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Abstract: Cylinder-pressure-based control is a key enabler for advanced pre-mixed combustion
concepts. In addition to guaranteeing robust and safe operation, it allows for cylinder pressure
and heat release shaping. This requires fast control-oriented combustion models. Over the years,
mean-value models have been proposed that can predict combustion metrics (e.g., gross indicated
mean effective pressure (IMEPg), or the crank angle where 50% of the total heat is released (CA50))
or models that predict the full in-cylinder pressure. However, these models are not able to cap-
ture cycle-to-cycle variations. The inclusion of the cycle-to-cycle variations is important in the
control design for combustion concepts, like reactivity-controlled compression ignition, that can
suffer from large cycle-to-cycle variations. In this study, the in-cylinder pressure and cycle-to-cycle
variations are modelled using a data-based approach. The in-cylinder conditions and fuel set-
tings are the inputs to the model. The model combines principal component decomposition and
Gaussian process regression. A detailed study is performed on the effects of the different hyperpa-
rameters and kernel choices. The approach is applicable to any combustion concept, but is most
valuable for advance combustion concepts with large cycle-to-cycle variation. The potential of the
proposed approach is successfully demonstrated for a reactivity-controlled compression ignition
engine running on diesel and E85. The average prediction error of the mean in-cylinder pressure
over a complete combustion cycle is 0.051 bar and of the corresponding mean cycle-to-cycle vari-
ation is 0.24 bar2. This principal-component-decomposition-based approach is an important step
towards in-cylinder pressure shaping. The use of Gaussian process regression provides important
information on cycle-to-cycle variation and provides next-cycle control information on safety and
performance criteria.

Keywords: internal combustion engine; combustion modelling; control-oriented modelling; eigen-
pressure; Gaussian process regression

1. Introduction

Concerns about global warming have resulted in dramatic reduction targets for CO2
emissions from on-road applications. This has boosted interest in high-efficiency and low-
carbon propulsion methods in the transportation sector. This has led to a trend towards
electrification for personal mobility, but the go-to technology for heavy-duty applications
has not yet been decided. High-efficiency and clean internal combustion engines together
with sustainable fuels are expected to play a significant role in the future [1–3]. Advanced
combustion concepts provide promising solutions to increase thermal efficiency. Con-
cepts like homogeneous charge compression ignition, partial premixed combustion, and
reactivity-controlled compression ignition (RCCI) have been proposed [4]. From these

Energies 2024, 17, 1881. https://doi.org/10.3390/en17081881 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en17081881
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-8343-8176
https://orcid.org/0000-0002-3550-4001
https://doi.org/10.3390/en17081881
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en17081881?type=check_update&version=1


Energies 2024, 17, 1881 2 of 19

concepts, RCCI provides high thermal efficiency and fuel flexibility as well as controllability.
RCCI uses a combination of a low- and high-reactivity fuels during combustion [5,6]. By
changing the ratio between low- and high-reactivity fuels and their injection timing, it is
possible to optimise combustion phasing, duration, and magnitude. However, continuous
monitoring of the combustion process and regulation of this ratio and timing is required to
guarantee robust and safe operation [7,8].

1.1. Control Challenges for Advanced Combustion Concepts

The introduced advanced combustion concepts rely on controlled auto-ignition of the
in-cylinder mixture of air, residuals from previous combustion, and fuel. These concepts
are sensitive to changes in operating conditions, such as intake temperature and intake
air mixture. This can result in misfires as well as undesired large cyclic variations, which
are associated with unstable combustion. Also, mechanical limits for safe operation can be
violated. This can lead to engine damage.

Cylinder-pressure-based control (CPBC) is a key concept for guaranteeing safe and
stable operation of these advanced combustion concepts [8]. Typically, the measured in-
cylinder pressure is used in next-cycle combustion control strategies to minimise cyclic
variations in key combustion metrics. Several CPBC strategies have already been proposed
in the literature; an overview of applied combustion metrics and control approaches can
be found in [9]. Traditionally, these methods aim to realise the desired engine load and
combustion phasing by controlling gross indicated mean effective pressure (IMEPg) and
the crank angle (CA) where 50% of the heat is released (CA50), respectively. Combustion is
considered to be stable in case the cyclic variance in IMEPg is below 5%. For engine safety,

peak pressure (max(p)) and peak pressure rise rate (max
(

dp
dθ

)
) are monitored.

Alternatively, CPBC opens the route to in-cylinder pressure and heat release shaping.
More precisely, contrary to the traditional control of individual combustion metrics, this
approach aims to control the entire in-cylinder pressure curve. Consequently, focus is on
the realisation of ideal thermodynamic cycles, which are associated with maximal thermal
efficiency [10]. This is a promising approach that can explicitly deal with in-cylinder-
pressure-related safety constraints and that further enhances robustness of the controlled
combustion process. However, for this approach, control development requires information
of the entire pressure curve.

1.2. Control-Oriented Combustion Modelling

Models are becoming increasingly important in control development. In addition to
their role as digital twins in simulations, they are used in control design, they can assist in
control calibration, and they can be embedded in model-based controllers. In this work, we
focus on the development of control-oriented models (COMs) for controller design and
calibration. To support in-cylinder pressure shaping studies, the COM should describe the
relevant combustion characteristics, including the relation between the in-cylinder mixture
composition, intake manifold pressure, and temperature, as model inputs, and the full
in-cylinder pressure curve. In case of advanced combustion concepts, a description of the
cycle-to-cycle variations should also be available.

For the COMs, a distinction can be made between two types of models:

• Physics-based models, that use first-principle physical relations to capture combus-
tion behaviour;

• Data-based models, that use black-box modelling methods, where measurements are
used to create a mapping from input to output.

For combustion modelling, various models are found in the literature.

1.2.1. Physics-Based Combustion Models

To model important combustion metrics, e.g., IMEPg or CA50, basic physics-based
models have been proposed [11–16]. These models provide a deterministic and dynamic
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view of the relationship between actuation and combustion metrics without determining
the full in-cylinder pressure. To add new combustion metrics these models should be
extended with new descriptions to capture the behaviour of these new metrics. This
can be time-consuming and reduces the flexibility of these models during combustion
control development.

To model the full in-cylinder pressure, more complex first-principle models have been
proposed. These include a multi-zone model [17] and a fluid dynamic model [18]. The
complexity of these models results in computation times that exceed the combustion time.
Therefore, they are not suited as COMs. A reduction in computation time is achieved
by using static, data-driven, deterministic regression models to capture the behaviour of
important combustion metrics.

1.2.2. Data-Based Combustion Models

Various data-based combustion modelling approaches have been introduced. For
example, a Gaussian process regression (GPR) model to map in-cylinder conditions to
combustion metrics [19]; a state-space model identified using data to model combustion
phasing and peak pressure rise rate [20]; or a frequency response function method to
determine cylinder-individual behaviour [21]. These models are made to only provide
information on the modelled combustion metrics. Therefore, the model has to be extended
to include other metrics.

Capturing the full in-cylinder pressure using data, principal component decomposition
(PCD) models have been proposed. These models consist of a weighted sum of principal
components, where the weights are modelled using regression methods. A deterministic
neural network to capture the behaviour of the weights has been proposed [22]. To include
cycle-to-cycle variations in the model, a GPR model to capture the behaviour of the weights
has been proposed [23]. Alternatively, a method that uses double Wiebe functions to model
the full in-cylinder pressure curve has been used [24]. The parameters of the double Wiebe
function are determined using measurement data. A random forest machine learning
approach is applied to describe the change in the mean behaviour and cycle-to-cycle
behaviour of these parameters. However, determining these parameters from a measured
in-cylinder pressure curve can be difficult.

The use of the PCD of the in-cylinder pressure has already been proposed in several
control and detection methods. This decomposition was used as input to a virtual emis-
sion sensor [25]. They were able to predict the air-to-fuel ratio and NOx emissions quite
accurately. Also, this decomposition was used for knock detection and avoidance [26,27].
They used the decomposition to derive a measure of proximity to engine knocking. This
decomposition was used as an alternative method to maximise the thermal efficiency [10].
They used the decomposition to derive a measure of the closeness of a measured in-cylinder
pressure to an idealised thermodynamic cycle.

1.3. Research Objective and Main Contributions

In this study, we will extend the work of Vlaswinkel et al. [23] by giving an extensive
analysis on (1) the comparison of different kernels in the GPR approach with regards
to prediction quality of important combustion metrics; (2) understanding the effects of
modelling a correlated process as an uncorrelated Gaussian process; (3) using a data set
with a wide range of operating conditions to show the effectiveness of the model.

This work is organised as follows. In Section 2, an overview is given of the experi-
mental setup and the data sets used. Section 3 describes the data-based combustion model,
including cycle-to-cycle variation. A detailed analysis of the effect on different hyperpa-
rameters is presented in Section 4. The prediction quality of the combustion model is
demonstrated and validated in Section 5.
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2. Single-Cylinder Engine Test Bench

In this section, we will give a description of the setup and the data sets used. A
discussion is provided on the chosen inputs to the model and how these are determined.

2.1. System Description

In this study, a modified PACCAR MX13 engine is used, as shown in Figure 1. Cylin-
ders 2 to 6 have been removed and only cylinder 1 is operational. To keep the engine
running at a constant speed, the electric motor of the engine dynamometer provides the
required torque. The focus is on RCCI combustion with a single injection of diesel to
autoignite the well-mixed charge of E85, air, and recirculated exhaust gas. The injection of
diesel does not ignite the mixture, but the ignition is caused by the increased temperature
as a result of cylinder compression. Therefore, there is a clear temporal separation between
the injection of diesel and combustion. The direct injection (DI) of diesel is handled by
a Delphi DFI21 injector connected to a common rail. The E85 port fuel injection (PFI) is
handled by a Bosch EV14 injector fitted into the intake channel set at 5 bar. Both the DI
and PFI fuel mass flows are measured using a Siemens Sitrans FC Mass 2100 Coriolis mass
flow meter coupled with Mass 6000 signal converters. Boosted intake air is supplied at
8 bar and the pressure and temperature are regulated using a pressure regulator and an
electric heater, respectively. The exhaust gas recirculation (EGR) fraction is regulated by the
EGR and back-pressure butterfly valves. The EGR flow is cooled down to approximately
room temperature by a cooled stream of process water. The condensation tank collects the
condensation from the EGR flow and is drained regularly. The expansion and mixing tank
are both attached to a surge tank to dampen pressure fluctuations in the intake and exhaust
manifold as a result of single-cylinder operation. The in-cylinder pressure is sampled at
0.2◦ CA with a Kistler 6125C uncooled pressure transducer and amplified with a Kistler
5011B. A Leine Linde RSI 503 encoder provides crank angle information at a 0.2◦ interval.
A Bronkhorst IN-FLOW F-106BI-AFD-02-V digital mass flow meter is used to measure
the mass of the intake air flow. Pressures and temperatures located at different locations
in the air path are measured every combustion cycle using a Gems Sensors & Controls
3500 Series pressure transmitter and Type-K thermocouples, respectively. The concentration
of CO2 in the intake and exhaust flows are measured using an Horiba MEXA 7100 DEGR
system. Table 1 lists the main specifications of the engine setup.

Table 1. Main specifications of the engine setup.

Parameter Value

PFI fuel E85
DI fuel Diesel (EN590)
Compression ratio 17.2
Intake valve closure −173◦ CA aTDC
Exhaust valve opening 146◦ CA aTDC
Engine speed 1200 rpm
Oil temperature 90 °C
Coolant temperature 87 °C
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Figure 1. Schematic of the single-cylinder PACCAR MX13 engine equipped with exhaust gas
recirculation (EGR), direct injection (DI), and port fuel injection (PFI).

2.2. Data Set for Model Training and Validation

The model relates in-cylinder conditions, determined at intake valve closing, to a
resulting in-cylinder pressure. These conditions consist of a range of parameters related to
engine speed, cylinder wall temperature, and mixture composition, pressure, and tempera-
ture. Since the engine is running at a single speed and at steady-state conditions the most
relevant changes throughout the data set are a result of differences in mixture composition,
pressure, and temperature. These can be described using intake and fuelling conditions.
The chosen measurable parameters used to describe in-cylinder conditions are:

• Total injected energy

Qtotal = mPFILHVPFI + mDILHVDI, (1)

where mPFI and mDI are the injected masses of PFI and DI fuels, and LHVPFI and
LHVDI are the lower heating values of the PFI and DI fuels;

• Energy-based blend ratio

BR =
mPFILHVPFI

Qtotal
; (2)

• Start of injection of the directly injected fuel SOIDI;
• Pressure at the intake manifold pim;
• Temperature at the intake manifold Tim;
• EGR ratio

XEGR =
CO2,in

CO2,out
(3)

with CO2,in and CO2,out the concentrations of CO2 as a fraction of the volume flow at
the intake and exhaust, respectively.

The variations in the in-cylinder conditions for the training data and validation data
are shown in Figure 2. Figure 2a shows the distribution of each individual measure for
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the in-cylinder conditions. Figure 2b shows the joint distribution of the measures used
for the in-cylinder conditions. The data set contains 95 different measurements consisting
of ncyc = 50 consecutive cycles each. Both small and large cycle-to-cycle variations, and
non-firing behaviour are present within the data set. In this work, each cycle is used
and no averaging over the ncyc in-cylinder conditions and in-cylinder pressure traces in
a measurement is performed before analysis. The data set is randomly divided into a
training set of ntrain = 75 measurements and a validation set of the remaining nval = 20
measurements.
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Figure 2. Distribution of the in-cylinder conditions of the training (black) and validation data (red).

3. Combustion Model

In this section, the data-based approach to model the in-cylinder pressure is introduced.
It is based on the method presented in Vlaswinkel et al. [23]. The approach combines
principal component decomposition (PCD) and Gaussian process regression (GPR). To
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describe the in-cylinder pressure during the compression and power stroke, PCD is used
to minimise the amount of information required by separating the influence of the in-
cylinder conditions sICC and the crank angle θ into two different mappings. GPR gives
the possibility to model the in-cylinder pressure and cycle-to-cycle variation at different
in-cylinder conditions. In Vlaswinkel et al. [23], the entire combustion cycle, including
compression and expansion during motoring, is captured using the PCD/GPR method.
In this study, the compression and expansion effects are separated from the effects of the
actual combustion. The compression and expansion effects are modelled using adiabatic
compression and expansion, while the effects of the actual combustion are modelled using
the PCD/GPR method.

3.1. Principal Component Decomposition of the In-Cylinder Pressure

The in-cylinder pressure p(θ, s∗ICC) at crank angle θ ∈ {−180◦, −180◦ + ∆CA, . . . ,
180◦ − ∆CA, 180◦}, with ∆CA the crank angle resolution, is decomposed as

p(θ, s∗ICC) = pmot(θ, s∗ICC) + w(s∗ICC)
T f (θ), (4)

where w(s∗ICC) is a vector of weights and f (θ) is the vector of principal components. In
these vectors, the ith element is related to the ith principal component (PC). The in-cylinder
condition s∗ICC ∈ S∗ ⊂ S is in the set S∗ containing all in-cylinder conditions present in the
training set and the set S spanning the modelled operation domain. It is assumed that the
in-cylinder pressure during the intake stroke is equal to pim.

The PCs are computed using the eigenvalue method. The ntrain · ncyc in-cylinder
pressures p(θ, s∗ICC) contained in the training set are used. The vector Fi is the ith unit
eigenvector of the matrix PPT, where P ∈ RnCA×ntrainncyc , with nCA the number of crank
angle values. The elements in matrix P are defined as

[P]ab := p(θa, s∗ICC,b)− pmot(θa, s∗ICC,b), (5)

such that the ath row of P contains the values of the in-cylinder pressure at the ath crank
angle for all s∗ICC ∈ S∗ and the bth column of P contains the full in-cylinder pressure
at all θ ∈ {−180◦, −180◦ + ∆CA, . . . , 180◦ − ∆CA, 180◦} for the bth s∗ICC. The ith PC is
defined as

fi(θa) = [Fi]a. (6)

The weight related to the ith PC is given by

wi(s∗ICC) = P(s∗ICC)Fi, (7)

where [P(s∗ICC)]a = p(θa, s∗ICC) − pmot(θa, s∗ICC). The training set generates a single set
of PCs. These PCs are ordered by relevance, where i = 1 is the most relevant PC. The
determination of the PCs and the required number of PCs will be considered later in this
study.

3.2. Gaussian Process Regression to Capture Effects of In-Cylinder Conditions

GPR is used to estimate the behaviour of w(sICC) over the full operation domain S .
To include cycle-to-cycle variations, w(sICC) is described by a stochastic process as

w(sICC) := N (ŵ(sICC), W(sICC)) (8)

with mean ŵ(sICC) := E[w(sICC)] and variance W(sICC) := E[(w(sICC)− ŵ(sICC))(w(sICC)
− ŵ(sICC))

T]. During this study, the correlation between the output variables wi(sICC)
and wj(sICC) ∀i, j ∈ {1, 2, . . . , nPC} with nPC, the number of PCs, will be neglected (i.e.,
W(sICC) is a diagonal matrix), since most of the literature on GPR assumes the output
variables to be uncorrelated. This might affect the quality of the prediction of the cycle-to-
cycle variation.
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To improve the accuracy of prediction and the determination of hyperparameters,
normalised in-cylinder conditions s̄ICC and weights w̄i(s∗ICC) will be used. Scaling the in-
cylinder condition uses the mean µ̄s∗ICC,j and standard deviation σ̄s∗ICC,j of the jth in-cylinder
condition variable over the full training set S∗ as

s̄ICC,j =
sICC,j − µ̄s∗ICC,j

σ̄s∗ICC,j
. (9)

The scaling of the weights uses the mean µ̄w∗
ICC,i and standard deviation σ̄w∗

ICC,i of the ith
in-cylinder conditions variable over the full training set S∗ as

w̄i(s∗ICC) =
wi(s∗ICC)− µ̄wi

σ̄wi

. (10)

Following [28], the scaled expected value and scaled covariance matrix without correlation
can be computed as

ˆ̄wi(s̄ICC) = K(s̄ICC, s̄∗ICC, ϕ)(K(s̄∗ICC, s̄∗ICC, ϕ) + φn I)−1w̄i(s̄∗ICC) (11)

and
W̄ii(s̄ICC) = K(s̄ICC, s̄ICC, ϕ) −

K(s̄ICC, s̄∗ICC, ϕ)(K(s̄∗ICC, s̄∗ICC, ϕ) + φn I)−1KT(s̄ICC, s̄∗ICC, ϕ),
(12)

where K(·, ·, ϕ) is the kernel and ϕ and φn are the kernel’s hyperparameters. The selection
of both elements will be discussed in the next section.

To optimise the set of hyperparameters ϕ and φn found in the kernels, the marginal
log-likelihood is maximised for each PC separately. The marginal log-likelihood is often
used in determining the hyperparameters in GPR and does not depend on the kernel type.
It is given by

ln(Prob(w̄i | s̄∗IVC, ϕ)) = −1
2

w̄T
i K−1

s̄∗IVC
w̄i −

1
2

ln(det(Ks̄∗IVC
))− nexpncyc

2
ln(2π), (13)

where w̄i is a vector of the weights related to the ith PC at measured s̄∗IVC in the training set
and Ks̄∗IVC

:= K(s̄∗IVC, s̄∗IVC, ϕ) + φn I.
Finally, the scaled expected value and scaled covariance matrix are descaled to com-

plete the description of (8). The descaled expected value is given by

ŵi(s̄ICC) = ˆ̄wi(s̄ICC)σ̄wi + µ̄wi (14)

and the descaled covariance matrix is given by

Wii(s̄ICC) = W̄ii(s̄ICC)σ̄wi . (15)

3.3. Reconstructing the In-Cylinder Pressure with Cycle-to-Cycle Variation

The PCs f (θ) (Section 3.1) and the estimate behaviour of w(sICC) (Section 3.2) can be
combined to reconstruct a predicted in-cylinder pressure p(θ, sICC). Using (4), the mean
and variance of the in-cylinder pressure can be described by

p̂(θ, sICC) = E[p(θ, sICC)] = ŵT(sICC) f (θ) + fmot(θ, sICC) (16)

and
σ̂2

p(θ, sICC) = E
[
(p(θ, sICC)−E[p(θ, sICC)])

2
]
= fT(θ)W(sICC) f (θ), (17)

respectively.



Energies 2024, 17, 1881 9 of 19

4. Combustion Model Identification

The PCD and GPR require the selection of the number of PCs as well as the kernel
type and hyperparameters. The training set is used to determine the PCs and values for the
hyperparameters, while the validation set is used to determine the required amount of PCs
nPC and the best performing kernel type. For this selection, an assessment is made on the
prediction accuracy of combustion metrics that are relevant for control [29]. To this end, the
mean absolute error (MAE) is analysed, which is defined as

MAE(z) :=
1

nvalncyc

nvalncyc

∑
k=1

∣∣zk,meas − zk,model
∣∣, (18)

where nval is the number of validation measurements, and zmeas and zmodel are the com-
bustion metrics resulting from the measured in-cylinder pressure and modelled in-cylinder
pressure, respectively. The following combustion metrics are studied:

• gross indicated mean effective pressure,

IMEPg =
1

Vd

∫ θ=180◦

θ=−180◦
p(θ) dV(θ) (19)

with displacement volume Vd;
• peak pressure, max(p(θ));

• peak pressure rise rate, max
(

dp
dθ

)
;

• crank angle where 50% of the total heat is released,

CA50 =

{
θ

∣∣∣∣
Q(θ)

max(Q(θ))
= 0.5

}
(20)

with the heat release given by [30]

Q(θ) =
1

κ − 1
p(θ)V(θ) +

∫ α=θ

α=−180◦
p(α)

dV
dα

dα − 1
κ − 1

p(−180◦)V(−180◦); (21)

• burn duration, CA75-CA25, with CA75 and CA25 computed in a similar fashion to CA50;
• burn ratio,

Rb =
CA75 − CA50
CA50 − CA10

. (22)

4.1. Selection of Principal Components

The first hyperparameter is the number of PCs nPC. The GPR formulation proposed in
Section 3.2 is not used in this part of the discussion. Figure 3 shows the four most relevant
PCs derived from the training data, as discussed in Section 3.1. This figure illustrates that
adding more PCs will add more higher-frequency components to the in-cylinder pressure.
Figure 4 shows the absolute error in the corresponding combustion metrics by comparing
measurements and model results. The modelled, decomposed in-cylinder pressure is based
on an increasing number of PCs, using (6) to compute the required weights. Each measured
cycle in the validation set is analysed separately. The figure indicates the minimum,
maximum, median, and first and third quartiles, while the crosses show outliers. It can
be seen that the largest gain in improvement is made at lower numbers of PCs. From the
used training and validation sets, it is concluded that having more than eight PCs gives a
negligible improvement. Therefore, nPC = 8 is used in this study.
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Figure 4. Prediction error of combustion metrics for the validation data set using different numbers
of principal components nPC. The box plot shows the minimum, maximum, median, and first and
third quartiles, while the crosses show outliers.

4.2. Selection of Kernel

Another important aspect in the quality of the model lies in the chosen kernel. This
describes the correlation between all measured w(s∗ICC) and predicted means ŵ(sICC) and
variance W(sICC). The kernel types compared in this study rely on the distance measure

r(s̄ICC, s̄′ICC) :=
√
(s̄ICC − s̄′ICC)

TΦ−2
l (s̄ICC − s̄′ICC), (23)

where s̄ICC and s̄′ICC are scaled in-cylinder conditions. Each element of the kernel is com-
puted individually. The elements of the kernels used in this work are:

• square exponential (SE):

kSE(s̄ICC, s̄′ICC) := φ2
f exp

(
1
2 r(s̄ICC, s̄′ICC)

2
)

(24)

with the set of hyperparameters ϕ = {φf, Φl};
• Matérn with ν = 3

2 :

kMatérn(s̄ICC, s̄′ICC) := φ2
f

(
1 +

√
3r(s̄ICC, s̄′ICC)

)
exp

(
−
√

3r(s̄ICC, s̄′ICC)
)

(25)

with the set of hyperparameters ϕ = {φf, Φl};
• Matérn with ν = 5

2 :

kMatérn(s̄ICC, s̄′ICC) := φ2
f

(
1 +

√
5r(s̄ICC, s̄′ICC) + 5r(s̄ICC, s̄′ICC)

2
)
×

exp
(
−
√

5r(s̄ICC, s̄′ICC)
) (26)

with the set of hyperparameters ϕ = {φf, Φl};
• rational quadratic (RQ):

kRQ(s̄ICC, s̄′ICC) := φf

(
1

2φα
r(s̄ICC, s̄′ICC)

2
)φα

(27)

with the set of hyperparameters ϕ = {φf, φα, Φl}.

For each kernel, a distinction is made between with and without automatic relevance
determination (ARD). In the case where ARD is not used, the hyperparameter Φl reduces
to a scalar. In the case where ARD is used, the hyperparameter Φl is a diagonal matrix with
unique elements on the diagonal. The hyperparameters are determined by maximising the
marginal log-likelihood, as described in (13), using the training set.
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For the studied combustion metrics, Tables 2 and 3 show the mean absolute error
in the mean behaviour and in the standard deviation, respectively. For each combustion
metric, the best result is in bold. In some cases, the difference between the best and second
best option is negligible. The Matérn kernel with ν = 3

2 gives the best result for most of
the combustion metrics in both mean behaviour and standard deviation for the data sets
used. The resulting MAE of the mean-value behaviour shows a comparable or improved
modelling error to those found in the literature, as illustrated in Table 4. Although the
model accuracy of this work seems to be similar, the results have to be handled with care.
It is difficult to give a fair comparison since most studies only give absolute errors and are
unclear on the operating conditions.

Table 2. Mean absolute error in the mean behaviour of key combustion metrics for the validation set
using different kernels with nPC = 8. The best result for each combustion metric is in bold.

Without ARD With ARD

SE Matérn Matérn RQ SE Matérn Matérn RQ
ν = 3

2 ν = 5
2 ν = 3

2 ν = 5
2

IMEPg [bar] 0.2255 0.2061 0.2088 0.2330 0.4161 0.2489 0.3006 0.2769
max(p(θ)) [bar] 2.4564 1.6567 1.8007 1.9383 2.5273 1.6653 2.0811 2.1632
max

(
dp
dθ

)
[bar/CAD] 0.8269 0.7880 0.7962 0.7896 0.7546 0.7515 0.7987 0.7724

CA50 [CAD] 0.6121 0.5499 0.5591 0.5489 0.9507 0.5580 0.5258 0.5323
CA75-CA25 [CAD] 0.7178 0.6795 0.6884 0.6570 0.9371 0.5712 0.6364 0.5554
Rb [-] 0.1456 0.1407 0.1403 0.1325 0.2616 0.1239 0.1669 0.1284

Table 3. Mean absolute error in the standard deviation of key combustion metrics for the validation
set using different kernels with nPC = 8. The best result for each combustion metric is in bold.

Without ARD With ARD

SE Matérn Matérn RQ SE Matérn Matérn RQ
ν = 3

2 ν = 5
2 ν = 3

2 ν = 5
2

IMEPg [bar] 0.4775 0.3280 0.3770 0.3685 0.4960 0.4426 0.4113 0.4210
max(p(θ)) [bar] 1.6716 0.9952 1.2239 1.1792 1.7561 1.4948 1.3761 1.4194
max

(
dp
dθ

)
[bar/CAD] 0.1177 0.1183 0.1152 0.1116 0.1288 0.1461 0.1571 0.1466

CA50 [CAD] 0.2806 0.2261 0.2379 0.2448 0.2664 0.2276 0.2533 0.2329
CA75-CA25 [CAD] 0.6130 0.5248 0.5424 0.5327 0.5144 0.4510 0.4930 0.4740
Rb [-] 0.1340 0.1296 0.1340 0.1355 0.2616 0.1393 0.1518 0.1584

Table 4. Comparison of the mean behaviour MAE of key combustion metrics between this work and
studies in the literature [11–13,18,20,24]. The best result for each metric is in bold.

This work [11] [12] [13] [18] [20] [24]

IMEPg [bar] 0.21 - - 0.43 0.22 0.033 0.008
max(p(θ)) [bar] 1.66 - - - - - 0.20
max

(
dp
dθ

)
[bar/CAD] 0.79 - - - 6.4 0.015 0.71

CA50 [CAD] 0.6 0.3 0.36 1.0 0.22 0.7 0.2
CA75-CA25 [CAD] 0.7 0.2 - - 2.4 - -
Rb [-] 0.14 - - - - - -

5. Validation of the Prediction Quality of the Combustion Model

The main goal of this work is to predict the in-cylinder pressure and cycle-to-cycle
variation. In this section, the outcome of the model is compared to measurements using
the validation data set. The hyperparameters shown in Table 5 are used. These choices
for hyperparameters give the overall best prediction for the used data set, as discussed in
Section 4.
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Table 5. Selected hyperparameters and kernel used during the validation in Section 5.

Parameter Value

ntrain 75
ncyc 50
nPC 8

Kernel Matérn with ν = 3
2

5.1. Overall Prediction Quality

First, the overall quality of the prediction is assessed. To evaluate the quality of the
predicted in-cylinder pressure over a complete combustion cycle, the following measure is
used for the mean behaviour:

ep(sICC) =
1

nCA

nCA

∑
i=1

( p̂(θi, sICC)− p(θi, sICC)) (28)

and for cycle-to-cycle variation:

eσp(sICC) =
1

nCA

nCA

∑
i=1

(
σ̂p(θi, sICC)− σp(θi, sICC)

)
. (29)

To assess the prediction quality of the combustion metrics, the observed average, minimum,
and maximum relative differences between the predicted and measured combustion metrics
are determined for the mean behaviour and cycle-to-cycle variation. In all metrics, a positive
value is related to predicting higher values compared to the measured values.

The results are summarised in Table 6. For the validation set, the data-based com-
bustion model is capable of accurately predicting the mean in-cylinder pressure curve:
absolute errors are smaller than 0.59 bar. The variance error is also small. Furthermore,
this table shows that, except for max

(
dp
dθ

)
, the mean behaviours have a good prediction

quality (with a mean relative error up to −3.9%). According to the minimum and maximum
relative difference, both over- and under-prediction are observed. Only the mean behaviour
of max

(
dp
dθ

)
shows a bad prediction quality and the model always under-predicts these

values. This is expected, since peak pressure rise rates are difficult to predict; see also
Figure 4. The prediction quality of the cycle-to-cycle variations can be improved, since
most of the time the amount of cycle-to-cycle variation is over-predicted. Again, the worst
performance is observed in max

(
dp
dθ

)
.

Table 6. Prediction quality of the full in-cylinder pressure (absolute error) and of the related combus-
tion metrics (relative error) for the validation set.

Mean Behaviour Cycle-to-Cycle Variation

Mean Minimum Maximum Mean Minimum Maximum

ep [bar] 0.051 −0.40 0.59
eσp [bar2] 0.24 0.10 0.56

IMEPg 2.3% −15.9% 31.3% 65.6% 7.4% 89.0%
CA50 −3.9% −39.5% 17.9% 21.5% −40.3% 54.7%
CA75-CA25 −0.5% −24.7% 12.4% 56.0% 37.5% 68.5%
Rb −1.2% −21.6% 16.6% 57.0% 18.8% 79.1%
max(p(θ)) 0.4% −5.9% 4.7% 37.0% −3.4% 84.5%
max

(
dp
dθ

)
−22.7% −48.1% −7.2% −85.1% −252.6% 39.5%
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5.2. Variation in Start-of-Injection of Directly Injected Fuel

Figure 5 shows the modelled mean-value and cycle-to-cycle variations of important
combustion parameters over a range of SOIDI and the nominal conditions shown in Table 7.
The results are in line with the results shown in Table 6. Except for the peak pressure rise
rate, the mean value of the model is similar to that of the measurements. The modelled
trend in the peak pressure rise rate seems to correspond to the measured values. The
standard deviation of the model only matches with max(p(θ)). The trend in the standard
deviation of the model of max

(
dp
dθ

)
and Rb seems correct, but it is either too high or too

low. The standard deviation of the model does not match the measurements for the IMEPg,
CA50, and CA75-CA25.

Table 7. Nominal operating conditions of the simulated model for the results shown in Figures 5 and 6.
For reference, the ranges in experiments are indicated.

Simulated Measured

Qtot [kJ] 2.3 2.2 to 2.4
BR [-] 0.8 0.75 to 0.85

SOIDI [CADaTDC] 40 40
pim [bar] 1.55 1.45 to 1.65
Tim [°C] 45 40 to 50
XEGR [-] 0.2 0.1 to 0.3
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Figure 5. Average and cycle-to-cycle variations of important combustion metrics (black) and the
measured distribution (red) for different values of SOIDI and the nominal conditions shown in Table 7
using the hyperparameters shown in Table 5.

5.3. Variation in Intake Manifold Temperature

Figure 6 shows the modelled mean-value and cycle-to-cycle variations of impor-
tant combustion parameters over a range of Tim and the nominal conditions shown in
Table 7. Again, the results are in line with the results shown in Table 6. Similarly to
the sweep of SOIDI, the mean value of the model is similar to that of the measurements
except for the peak pressure rise rate. The modelled trend in the peak pressure rise rate
seems to correspond the the measured values. The standard deviation of the model only
matches with max(p(θ)) and CA50. The trend in the standard deviation of the model of
CA75-CA25 seems correct, but it is too high. The standard deviation of the model does not
match the measurements for the IMEPg, max

(
dp
dθ

)
, and Rb.
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(c) In-cylinder peak pressure rise rate
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Figure 6. Average and cycle-to-cycle variations of important combustion metrics (black) and the
measured distribution (red) for different values of Tim and the nominal conditions shown in Table 7
using the hyperparameters shown in Table 5.

5.4. Discussion on the GPR Modelling of Cycle-to-Cycle Variation

In both sweeps, the predicted standard deviations do not always match the measure-
ments. In (8), wi(sIVC), and wj(sIVC) ∀i, j ∈ {1, 2, . . . , nPC} are assumed to be independent
to align with the available GPR literature; however, this independence is not necessarily the
case. To evaluate the correlation between weights at a fixed sICC, the Pearson correlation
matrix R is used. This is given by

[R(sICC)]ab =
∑

ncyc
k=1(wa,k(sICC)− µ̃wa(sICC))

(
wb,k(sICC)− µ̃wb(sICC)

)

σ̃wa(sICC)σ̃wb(sICC)
, (30)

where µ̃wi (sICC) and σ̃wi (sICC) are the mean and standard deviation of the measured
weights at sICC, respectively. The values of R range from −1 to 1. When an element of R is
zero, there is no correlation between the two variables. However, when an element is −1 or
1 there is full correlation between the two variables. The determinant of the R can be used
as a measure for the amount of correlation, where det(R) ranges from 0 to 1. If det(R) = 1
all variables are fully uncorrelated. However, if det(R) = 0 at least two variables are
fully correlated.

Figure 7 shows the distribution of the weights for 50 consecutive cycles of the first five
PCs running at a constant s∗ICC ∈ S∗ with the least amount of coupling according to the
determinant of the Pearson correlation matrix. In Figure 7, the weights have been scaled as

w̃i(sICC) =
wi(sICC)− µ̃wi (sICC)

σ̃wi (sICC)
(31)

to emphasise the coupling. The corresponding symmetric Pearson correlation matrix is
given by

R =




1 0.6762 −0.3265 −0.2830 0.0240
1 −0.5037 0.0088 0.2896

1 0.1368 −0.3906
1 −0.2157

1




(32)

with det(R) = 0.23. This shows that the distributions between some of the weights are
significantly correlated, as is also illustrated in Figure 7. Therefore, it is no surprise that the
quality of the prediction of the cycle-to-cycle variation deviates from the proposed model.
This emphasises the importance of developing GPR methods that include the correlation
between the outputs.
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Figure 7. Distribution of the weights for ncyc = 50 cycles for the first five PCs for a constant s∗ICC ∈ S∗

with the least amount of coupling according to the Pearson correlation matrix.

6. Conclusions

In this study, a data-based model for the in-cylinder pressure and the corresponding
cycle-to-cycle variations is proposed. This model combines a PCD of the in-cylinder
pressure and GPR to map in-cylinder conditions and account for cyclic variations.

The proposed data-based modelling approach is successfully applied to an experi-
mental RCCI engine setup. The assumption that the model can be split into a general
principal component part and operating-condition-dependent weights is confirmed. A
detailed analysis of the hyperparameters for the PCD and GPR is performed. It is found
that, for the used data set, more than eight PCs do not further improve the accuracy of
the decomposition based on important combustion metrics. For the GPR, the Matérn
kernel with ν = 3

2 and without ARD gives the best results. The average prediction error
of the mean in-cylinder pressure over a complete combustion cycle is 0.051 bar and the
corresponding mean cycle-to-cycle variation is 0.24 bar2. The prediction quality of the
mean behaviour of the evaluated combustion metrics has a relative inaccuracy ranging
from −3.9% to 2.3%. The prediction error of the cycle-to-cycle variation of the evaluated
combustion metrics ranges from 21.5% to 65.5%. The peak pressure rise rate is traditionally
hard to predict; in the proposed model it has an inaccuracy of −22.7% in mean behaviour
and −85.1% in cycle-to-cycle variation.

In the presented approach, the correlation between wi(sIVC) and wj(sIVC) has been ne-
glected for ease of implementation. To improve the accuracy of the cycle-to-cycle variations,
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this correlation should be added. However, there are very few approaches that extend the
GPR framework to including correlation between model outputs known in the literature.

In conclusion, the mean-value performance of our model is comparable or shows improve-
ments compared to models found in the literature. This shows that, even when neglecting
correlation, the model performs well. The model can be used for in-cylinder pressure shaping
as proposed in Vlaswinkel and Willems [10]. Furthermore, it can be used in model-based opti-
misation approaches that take into account cycle-to-cycle variations and safety criteria. When
combined with the PCD-based emission model of Henningsson et al. [25], the model provides a
base for optimisation approaches with emission constraints.
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