
The organization of reserve markets typically relies on capacity compensation methods [17].
For example, in the UK, reserve markets are organized based on a Dutch auction, and except
for special circumstances, the auction and trading stages are implemented by the market
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itself [18]. The European Transmission System (ENTSO-E) in the Nordic region is exploring
a mechanism for the cross-border and cross-region balancing of reserve ancillary services
capacity. The reserve demand, as determined by ENTSO-E, drives the real-time balancing
market and ancillary service market. ENTSO-E centrally procures, clears, and meets the
reserve capacity needs of various countries through a shared platform [19]. However, due
to differences in the definition of ancillary services, the establishment of technical standards,
and differences in settlement methods, contract terms, and dispatch principles for different
ancillary services across European countries, electricity users end up bearing additional
reserve costs for wind power and load, leading to unnecessary inefficiencies and economic
losses in the market.

Another issue yet to be discussed under the adjusting new energy sources is how to
achieve a fair distribution of reserve costs. Currently, foreign reserve costs are typically
borne directly or indirectly based on load demand and the proportion of new energy
sources. In the PJM (Pennsylvania–New Jersey–Maryland interconnection) market in the
United States, reserve costs are borne by large users or retail electricity suppliers through
purchasing or self-provision [20]. In the UK market, reserve costs are passed on to users
through system usage fees [21]. Under the current allocation mechanisms, mirroring the
properties of reserve demand for new energy sources and loads is hardly carried out, and
there is a lack of a reasonable basis for sharing reserve costs. Therefore, it is necessary to
study cost allocation methods based on the contribution of reserve demand to reflect the
principle of “who generates, who bears” in market organization.

The workflow of this study is depicted in Figure 1. To solve the above-mentioned
scheduling strategy matters, this paper establishes an optimal unit start–stop optimization
model (first-stage optimization model) by considering the conditional value-at-risk (CvaR)
theory. This model optimizes the risk loss of wind curtailment and load shedding along
with the fuel costs of each unit, thereby achieving the optimal operating cost of the thermal
power units in the system. The BFSO (binary fish swarm optimization) and SOA (seagull
optimization algorithm) algorithms are employed to solve this model, configuring the
start–stop status and optimal output of each unit. The second-stage economic optimization
model is utilized to guarantee the rational and efficient allocation of wind power output,
reducible load, and synchronous reserve capacity. Through these two optimization stages,
a scheduling strategy that balances the economic efficiency, reserve economic efficiency,
and reliability of the system is obtained.

To adhere to the market principle of “who generates, who bears” and address the
issue of the fair allocation of reserve costs, this paper proposes a power auxiliary reserve
market assessment mechanism. This mechanism distributes reserves based on the output
of each unit and provides penalty compensation based on the difference. Setting the
maximum technical output values of units as the reward for unit shutdown for downward
synchronous reserve can help avoid additional costs caused by reserve cost mismatches
and efficiently guide the output and reserve economic allocation through rewards.
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Figure 1. Workflow diagram.

2. Research Theory
2.1. System Uncertainty Analysis
2.1.1. Data-Driven Wind Power Uncertainty Prediction

The uncertainty analysis relies on probabilistic interval forecasts of wind power. This
analysis integrates an optimized machine learning wind power point prediction method
with a hybrid kernel density estimation interval prediction method that accounts for ramp
events. The data are from the actual operation data of a coastal wind farm in Northeast
China in January 2022. A 120 m meteorological tower is installed in the wind farm to
monitor meteorological data. The SCADA system collects the status information of each
wind turbine at 1 min intervals. As the SCADA data from wind farms often contain
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numerous outliers, the variance change point percentile method is employed to clean and
filter 44,640 data points of anomalies collected from each turbine in January. Missing data
for each turbine are then interpolated using the nearest neighbor rule. Even the wind
energy grid-connected new power system requires a forecast time resolution of 15 min
for intraday scheduling. The sum of the active power for each turbine is averaged after
processing to create 2976 wind power time series with a 15 min time resolution.

The paper introduces a novel wind power point forecasting model (DBO-VMD-
HKELM). The model optimizes variational mode decomposition (VMD) parameters through
the dung beetle optimizer (DBO) and employs the hybrid kernel extreme learning machine
(HKELM). Considering the distribution characteristics of wind power prediction errors, the
paper proposes an optimized interval assessment method (VHSKDE, Variable Bandwidth
Hybrid Sliding Kernel Density Estimation) for wind power probability prediction. The
term “Variable Bandwidth Hybrid” involves obtaining the probability density function of
forecast deviations based on variable bandwidth kernel density estimations. This function
is then weighted and superimposed according to the appropriate weighting coefficients,
determined using the entropy weight method. The probability density functions obtained
based on variable bandwidths exhibit different biases, and the bias superimposition mecha-
nism compensates for each other. This enables the combined probability density function
to more accurately estimate probability forecast deviations. Using the above method, the
prediction results for 30 January are shown in Figure 2.

Figure 2. Wind power prediction results.

2.1.2. Load Uncertainty

The prediction error for the load is expressed as follows [22]:

ε l,n,t = Pl−true,n,t − Pl−pre,n,t (1)

where ε l,n,t, Pl−true,n,t, and Pl−pre,n,t represent the prediction error, actual power, and predicted
power of node load n at time period t, respectively. Short-term load prediction errors typically
adhere to a normal distribution with an average value of 0, where the standard deviation σn,t
is determined based on the load prediction values coefficient q, as in Formula (2).

σn,t = qPl−pre,n,t (2)

2.2. Risk Assessment Based on CVaR

To reduce the risk caused by wind power prediction deviations, conditional values at
risk (CVaR) is employed to assess the losses associated with wind curtailment and load
shedding. This assessment takes into account the volatility of wind power output, which
can lead to the risk of load shedding and wind curtailment losses. The total prediction
deviation be denoted as ∆ fcva,t, where [23]

∆ fcva,t = ∆ fw,t − ∆ fl,t (3)
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∆ fl,t stands for the prediction deviation of the load at time t, and ∆ fw,t stands for the
prediction deviation of the wind power output at time t.

When the total prediction deviation is ∆ fcva,t < 0, indicating an excess demand for elec-
tric load, if the upward synchronous reserve capacity in the system cannot fully compensate
for this, this results in a load shedding risk. Similarly, when the total prediction deviation
is ∆ fcva,t > 0, indicating excess output power, insufficient downward synchronous reserve
at this time leads to wind curtailment risk.

The calculation of load shedding (denoted as f Reject
l,t ) and wind curtailment (denoted

as f Reject
w,t ) at time t is as shown in Formulas (4) and (5), respectively.

f Reject
l,t = −∆ fcva,t − Su,t −∆ fcva,t > Su,t (4)

f Reject
w,t = ∆ feva,t − Sd,t ∆ feva,t > Sd,t (5)

In the equations, Su,t stands for the upward synchronous reserve provided by the
system at time t. Sd,t stands for the downward synchronous reserve provided by the system
at time t.

To evaluate the costs associated with the two risks mentioned above, the calculation
methods are shown in Formulas (6) and (7).

GW
w,t = γw f Reject

w,t f Reject
w,t ≥ 0 (6)

GL
l,t = γl f Reject

l,t f Reject
l,t ≥ 0 (7)

In these equations, GW
w,t stands for the wind curtailment risk cost; γw stands for the

wind curtailment penalty cost coefficient; GL
l,t stands for the load shedding risk cost; and

γl stands for the load shedding penalty cost coefficient.
Thus, the CvaR values obtained from the uncertainty of wind power and load can be

accurately assessed as follows [23]:

GCVaR =
T

∑
t=1

GW
w,t+

T

∑
t=1

GL
l,t (8)

where the scheduling period is denoted by T.

2.3. Two-Stage Optimization Scheduling Model for Day Ahead

Considering the uncertainty of both generation and load, the system aims to minimize
operating costs. To achieve this, two-stage optimization scheduling models are established
which accord with the operational constraints of the new power system. These models
incorporate fuel costs, various risk costs, wind curtailment costs, start-up and shutdown
costs, as well as demand response costs.

2.3.1. Objective Function of the Two-Stage Optimization Model

In view of the uncertain predictions of wind power and load, the first-stage objective
function is formulated, consisting of fuel costs for thermal power units and system risk
costs. Optimization techniques are applied to solve this function, obtaining the optimal
output of each unit and the optimal start-up and shutdown plans.

minF1 = F11 + GCVaR (9)

F11 =
T

∑
t=1

N

∑
i=1

αiP2
i,t + βiPi,t + λi (10)

FSp = FStart + FStop (11)
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FStart =
N
∑

i=1

T
∑

t=1
Hi · ui,t FStop =

N
∑

i=1

T
∑

t=1
Ji · ui,t (12)

In the equation, F11 stands for the fuel cost of thermal power units; Pi,t stands for
the planned output of thermal power unit i at time period t, where N is the total number
of thermal power units; and αi, βi, and λi represent the generation cost coefficients of
thermal power unit i. FSp stands for the start-up and shutdown costs of thermal power
units; FStart stands for the start-up cost; FStop stands for the shutdown cost; and Hi stands
for the one-time start-up cost of thermal power unit i. Ji stands for the one-time shutdown
cost of thermal power unit i. ui,t stands for the start-up action variable at time period t.
ui,t stands for the shutdown action variable at time period t.

To establish the second-stage optimization scheduling model, synchronous reserve
optimization is conducted while ensuring optimal economic dispatch conditions for the
first-stage start-up and shutdown statuses. The objective function is formulated as follows:

minF2 = F11 + FCdr + FRw + FRec (13)

FCdr =
T
∑

t=1
δtLdr,t FRw =

T
∑

t=1
ξt(Pw,t − Pwa,t) (14)

FRec =
N

∑
i=1

T

∑
t=1

ς
up
i Rup

i,t + ςdw
i Rdw

i,t (15)

In the equation, FCdr stands for the reducible load cost; δt stands for the reducible
load cost coefficient at time period t; Ldr,t stands for the reducible load at time period
t. FRw stands for the wind curtailment cost; and ξt stands for the wind curtailment cost
coefficient at time period t. Pwa,t stands for the planned wind power output at time period
t; Pw,t stands for the predicted wind power output at time period t; FRec stands for the
standby cost of thermal power units; and ς

up
i and ςdw

i respectively represent the price coef-
ficients for providing the upward and downward reserve capacity of thermal power unit i.
Rup

i,t and Rdw
i,t respectively represent the upward and downward reserve capacity provided

by thermal power unit i at time period t.

2.3.2. Constraint Conditions

(1) Constraint on the Start-Up and Shutdown of Thermal Power Units [22]

Bi
∑

t=1
(1 − ui,t) = 0 Bi = min{T, (Tu,i − Ui,0)ui,0} (16)

t+Tu,i−1
∑

n=t
ui,n − Tu,i(ui,t − ui,(t−1)) ≥ 0

t = Hi + 1, Hi + 2, · · · , T − Tu,i + 1
(17)

T
∑

n=t
[ui,n − (ui,t − ui,(t−1))] ≥ 0

t = T − Tu,i + 2, T − Tu,i + 3, · · · , T
(18)

Li
∑

t=1
ui,t = 0 Li = min

{
T, (Td,i − Si,0)(1 − ui,0)

}
(19)

t+Td,i−1
∑

n=t
(1 − ui,n)− Td,i(ui,(t−1) − ui,t) ≥ 0

t = Li + 1, Li + 2, · · · , T − Td,i + 1
(20)

T
∑

n=t
[(1 − ui,n)− (ui,(t−1) − ui,t)] ≥ 0

t = T − Td,i + 2, T − Td,i + 3, · · · , T
(21)
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yi,t − zi,t = ui,t − ui,t−1 (22)

yi,t + zi,t ≤ 1 (23)

In the equations, ui,t stands for the operational state of thermal power unit i at time
period t (0 denotes shutdown, 1 denotes operation); Td,i and Tu,i respectively represent the
minimum shutdown and minimum operation time of thermal power unit i; Ui,0 and Si,0
respectively represent the initial start-up and shutdown operation time of thermal power
unit i; and yi,t and zi,t respectively represent the start-up and shutdown variables of general
unit i at time period t.

(2) Constraint on the Ramping of Thermal Power Units [22]

(Pi,t + Rup
i,t )− (Pi,t−1 − Rdw

i,t−1) ≤ rup,i∆T(1 − yi,t) + Pi,minyi,t (24)

(Pi,t−1 + Rup
i,t−1)− (Pi,t − Rdw

i,t ) ≤ rdw,t∆T(1 − zi,t) + Pi,minzi,t (25)

where rup,i and rdw,i respectively represent the upward and downward ramping rates of
thermal power units, and ∆T stands for the scheduling time interval.

(3) Constraint on the Output Limits of Thermal Power Units

Pi,t + Rup
i,t ≤ Pi,maxui,t (26)

Pi,t − Rdw
i,t ≥ Pi,minui,t (27)

In the equations, Pi,max and Pi,min respectively represent the upper and lower limits of
the output of thermal power unit i.

(4) Wind Power Output Constraint

0 ≤ Pwa,t ≤ Pw,t (28)

(5) Load Balance Constraint

Nh

∑
i=1

Pi,t +
Nw

∑
w=1

Pwa.t −
NN

∑
n=1

Ldr,t =
NN

∑
n=1

Ll,t (29)

where Ll,t stands for the node load at time period t, NN stands for the number of nodes in
the new power system, Nh stands for the number of thermal power units, and Nw stands
for the number of wind farms.

(6) Synchronous Reserve Constraint

0 ≤ Ui,t ≤ ui,t · θ · Pi,max
0 ≤ Di,t ≤ ui,t · θ · Pi,max

(30)

Ui,t ≤ Pi,max − Pi,t Di,t ≤ Pi,t − Pi,min (31)

Nh
∑

i=1
Ui,t ≥νw

Nw
∑

w=1
Pwa.t + νl ·

NN
∑

n=1
Ll,t

Nh
∑

i=1
Di,t ≥µw

Nw
∑

w=1
Pwa.t + µl ·

NN
∑

n=1
Ll,t

(32)

where Ui,t and Di,t respectively represent the upward and downward synchronous reserve
of thermal power unit i at time period t; θ stands for the reserve coordination coefficient;
Pi,min stands for the minimum output of thermal power units; νw and νl respectively
represent the positive thermal reserve fluctuation coefficients of wind farms and loads; and
µw and µl respectively represent the negative thermal reserve fluctuation coefficients of
wind farms and loads.
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(7) Line Flow Constraint [23]

Nh

∑
i=1

Kl,iPi,t +
Nw

∑
w=1

Kl.wPwa.t −
NN

∑
n=1

Kl,nPn,t ≤ Pl,max (33)

−(
Nh

∑
i=1

Kl,iPi,t +
Nw

∑
w=1

Kl,wPwa,t −
NN

∑
n=1

Kl,nPn,t) ≤ Pl,max (34)

In the equations, Kl,i, Kl.w, and Kl,n respectively represent the power injection transfer
distribution factors from thermal power unit i, wind farm w, and load n to transmission line
l. Pl,max stands for the maximum transmission capacity of line l. Equations (28) and (29)
respectively represent the limit constraints for forward and reverse power flows on the
transmission line.

2.3.3. Improved Binary Fish Swarm Optimization Algorithm

The fish swarm algorithm (FSA) [24] is an evolutionary algorithm based on simulating
the behavior of fish swarms. It mimics the behaviors of fish in foraging and avoiding
predators, and it is applied to solve optimization problems. Using a bottom-up opti-
mization strategy, the FSA achieves global optimization through the local optimization
of individuals within the fish swarm, demonstrating features such as parallelism, sim-
plicity, globality, speed, and tracking ability. Assuming the search space dimensionality
is D, each particle’s information is represented by two D-dimensional vectors: the fish’s
position Xi = (xi,1, xi2, · · · , xiD) and velocity vector Vi = (vi1, vi2, · · · , viD). Each fish has
an adaptation value determined by the optimal objective function used to evaluate the
quality of the fish’s current position. During the iterative process of the algorithm, fish
continuously adjust their positions and velocities by learning from both the “individual
perception of food concentration” and the “population perception of food concentration”,
rapidly and accurately approaching the target. Here, the “individual perception of food
concentration” refers to the individual extreme values point found by each fish in the search
space, denoted as P. The “Population perception of food concentration” refers to the global
extreme values point found by the entire fish swarm in the search space, denoted as G. The
updated formulas for the fish swarm’s position and velocity information are as follows:

xj+1
id = xj

id + vj+1
id (35)

vj+1
id = ωvj

id + c1r1(Pj
id − xj

id) + c2r2(G
j
d − xj

id) (36)

In the equations, ω stands for the inertia weight; r1 and r2 are random numbers in
the range [0, 1]; c1 and c2 are learning factors, typically in the range of [0, 2]; and xj

id and

vj
id represent the position and velocity of fish i at the d-th position in the j-th iteration.

Pj
id stands for the values of the individual extreme values point of fish i at the d-th position

in the j-th iteration, and Gj
d stands for the values of the global extreme values point of the fish

swarm at the d-th position in the j-th iteration. The unit start–stop is a 0–1 nonlinear integer
optimization problem, requiring an improvement of the traditional fish swarm algorithm
used for solving continuous variable optimization problems. This improvement involves
using the double-layer binary fish swarm optimization (DLBFSO) algorithm for solving.

In the DLBFSO algorithm, each bit of the fish position vector takes a value of 0 or 1.
The algorithm calculates the probability of each position taking the value of 0 or 1 using a
Sigmoid function with velocity as a variable. The updated formulas for the fish position
and velocity information are as follows:

Sigmoid(vj+1
id ) =

1

1 + e−vj+1
id

(37)
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xj+1
id =

{
1 rand < Sigmoid(vj+1

id )

0 rand ≥ Sigmoid(vj+1
id )

(38)

In the equations, “rand” stands for a number in the range [0, 1].
The double-layer fish swarm algorithm comprises two levels of fish swarm updates:

global layer update and local layer update.
Global layer update: this guides the movement of the fish swarm based on the global

optimum solution (global optimal fish swarm) to accelerate the global search.
Local layer update: this directs the movement of particles based on the local optimum

solution (local optimal fish swarm) to expedite the local search.

2.3.4. Seagull Optimization Algorithm (SOA)

Gulls, as flocking organisms, exhibit two important behavioral traits: migration and
aggression. During group migration, to avoid collisions, gulls update their initial position
by moving in a direction that is more suitable for survival. In the process of catching food
at sea, the gulls attack the prey by moving in a spiral pattern, taking the prey’s location as
the optimal position and obtaining the optimal fitness value [25].

(1) Migration of seagulls (global search)

The gull migration process simulates the movement behavior of a gull colony from
one location to another. Three conditions should be satisfied in this global search phase.
Condition 1: avoid collision; Condition 2: the determination of the optimal positional
orientation; and Condition 3: move to the optimal position.

(2) Seagull attack (localized search)

The gulls use their wings to change their angle of attack and speed when hunting
during migration, attacking their prey in a spiral motion in the a, b, and c planes, thus
updating the gull’s position.

Ps(x) = abcds(x) + Pb(x) (39)
r = u × eβν

a = r × cos(β)
b = r × sin(β)

c = r × β

(40)

where Ps(x) stands for updated location after a seagull attack; r stands for the radius of
each circle of the helix; u and ν are constants that define the shape of the helix; e is the base
of the natural logarithm; and β is a number in the range of [0, 2π].

2.4. Assessment Mechanism for Power Auxiliary Reserve Market

Regarding the upward synchronous reserve, the first step is to calculate the capacity
values of each unit providing ancillary services.

When the unit is not operating, the upward synchronous reserve is required, and the
capacity needs to be allocated based on the maximum technical output values. The formula
is as follows: {

Ji,t = Pmax,i, Pi,t = 0

Ji,t = Pi,t, Pi,t ̸= 0
(41)

where Ji,t stands for the allocated capacity of each unit for the upward synchronous reserve.
According to the proportion of unit capacity, the obligation is determined, and the

responsibility of each unit is calculated. The formula is as follows:

Mt =
Nh
∑

i=1
Ji,t URe fi,t =

Ji,t
Mt

(42)

Re f upi,t = URe fi,t · Ji,t (43)
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where Mt stands for the total output capacity of each unit for the upward synchronous
reserve in time period t, URe fi,t stands for the proportion of the upward synchronous
reserve capacity for each unit in time period t, and Re f upi,t stands for the capacity of the
upward synchronous reserve that each unit undertakes based on the proportion of URe fi,t.

The formula for determining the penalized capacity of units requiring upward syn-
chronous reserve compensation is as follows:

∆Ui,t = Ui,t − Re f upi,t (44){
∆Ui,t = 0, ∆Ui,t > 0

∆Ui,t = |∆Ui,t|, ∆Ui,t ≤ 0
(45)

where Ui,t stands for the upward synchronous reserve capacity, and ∆Ui,t stands for the
penalized capacity for the upward synchronous reserve.

To allocate the ancillary service cost among units based on the difference in the upward
synchronous reserve penalized capacity, the formula is as follows:

ψi,t =
∆Ui,t

Nh
∑

i=1
∆Ui,t

· (
Nh

∑
i=1

fup,i,t · Ui,t) (46)

where ψi,t stands for the allocated penalized cost of ancillary service for the upward
synchronous reserve among units, and fup,i,t stands for the upward synchronous reserve
cost coefficient.

The total cost calculation for the penalized upward synchronous reserve among units
is as follows:

Rupc f =
T

∑
t=1

Nh

∑
i=1

ψi,t (47)

For the downward synchronous reserve, the calculation of the capacity each unit needs
to bear is based on the minimum technical output of each unit:

DRe fi,t =
Pi,t − Pi,min

Nh
∑

i=1
Pi,t

(48)

{
DRe fi,t = 0, DRe fi,t < 0

DRe fi,t = DRe fi,t, DRe fi,t ≥ 0
(49)

Re f downi,t = DRe fi,t · Pi,t (50)

where DRe fi,t stands for the proportion of capacity each unit needs to bear for the down-
ward synchronous reserve based on the minimum technical output, and Re f downi,t stands
for the capacity each unit needs to bear for downward synchronous reserve.

The formula for determining the penalized capacity of units requiring downward
synchronous reserve compensation is as follows:

∆Di,t = Di,t − Re f downi,t (51){
∆Di,t = 0, ∆Di,t > 0

∆Di,t = |∆Di,t|, ∆Di,t ≤ 0
(52)

where Di,t stands for the downward synchronous reserve capacity, and ∆Di,t stands for the
penalized capacity for the downward synchronous reserve.



Energies 2024, 17, 1921 12 of 25

To allocate the ancillary service cost among units based on the difference in penalized
capacity for the downward synchronous reserve, the formula is as follows:

ψi,t =
∆Di,t

Nh
∑

i=1
∆Di,t

·
Nh
∑

i=1
fdown,i,t · Di,t ∆Di,t > 0

ψi,t = 0 ∆Di,t = 0

(53)

where fdown,i,t stands for the downward synchronous reserve cost coefficient, and ψi,t stands
for the allocated penalized cost of ancillary service for the downward synchronous reserve
among units.

The total cost calculation for the penalized downward synchronous reserve among
units is as follows:

Rdownc f =
T

∑
t=1

Nh

∑
i=1

ψi,t (54)

In relation to the mechanism for downward synchronous reserve rewards, the calcula-
tion of the capacity each unit needs to bear for ancillary service rewards must be carried out.
This refers to determining the capacity reward for units in shutdown status. To optimize the
system’s reserve plan and reduce the cost of the downward synchronous reserve, this paper
sets the maximum technical output values of the unit as the reward capacity as follows:{

Ki,t = Pmax,i, Pi,t = 0

Ki,t = 0 Pi,t ̸= 0
(55)

where Ki,t stands for the allocated reward capacity of each unit for the downward syn-
chronous reserve.

Following the reward capacity for units in shutdown status for the downward syn-
chronous reserve, the formula for the sharing of ancillary service rewards among units is
as follows:

Qi,t = Ki,t ·
(

Nh
∑

i=1
fdown,i,t · Di,t)

Nh
∑

i=1
Di,t

(56)

where Ki,t stands for the allocated reward capacity of each unit for the downward syn-
chronous reserve, and Qi,t stands for the sharing of rewards among units for the downward
synchronous reserve.

The calculation of the total rewards of ancillary service for the downward synchronous
reserve among units is as follows:

Rdownjl =
T

∑
t=1

Nh

∑
i=1

Qi,t (57)

3. Example Analysis

The IEEE 30-node system serves as a case study to validate the availability and
feasibility of the proposed two-stage scheduling model and evaluation model of the standby
ancillary service market. The optimization software CPLEX (12.10.0) is invoked using the
Yalmip toolbox on the Matlab (R2023a) platform for model solving. The configuration
includes an Intel Core I9-13900HX series processor with a frequency of 2.2 GHz and 16 GB
of memory.

3.1. IEEE 30 Node System Example

The improved IEEE 30-node system comprises 11 thermal power units, one wind farm,
and 41 transmission lines [26]. The connection nodes of each unit are detailed in Table 1.
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Wind power operation data are sourced from a wind farm in a coastal area in Northeast
China, with the connection node identified as node 12. The transmission capacity limit for
all lines is set at 250 MW. Figure 3 depicts the Monte Carlo simulation of the load curve,
vividly showcasing the uncertainty of the load [27]. From Figure 3, one scenario is selected
to represent the system’s total load prediction curve, as illustrated in Figure 4.

Table 1. Statistics of access nodes of each unit.

Node
Number

Maximum
Output/MW

Minimum
Output /MW

Climbing
Rate

Start-Up
Cost/USD

Downtime
Costs/USD

1 100 20 25 6 2
2 200 50 50 7 3
6 100 20 25 6 2
7 500 100 125 12 4
8 100 20 25 6 2
9 300 100 75 8 4
10 300 100 75 8 4
14 100 30 25 6 2
17 500 300 125 12 4
19 500 300 125 12 4
21 100 10 25 6 2

Figure 3. Monte Carlo simulation load curve.

Figure 4. System total load forecasting curve.

In order to verify the effectiveness of the two-stage optimal scheduling method con-
sidering CVaR and synchronous reserve, and ensure the effective allocation of reserve, four
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scenarios are established to verify the economy of the reserve auxiliary service market
evaluation model. Four system operation scenarios are developed for comparative analysis,
as shown in Table 2.

Table 2. Comparison analysis of system operation schemes.

Scheme Phase 1 Phase 2

Scenario 1 Start–stop optimization without
considering operational risks

Disregard synchronous spare
optimization

Scenario 2 Start–stop optimization without
considering operational risks

Consider synchronous spare
optimization

Scenario 3 Consider start–stop optimization of
operating risks

Disregard synchronous spare
optimization

Scenario 4 Consider start–stop optimization of
operating risks

Consider synchronous spare
optimization

To explore the volatility of wind power on the supply side and the robustness of the
established optimization models, this study utilizes data-driven wind power uncertainty
prediction results for validation. Three circumstances are considered: the upper limits
of wind power forecast values (Circumstance 1), the lower limits of wind power forecast
values (Circumstance 2), and wind power forecast values (Circumstance 3).

3.2. Analysis of Reserve Limits for Wind Power Systems Based on Uncertainty
3.2.1. Analysis of the Effectiveness of the Evaluation Model of the Upper Limit Standby
Auxiliary Service Market Based on Wind Power Forecasts

It is important to verify the robustness of the two-stage optimal dispatch methodology,
taking into account the new power system operational risk and synchronized standby
and its impact on the power auxiliary standby market assessment. The upper and lower
extremes of the wind power interval forecasts are used to further validate the effectiveness
and feasibility of the methodology in this paper.

The system operating costs of the four scenarios based on the upper limit of wind
power values (Circumstance 1) are shown in Table 3.

Table 3. System operating cost statistics for four scenarios in view of upper limit of wind power forecast.

Cost/USD Scenario 1 Scenario 2 Scenario 3 Scenario 4

Fuel 156,600 156,723 150,482 150,736
Abandoned wind 4727 4727 7306 7306

Reducible load 3711 3711 4266 4266
Start-up and shutdown 2076 2076 1984 1984
Synchronized reserve 21,977 12,939 20,613 12,665

Operating before assessment 189,092 180,177 184,651 176,957

Considering Table 3 combined with Figure 5, the results of the analysis of operating
cost and standby capacity are as follows: in the first stage of start–stop optimization
without considering the operating risk, Scenario 2 is compared with Scenario 1, in which
the fuel cost of Scenario 1 is lower than Scenario 2, the upward and downward synchronous
standby capacity of Scenario 2 is lower than Scenario 1, and the synchronous standby cost
of Scenario 1 is significantly higher than that of Scenario 2. In the first stage, when the
start-up and shutdown of the operation risk are optimized by DLBFSO, the fuel cost of
Scenario 4 is slightly higher than Scenario 3, and the synchronous standby cost of Scenario
4 is lower than that of Scenario 3. From the above results, it can be seen that in the second
stage of the optimization without considering the synchronous standby, the system of
Scenario 1 and Scenario 3 has too much synchronous standby reserved, which makes the
solution too conservative, and the overall economy deteriorates. Scenarios 4 and 2 obtain
the optimal configuration strategy by considering the optimization of synchronous standby
costs and coordinating the system unit output with the synchronous standby capacity in a
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compromise. As a result, the total system operating costs before the new power system
participation evaluation are reduced by USD 8915 and USD 7694, respectively.

Figure 5. Optimization results of synchronous standby scenarios in view of the upper limit of wind
power values.

Through the comparison of the above studies, the operating cost of the second stage
considering synchronized standby optimization is optimal. Then, the operating cost com-
parison analysis is carried out through Scenario 4 and Scenario 2. Scenario 4, through
the start–stop optimization model considering the operating risk in the first stage, opti-
mally configures the start–stop state and the optimal output of each unit, which results
in the optimal operating cost of the system’s thermal power units. Due to the increase
in wind abandonment and curtailable load, the reserved synchronous standby capacity
of the system is reduced, the pressure of synchronous standby cost is eased, and the cost
of wind abandonment and curtailable load is increased. To cope with this problem, the
second stage of the standby cost optimization model is adopted, which makes the wind
power output, curtailable load, and synchronous standby capacity become reasonably
and efficiently configured, and the operation results show that although the cost of wind
abandonment and the cost of curtailable load are increased, the fuel cost is increased. The
operating results show that although the wind abandonment cost and curtailable load
cost are increased, the fuel cost, start–stop cost, and standby cost are reduced, and the
total operating cost before evaluation is reduced by USD 3220. Therefore, through the
optimization of the two stages and the effective coordination of the economy and operation
risk, Scenario 4 is the optimal scheduling strategy.

Figures 6–9 show the shared upward and downward synchronized standby capacity
of each unit for Scenario 4 and Scenario 3, respectively. In Scenario 3, the up-synchronized
standby capacity is mainly provided by the economic units 7, 8, 9, and 10, and the down-
synchronized standby capacity is provided by units 5, 6, 7, and 8 to ensure economy.
Scenario 4 considers the availability of standby cost on the basis of Scenario 3 and optimizes
the size of standby capacity in each time period and the proportion of standby capacity
distribution among units in the iterative solution process, with the optimized units 3, 7,
and 8 providing the up-synchronous standby capacity and units 2, 3, 4, 7, and 8 providing
the down-synchronous standby capacity. By considering the synchronized standby cost
optimization, the economy of system operation is effectively coordinated.

In traditional methods, the incomplete settlement mechanism of the backup market
has led to the additional cost of wind power and load, which has caused unnecessary
efficiency and economic losses in the market. This article proposes a spare market reward
and punishment mechanism, that is, the marketing principle of “who generates, who
will bear”, that is, the force of each unit needed to distribute the backup cost and set the
maximum technical contribution values of the crew as a reward to avoid the additional
costs caused by the mismatch of the backup cost and rewarding the efficient guidance of
various units and reasonable economic configurations. Table 4 is the results of the reward
and punishment mechanism of the spare service market.
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Figure 6. Upward synchronous reserve capacity of Scenario 4 based on the upper limit of wind
power values.

Figure 7. Upward synchronous reserve capacity of Scenario 3 based on the upper limit of wind
power values.

Figure 8. Downward synchronous reserve capacity of Scenario 4 based on the upper limit of wind
power values.
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Figure 9. Downward synchronous reserve capacity of Scenario 3 based on the upper limit of wind
power values.

Table 4. Operation results of clearing mechanism in standby market based on the upper limit of wind
power forecast.

Cost/USD Scenario 1 Scenario 2 Scenario 3 Scenario 4

Upward synchronization
backup penalty 13,411 6893 12,012 6803

Downward synchronization
backup penalty 5178 4979 7125 5863

Downward synchronization
standby reward 8166 7396 26,256 22,846

Backup after assessment 32,310 17,415 13,494 2485
Operation after assessment 199,515 184,653 177,532 166,777

Based on the four scheduling scenarios, the total cost of backup is evaluated on the
basis of the previous backup cost, taking into account the up-synchronized backup penalty
cost, down-synchronized backup penalty cost, and reward cost. For the up-synchronized
standby, the standby capacity is shared according to the proportion of the standby capacity
of each unit based on the output of each unit. Then, the up-synchronized standby penalty
cost is obtained by apportioning the auxiliary service cost of each unit according to the
difference in the up-synchronized standby. For the down-synchronized standby, the down-
synchronized standby capacity is calculated based on the minimum technical output of each
unit. Then, the downward synchronized standby penalty cost is obtained by apportioning
the cost of auxiliary services of each unit according to the downward synchronized standby
difference. For the synchronized standby reward, the maximum technical output of each
unit is set as the reward capacity. Then, the downward synchronized standby reward
cost is obtained by apportioning the auxiliary service reward of each unit according to the
downward synchronized standby downtime reward capacity. Under the standby market
assessment mechanism proposed in this paper, the two-stage optimization makes the post-
assessment running cost and standby cost of traditional generating units lower and better
utilizes the advantage of the marginal cost of new energy.

Table 4 analyzes the costs after the application of the proposed auxiliary standby mar-
ket assessment model for settlement. The first-stage optimization model optimally allocates
the start–stop states and optimal output of each unit, resulting in the optimal total cost of
backup after evaluation. Scenarios 3 and 4 are significantly better than Scenarios 1 and 2,
where the corresponding lower synchronized standby reward costs exceed USD 20,000
each. The second stage of synchronous standby optimization effectively coordinates the
system unit output and synchronous standby capacity to obtain an optimal configuration
strategy, and the results show that Scenario 4 is significantly better than Scenario 3, and
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Scenario 4 has a lower upper synchronous standby penalty cost and lower synchronous
standby penalty cost, which reduces the evaluated total standby cost by USD 11,009 and
also reduces the evaluated total operating cost by USD 10,755.

Figures 10–13 show the results of the upper and lower synchronized standby penalty
cost sharing by unit and by time period for Scenario 4 and Scenario 3. The upper standby
penalty cost for Scenario 4 is below USD 400 for all time periods, while Scenario 3 is below
USD 400 for only a few time periods. Similarly, the lower standby penalty cost for Scenario
4 is almost less than USD 300, while Scenario 3 has 11 periods that are significantly more
than USD 300. Therefore, Scenario 4 can significantly save the upward and downward
synchronized standby penalty cost, and the penalty cost shows that Scenario 4 makes the
standby configuration of each time period relatively average, and the fluctuation amplitude
is smoother, which is helpful for the timely adjustment and stable operation of the new
power system standby.

Figure 10. Upward synchronization standby penalty cost of Scenario 4 based on the upper limit of
wind power values.

Figure 11. Upward synchronization standby penalty cost of Scenario 3 based on the upper limit of
wind power values.
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Figure 12. Downward synchronization standby penalty cost of Scenario 4 based on the upper limit of
wind power values.

Figure 13. Downward synchronization standby penalty cost of Scenario 3 based on the upper limit of
wind power values.

Figures 14 and 15 show the results of the shared reward cost by unit and time period
for down-synchronized standby for Scenario 4 and Scenario 3. The down-synchronized
standby outage reward benefits are better for Scenario 3 than for Scenario 4, with the
rewards contributing primarily to units 8, 9, and 10 compared to Scenario 3.

Figure 14. Downward synchronous reserve reward of Scenario 4 based on the upper limit of wind
power values.
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Figure 15. Downward synchronous reserve reward of Scenario 3 based on the upper limit of wind
power values.

Looking at the overall evaluation results, the reward benefits of Scenario 3 are not
sufficient to cover its total up and down synchronization standby penalty costs. Scenario 4
has total post-evaluation standby cost savings of USD 11,009 compared to Scenario 3. The
total post-evaluation operating cost savings is USD 10,755. Therefore, Scenario 4 and the
proposed standby ancillary services market reward and penalty mechanism effectively
guide the new energy sources to bear part of the standby costs and realize the reasonable
sharing of energy and standby costs.

3.2.2. Analysis of the Effectiveness of the Evaluation Model of the Lower Limit Standby
Auxiliary Service Market Based on Wind Power Forecasts

The system operating costs of the four scenarios based on the lower limit of the wind
power forecasts (Circumstance 2) are shown in Table 5.

Table 5. System operation costs of four schemes based on the lower limit of wind power forecast.

Cost/USD Scenario 1 Scenario 2 Scenario 3 Scenario 4

Fuel 157,391 157,520 151,638 151,875
Abandoned wind 2233 2233 7552 7552

Reducible load 3818 3818 4264 4264
Start-up and shutdown 2076 2076 1984 1984
Synchronized reserve 21,841 12,875 20,538 12,596

Operating before assessment 187,359 178,522 185,976 178,271
Upward synchronization

backup penalty 13,253 6863 11,927 6765

Downward synchronization
backup penalty 5092 4955 7471 5831

Downward synchronization
standby reward 8169.6 7391 26,219 22,849

Backup after assessment 32,016 17,302 13,716 2344
Operation after assessment 197,534 182,948 179,155 168,019

In the first stage of start–stop optimization without considering operational risk,
Scenario 2 vs. Scenario 1, the optimization of standby costs results in a reduction in
system standby costs by USD 8966. In the first stage with start–stop optimization considering
operational risk, Scenario 4 compares with Scenario 3, and the optimization of standby cost
results in a reduction in system standby cost by USD 7642, and in the second stage with
simultaneous standby optimization scenarios considered, Scenario 4 compares with Scenario
2, and the total pre-assessment operational cost is reduced by USD 251. Therefore, in the case
of the upper limit of the wind forecast as a baseline, Scenario 4 is able to achieve a reduction
in system standby cost by considering the above-mentioned factors. Therefore, in the case
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of the upper limit of the wind power forecast, Scenario 4 achieves the efficient allocation of
system standby resources and the optimal economic dispatch of the system by considering
the two-phase optimization of start–stop, conditional risk, and synchronous standby.

Table 5 analyzes the costs after the application of the proposed auxiliary standby mar-
ket assessment model for settlement. The first-stage optimization model optimally allocates
the start–stop states and optimal output of each unit, resulting in the optimal total cost of
backup after evaluation. Scenarios 3 and 4 are significantly better than Scenarios 1 and 2,
where the corresponding lower synchronized standby reward costs exceed USD 20,000
each. The second stage of synchronous standby optimization effectively coordinates the
system unit output and synchronous standby capacity to obtain an optimal configuration
strategy, and the results show that Scheme 4 is significantly better than Scheme 3, and
Scheme 4 has a lower upper synchronous standby penalty cost and lower synchronous
standby penalty cost, which reduces the evaluated total standby cost by USD 11,372 and
also reduces the evaluated total operating cost by USD 11,136.

Looking at the overall evaluation results, the reward benefits of Scenario 3 are not
sufficient to cover its total up and down synchronization standby penalty costs. Scenario 4
has total post-evaluation standby cost savings of USD 11,372 compared to Scenario 3. The
total post-evaluation operating cost savings were USD 11,136.

3.3. Analysis of Backup for Deterministic Wind Power

The system operating costs for the four scenarios based on the wind power forecast
values (Circumstance 3) are shown in Table 6. In the first stage of start–stop optimization
without considering operational risk, the optimization of standby cost for Scenario 2
compared to Scenario 1 results in a reduction in system standby cost by USD 9024. In
the first stage of start–stop optimization with operational risk, Scenario 4 vs. Scenario 3,
the optimization of standby cost reduces the system standby cost by USD 7945, and in the
second stage of optimization with simultaneous standby optimization, Scenario 4 vs. Scenario
2 reduces the total pre-evaluation operating cost by USD 1618. Therefore, with the wind
power forecast lower limit as the benchmark, Scenario 4 achieves the efficient allocation of
system standby resources and optimal economic scheduling of the system by considering the
two-phase optimization of start–stop, conditional risk, and synchronous standby.

Table 6. Statistics of operating results based on wind power prediction values.

Cost/USD Scenario 1 Scenario 2 Scenario 3 Scenario 4

Fuel 156,945 157,073 151,045 151,286
Abandoned wind 3290 3290 7328 7328

Reducible load 3768 3768 4264 4264
Start-up and shutdown 2076 2076 1984 1984
Synchronized reserve 21,932 12,908 20,580 12,635

Operating before assessment 188,011 179,115 185,201 177,497
Upward synchronization

backup penalty 13,355 6878 11,971 6785

Downward synchronization
backup penalty 5086 4968 7129 5849

Downward synchronization
standby reward 8168 7394 26,236 22,853

Backup after assessment 32,204 17,360 13,443 2416
Operation after assessment 198,282 183,567 178,064 167,278

Table 6 analyzes the costs after the application of the proposed auxiliary standby mar-
ket assessment model for settlement. The first-stage optimization model optimally allocates
the start/stop states and optimal output of each unit, resulting in the optimal total cost of
backup after evaluation. Scenarios 3 and 4 are significantly better than Scenarios 1 and 2,
where the corresponding lower synchronized standby reward costs exceed USD 20,000
each. The second stage of synchronized standby optimization effectively coordinates the
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system unit output and synchronized standby capacity to obtain an optimal configuration
strategy, and the results show that Scenario 4 is significantly better than Scenario 3, and
Scenario 4 has a lower up-synchronized standby penalty cost and a lower down-synchro-
nized standby penalty cost, which reduces the evaluated total standby cost by USD 11,027
and also reduces the evaluated total operating cost by USD 10,786.

Looking at the overall evaluation results, the reward benefits of Scenario 3 are not
sufficient to cover its total up and down synchronization standby penalty costs. Scenario 4
has total post-evaluation standby cost savings of USD 11,027 compared to Scenario 3. The
total post-evaluation operating cost savings were USD 10,786.

3.4. Operation Cost Analysis of Three Circumstances Based on Scenario 4

Table 7 presents the uncertain renewable energy operating cost results for Scenario 4 for
the three circumstances. From the results, it is found that the lowest total operating cost of
USD 166,777 is the ideal best scenario when the upper limit of wind power forecast is the input
value, which is evaluated by the two-stage optimized standby ancillary services market.

Table 7. Comparison of uncertainty and renewable integration cost.

Cost/USD Predictive Values Upper Limit of Wind Power
Prediction Values

Lower Limit of Wind Power
Prediction Values

Fuel 151,286 150,736 151,875
Abandoned wind 7328 7306 7552

Reducible load 4264 4266 4264
Start-up and shutdown 1984 1984 1984
Synchronized reserve 12,635 12,665 12,596

Operating before assessment 177,497 176,957 178,271
Upward synchronization backup penalty 6785 6803 6765

Downward synchronization backup penalty 5849 5863 5831
Downward synchronization standby reward 22,853 22,846 22,849

Backup after assessment 2416 2485 2344
Operation after assessment 167,278 166,777 168,019

3.5. Analysis of the Running Results of Two Optimization Algorithms Based on the
Optimal Scenario

Table 8 shows the results of Scenario 4 based on the wind power prediction upper
limit (Circumstance 1). By comparing the optimization results of the DLBFSO algorithm
and the SOA algorithm, the total operating cost of the SOA algorithm is reduced by USD
19,063 compared to the DLBFSO algorithm, indicating that the SOA optimization algorithm
has better performance. The main influencing factors are the cost of wind abandonment
and the cost of synchronized backup rewards. Figures 16 and 17 show a comparison
of the cost allocation results for synchronous backup rewards under two optimization
algorithms. Figure 18 shows a comparison of wind power utilization rates between two
optimization algorithms.

Table 8. Comparison of scenario 4 based on predicted values.

Cost/USD Scenario 4 (DLBFSO) Scenario 4 (SOA)

Fuel 150,736 146,935
Abandoned wind 7306 0

Reducible load 4266 5400
Start-up and shutdown 1948 1924
Synchronized reserve 12,665 12,702

Operating before assessment 176,957 166,961
Upward synchronization backup penalty 6803 6840

Downward synchronization backup penalty 5863 5862
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Table 8. Cont.

Cost/USD Scenario 4 (DLBFSO) Scenario 4 (SOA)

Downward synchronization standby reward 22,846 31,949
Backup after assessment 2485 −6545

Operation after assessment 166,777 147,714

Figure 16. Downward synchronous reserve reward of Scenario 4 based on the upper limit of wind
power values (DLBFSO).

Figure 17. Downward synchronous reserve reward of Scenario 4 based on the upper limit of wind
power values (SOA).

Figure 18. Comparison of Wind Power Utilization based on DLBFSO and SOA Optimization Methods.
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4. Conclusions

In this paper, a two-stage optimal scheduling strategy taking into account operational
risk and standby economics is proposed, and a standby auxiliary service market reward
and punishment assessment model is established. By improving the new power system
of the IEEE30 node as an arithmetic example and designing a comparative analysis of
three circumstances corresponding to four scenarios, the feasibility and effectiveness of the
proposed method are verified, and the following conclusions are drawn:

1. The data-driven wind power prediction based on the upper bound circumstance
(Circumstance 1) corresponding to the simultaneous consideration of start–stop opti-
mization and standby optimization (Scenario 4) has the lowest total cost of operation
and the best optimization results.

2. Based on the lowest optimization cost results (Circumstance 1, Scenario 4), DLBFSO
is used to compare with SOA optimization algorithms, and it is found that SOA
optimization methods have the lowest running cost and the best optimization results.

Through the effective mechanism of the standby auxiliary service market, this provides
flexibility, stability and economic support to the new power system, which can effectively
cope with load fluctuations and sudden failures, reduce the risk of the new power system,
promote the efficient use of clean energy, facilitate market competition, realize the sustain-
able development of the new power system, and provide users with reliable and economic
power services.
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