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Abstract: The environmental/economic dispatch (EED) of power systems addresses the environmen-
tal pollution problems caused by power generation at the operational level, offering macroscopic
control without requiring additional construction and remediation costs, garnering widespread
attention in recent years. This paper undertakes a comprehensive review of existing EED models,
categorizing them according to the control of atmospheric pollutants into total air pollutant control
(TAPC) and control considering the spatial and temporal diffusion (STD) of atmospheric pollutants.
In addition, various methods employed to address the EED problems, as well as the current state
of research on multi-area EED models, are presented. Finally, this paper analyzes and summarizes
the literature on existing EED models, highlighting the deficiencies of the current work and future
research directions. Through these explorations, the authors find that controlling the EED model by
considering TAPC is more suitable for general macro planning, whereas the EED model considering
the STD of air pollutant emissions enables more precise and effective control. Summarizing such
models and techniques is conducive to developing dispatch plans adapted to local conditions, which
is significantly beneficial for public welfare and government management, promoting sustainable
and environmentally friendly power system dispatch methods.

Keywords: power system; economic dispatch; environmental pollution; optimization methods;
macroscopic control

1. Introduction

Environmental pollution has become a global issue, posing a severe threat to people’s
lives. According to recent years’ data, only 10% of the assessed settlement populations
were exposed to annual average levels of PM2.5 or PM10 that meet the World Health
Organization’s air quality guidelines [1]. For NO2, only 23% of the assessed settlement
populations were exposed to annual average levels that meet the guidelines [2]. In recent
years, in response to energy shortages, the reduction in air pollution, and the improvement
of environmental quality, there has been a significant global increase in the proportion
of renewable energy sources such as solar and wind power [3–5]. However, due to the
natural conditions of primary energy sources, the coal-based power energy structure in
some countries or regions will be difficult to change for a prolonged period in the future [6].
Therefore, addressing the environmental issues caused by the operation of coal-fired units
is urgent. How to effectively reduce environmental pollution in the dispatch and operation
of the power system has become one of the key issues in this research field [7,8].

The predominant atmospheric pollutants produced by coal-fired power generation
units include particulate matter (PM), sulfur oxides (SOx), and nitrogen oxides (NOx),
which are the main control subjects discussed in this paper. In recent years, scholars have
extensively investigated strategies for developing low-air-pollution power systems, mainly
including system planning methods [9–11], market regulation methods [12,13], policy guid-
ance methods [14–16], and environmental–economic dispatch methods [17–19]. This paper
provides a comprehensive review of relevant technical methods from the perspective of
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EED. The essence of the EED model focuses on the fundamental principle of “energy con-
servation and emission reduction”. Aligned with the operational and safety requirements
of the system, it involves the optimal allocation of load among units to minimize total
fuel costs and aggregate pollutant emissions within the dispatching cycle. This approach
aims to substantially enhance the system operation’s economic and environmental facets
while striving to curtail energy consumption and bolster environmental preservation to the
greatest extent feasible. The EED model can be primarily categorized into two branches: the
dispatching model considering TAPC and the dispatching model based on the optimization
of the STD of air pollutant emissions. The former model has been subject to extensive
research, and multiple countries have made various efforts to reduce their total emissions
of air pollutants. However, there has been no significant improvement in the air quality of
key residential environments in some local regions. This reflects the fact that the previous
emission reduction measures were relatively crude. Existing power generation dispatch
focuses on the centralized control of the system’s total emissions, insufficiently considering
the intrinsic connections between population, energy, meteorology, and pollution. The latter
model considers the STD of atmospheric pollutants, asserting that the concentration in the
air determines the impacts of atmospheric pollutants on people’s lives and health. It is
influenced by meteorological conditions, distance from pollutants, and other factors. There
is relatively less existing research on the latter models, which require further exploration.

The EED problem typically exhibits high dimensionality, nonlinearity, and multiple
constraints. Over the past few decades, various optimization methods have been ap-
plied to solve EED models. These methods can be broadly categorized into three types:
(i) conventional methods, (ii) non-conventional methods, and (iii) hybrid methods. Con-
ventional optimization methods are typically based on mathematical models and classical
optimization theory. These methods are well established and widely understood, mak-
ing them relatively easy to implement [20]. However, they may struggle to handle the
complex constraints and nonlinearities often present in real-world power systems [21].
Non-conventional methods employ innovative artificial intelligence algorithms [22,23]. The
advantage of non-conventional methods lies in their ability to work in a broader range of
problem domains and their adaptability to complex, nonlinear problems. Nonetheless, they
may require more computational resources and expertise to be implemented effectively.
Hybrid methods combine the strengths of two or more algorithms, aiming to improve
the convergence speed, handle large-scale problems, and integrate both theoretical and
practical aspects to some extent [24].

Currently, there are several articles in the literature related to EED models. In 1994,
Talaq J H et al. [25] conducted a comprehensive summary of the previous EED models, con-
sidering the types and controlled forms of environmental control variables. The discussions
on the various models, however, lack sufficient detail. In 2018, Qu B Y et al. [26] and Fahad
Parvez Mahdi et al. [27] successively published reviews on algorithms for solving EED
problems; the former focused on summarizing algorithms for multi-objective optimiza-
tion, while the latter provided a more comprehensive overview of the algorithms. Ismail
Marouani et al. [28] presented an economic dispatch model that incorporates renewable
energy sources like wind and solar power and revised the algorithms for addressing EED
problems in 2022. Therefore, the existing literature reviews lack a detailed discussion on the
STD model of air pollution, as well as a summary of its impact on dispatch models. This pa-
per fills this gap. In terms of academic research, it provides researchers and readers with a
comprehensive understanding of the classification and methodological frameworks of EED
models, offering guidance to relevant scientific research personnel. In terms of application,
the model methods introduced in this paper can provide technical personnel with macro
technical guidance, facilitating their choice of appropriate implementation plans when con-
sidering different modeling and solution methods. At the same time, the improvement of
EED technology enhances overall social welfare: it improves the health of residents, enables
dispatchers to develop more efficient and environmentally friendly dispatch plans, and aids
governments in achieving sustainable development and environmental protection goals.
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The main contributions of this review paper are given as follows:

• Compared with previous reviews on the EED models, this paper further discusses the
impact of coal-fired power units on atmospheric pollution: the models are divided into
two categories, namely the EED model considering TAPC and the EED model based
on the optimization of the STD of air pollutant emissions, and this paper introduces
multi-area EED models, providing guidance for managing atmospheric pollution
control models in regions.

• This paper provides a more detailed discussion and summary of the EED model based
on the optimization of the STD of air pollutant emissions. It includes a comparison of
the characteristics of the Gaussian plume model and the Gaussian puff model and a
discussion of the influence of diurnal variations in the ABL. By considering the effects
of the STD of air pollutants, flexible electricity dispatch decisions can be made in terms
of economic and environmental impact, truly aiding in the sustainable development
of the economy.

• Finally, this paper elaborates on the shortcomings of existing research on the EED mod-
els and explores future research directions. It is of great significance to further explore
the flexibility resources of the power system to enhance environmental protection
potential and adopt more advanced artificial intelligence algorithms for predicting
atmospheric pollution and optimizing dispatch models.

The remainder of this paper is organized as follows: Sections 2 and 3 introduce the
EED model, considering TAPC and the EED model based on the optimization of the STD of
air pollutant emissions, respectively. The solutions for solving EED problems are explained
in Section 4. Section 5 discusses the multi-area EED model, and Section 6 presents the
future directions of the EED model. Finally, the conclusion is given in Section 7.

2. The EED Model Considering TAPC

The earliest EED model can be traced back to 1971, when Gent M R and Lamont J
W replaced the coal consumption minimization objective function in the static economic
dispatch model with a system’s objective function aimed at minimizing NOx emissions [29].
They included constraints for the NOx emissions of individual units in the solution. Thus,
the earliest EED model focused on a single-objective optimization dispatch problem for total
atmospheric pollutant emissions. Subsequent environmental economic dispatch models
have been extended and expanded within the framework summarized by Talaq J H [25].

The EED model considering TAPC typically refers to minimizing fuel costs and the to-
tal emissions of harmful gases and particulate matter while satisfying overall load demand
and all other equations and inequality constraints. However, some researchers have also
considered reliability levels, load adjustment times, reserve capacities, and even grid losses
as additional objectives in the problem [30–33]. Generally, the problem can be formulated
as follows [34–36]:

min F(PG) =
NG

∑
i=1

(ai + biPGi + ciP2
Gi) (1)

where ai, bi, and ci are cost coefficients for the i-th coal-fired power generator. F(PG) is
the total fuel cost of the system, while NG identifies the number of coal-fired units. PGi
represents generator power for the i-th unit. If the fluctuation effects caused by the steam
valve opening are taken into account, it requires adding sinusoidal components to the
equation. Therefore, the cost function can be expressed as follows [37]:

min F(PG) =
NG

∑
i=1

(ai + biPGi + ciP2
Gi +

∣∣∣di sin[ei(Pmin
Gi − PGi)]

∣∣∣) (2)

where di and ei are the cost coefficients of the i-th generator, while Pmin
Gi is the minimum

output of the i-th power generator.
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When the coal is burned to generate power, it releases NOx, SOx, and PM. NOx is
created from the interaction between nitrogen and oxygen at high temperatures, while SOx
is formed by the combination of sulfur in coal with oxygen, resulting in the formation of
sulfur dioxide. PM mainly consists of dust, smoke, and aerosols that are released during
coal combustion [38,39]. These pollutants pose significant hazards to the atmospheric
environment and human health. Various mathematical formulas have been developed to
address this issue. It can be modeled using a quadratic function [25,40], a combination
of a quadratic polynomial with an exponential term [41], or a combination of a quadratic
equation with multiple exponential terms [28].

min E(PG) =
NG

∑
i=1

(αi + βiPGi + γiP2
Gi) (3)

min E(PG) =
NG

∑
i=1

(αi + βiPGi + γiP2
Gi + ξi exp(λ · PGi)) (4)

min E(PG) =
NG

∑
i=1

(αi + βiPGi + γiP2
Gi + ξ1i exp(λ1 · PGi) + ξ2i exp(λ2 · PGi)) (5)

where αi, βi, γi, ξi, ξ1i, ξ2i, λi, λ1i, and λ2i are the emission coefficients of the i-th power
generator, and E(PG) is the total pollution emission of the system.

In the power system, numerous real-time and practical constraints play crucial roles
in operation and planning. By effectively managing these constraints, the performance
and stability of the power system can be significantly enhanced. Table 1 illustrates some
objectives and constraints that researchers consider to address the EED problem [27]. A
description of some notable constraints is outlined below:

Table 1. The objectives and constraints commonly considered in the EED model.

Objectives Constraints

Minimization of the total generation cost Power balance constraint

Minimization of pollutant emissions Generator limit constraint

Reliability level Generators’ ramp rate limits

Load adjusting time Power flow constraint

Reserve capacity Prohibited operating zone constraints

Transmission loss Emission constraints

(1) Power balance constraint: The power balance constraint in an electric power system
is a fundamental principle ensuring that the total electrical power generated matches the
total power consumed within the system. It can be expressed as the following equation:

NG

∑
i=1

PGi = PD + Ploss (6)

where PD and Ploss stand for total power demand and total loss, respectively.
(2) Generator limit constraint: The generator limit constraint in a power system refers

to the limitations imposed on each generator’s output capacity. This constraint is expressed
as an inequality for each generator i in the system:

Pmin
Gi ≤ PGi ≤ Pmax

Gi (7)

where Pmax
Gi is the maximum output of the i-th power generator.
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(3) Generators’ ramp rate limits: This constraint ensures that the rate of change in
power output remains within the specified limits for each generator. It can be expressed
as follows:

max(Pmin
Gi , P0

Gi − DRi) ≤ PGi ≤ min(Pmax
Gi , P0

Gi + URi) (8)

where P0
Gi refers to the previous operating point of the i-th power generator, and DRi and URi

are the downward rate limit and upward rate limit of the i-th power generator, respectively.
(4) Power flow constraint: Transmission lines in the power system are responsible for

transmitting electrical energy generated by power generators to various loads. However,
due to the finite capacity of these lines, constraints on power flow are necessary to avoid
exceeding the line’s carrying capacity, prevent overloading, and ensure the stability and
reliability of the system. It can be described as follows:

|Sli| ≤ Smax
li , i = 1, 2, . . . NL (9)

where Sli and Smax
li are the transmission line loading and the maximum transmission line

loading, respectively, while NL is the number of transmission lines.
(5) Prohibited operating zone constraints: In actual power generation systems, the

entire operating range of generating units is not always available for operation. Operations
within these zones may lead to system instability, equipment damage, or other adverse
consequences. Therefore, power generation output must avoid operating in prohibited
operating zones. Generator unit i should operate within the feasible operating zones, as
described below [27]:

PGi =


Pmin

Gi ≤ PGi ≤ PL
Gi,1,

PU
Gi,j−1 ≤ PGi ≤ PL

Gi,j, j = 2, 3 . . . , Ki

PU
Gi,Ki

≤ PGi ≤ Pmax
Gi ,

(10)

where Ki represents the number of prohibited operation zones in the curve of the i-th
power generator, while j represents the index of the prohibited operating zone of the
i-th power generator. PL

Gi,j and PU
Gi,j−1 represent the lower limit of the j-th prohibited

operating region and the upper limit of the (j − 1)-th prohibited operating region for the
i-th power generator.

(6) Emission constraints: Emission constraints typically involve key pollutants such
as SOx, NOx, and PM. These constraints are designed to minimize adverse environmental
impacts and ensure that human activities have a manageable influence on the atmosphere,
water bodies, and soil [42,43].

ES ≤ LSOx , EN ≤ LNOx , EPM ≤ LPM (11)

where ES, EN, and EPM are the gases’ emissions, respectively, of NOx, SOx, and PM. LSOx ,
LNOx , and LPM are the maximum limits of emissions of different gases.

3. The EED Model Based on the Optimization of the STD of Air Pollutant Emissions

As mentioned in the previous section, most current EED models are based on con-
trolling the total emissions of atmospheric pollutants within the studied area. However,
the ground-level pollutant concentration (GLPC) is the primary assessment index directly
affecting human health and causing economic losses. The GPLC is related to factors such
as the emissions conditions (e.g., emission volume, emission height, emission method,
and dispersion patterns of the emissions), meteorological conditions, and topographical
features. Therefore, it is necessary to delineate the relationship between emissions from
coal-fired power plants and the resultant ground-level concentrations, aiming to initiate
environmental–economic optimization dispatch from the perspective of reducing GPLC.
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3.1. Basic Framework for the STD Calculation of Atmospheric Pollutants

Establishing the source–receptor mapping relationship between pollutant emissions
from coal-fired units and regional pollutant concentrations requires the utilization of gas
dispersion models. The gas dispersion models are mathematical models used to simulate
and predict the STD, as well as for the propagation patterns of pollutants in the atmosphere.
These models typically integrate knowledge from various fields, such as atmospheric dy-
namics, meteorology, chemical kinetics, and geographic information systems, to provide
a quantitative description of the dispersion behavior of atmospheric pollutants. Simulta-
neously, power dispatch itself presents a nonlinear problem with multiple variables and
constraints. Therefore, to accurately and rapidly assess the diffusion of pollutants from
these coal-fired units, the model meets the following conditions: (1) It takes into account
the impact of the ABL, fully reflecting the diffusion characteristics of pollutants from ele-
vated point sources such as power plants; (2) It considers the types of pollutants emitted
by coal-fired power plants, including PM, SOx, NOx, etc.; (3) It requires low parameters
and is easy to calculate; (4) It has a wide range of applicability and can be used for the
environmental conditions of most coal-fired units. The Gaussian dispersion model serves
as the physical foundation for many practical dispersion models, featuring the advantages
of simple expression, convenient computation, and compatibility with other issues. In
the short-term dispatching optimization problems of the power system, the diffusion of
pollutants emitted from coal-fired power plants in the atmosphere is mainly influenced by
primary characteristics, with the indirect effects from secondary or multiple physical and
chemical reactions not yet manifested. Therefore, the Gaussian dispersion model can be
employed to describe the dispersion process of pollutants emitted during power production
in the atmosphere. The Gaussian dispersion model includes the Gaussian plume model
and the Gaussian puff model, which will be elaborated below.

3.1.1. Gaussian Plume Model

The Gaussian plume model is a mathematical model used to estimate the distribution
of pollutant concentrations in the atmosphere. Based on Gaussian distribution, the model
simulates the dispersion of air pollutants in the atmosphere in the form of a Gaussian curve.
The model assumes stable atmospheric conditions near the emission source, exhibiting
Gaussian distribution in both horizontal and vertical directions. It utilizes wind field
information and dispersion parameters to describe the pollutant dispersion process in the
atmosphere, establishing a three-dimensional coordinate system with the wind direction as
the x-axis and the ground at the chimney’s location as the coordinate origin, as shown in
Figure 1 [44].

Under the assumption of constant horizontal wind speed u, the pollutants spread at
the same rate in a direction perpendicular to the wind. The air quantity passing through
the plume flow section per unit time can be represented by uπr2, where r represents the
cross-sectional radius. The total flux of pollutants on any vertical plane downstream of the
pollution source should be equal to the total mass emitted in unit time. It can be expressed
as follows [45]: ∫ +∞∫

−∞

uCGLPC(x, y, z)dydz =
NG

∑
i=1

Eτ(PGi) (12)

where CGLPC(x, y, z) represents the GLPC at a certain geographical location. τ represents
the time of the pollutant emission, while Eτ(PGi) stands for the mass of the i-th power
generator emitting the plume at time τ.
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The GLPC at the location (x, y, z) can be expressed as follows:

CGLPC(x, y, z) =

NG
∑

i=1
Eτ(PGi)

uπr2 (13)

However, pollutants do not exhibit a uniform distribution in horizontal and vertical
diffusion perpendicular to the wind direction. In the Gaussian plume model, the diffusion
of atmospheric pollutants can be considered to flow firstly in the direction of the wind and
then to spread outwards, with the distribution of pollutant concentration conforming to a
Gaussian distribution, as shown in Figure 1. σy and σz represent the variances in pollutant
dispersion in the horizontal and vertical directions, respectively, as horizontal and vertical
diffusion parameters. These parameters characterize the diffusion range of pollutants in
the y and z directions.

Therefore, according to the expression of the Gaussian distribution, the Gaussian
plume dispersion model for elevated continuous point sources can be represented as

CGLPC(x, y, z) = A(x)e−ay2
e−bz2

(14)

σy and σz can be derived through probability statistical theory.
σ2

y =
∫ ∞

0 y2CGLPCdy∫ ∞
0 CGLPCdy

σ2
z =

∫ ∞
0 z2CGLPCdz∫ ∞

0 CGLPCdz

(15)
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We substituted Equation (14) into Equation (15) and integrated to obtaina = 1
2σ2

y

b = 1
2σ2

z

(16)

We substituted Equations (14) and (16) into Equation (12) and performed the integra-
tion, resulting in

A(x) =

NG
∑

i=1
Eτ(PGi)

2uπσyσz
(17)

After substituting Equations (16) and (17) back into Equation (14) and considering
the effects of dynamic lift and coal-fired lift, the concentration distribution function of the
pollutants emitted from the power plant could be expressed as

CGLPC(x, y, z) =

NG
∑

i=1
Eτ(PGi)

2uπσyσz
exp[−1

2

(
y2

σ2
y
+

(
z − Zs

2

σ2
z

))
] (18)

where Zs represents the effective source height of flue gas emissions. In practical en-
gineering, monitoring points are set at ground level, taking z = 0, so Equation (18) is
reformulated as

CGLPC(x, y, z) =

NG
∑

i=1
Eτ(PGi)

2uπσyσz
exp[−1

2

(
y2

σ2
y
+

Zs
2

σ2
z

)
] (19)

In the atmospheric process of pollutant transport and diffusion, various removal and
transformation mechanisms act collectively. These mechanisms result in the reduction in
and alteration of pollutants in the air, thereby influencing the concentration distribution
and spatiotemporal variations in the atmosphere. The typical approach is to assume an
exponential decay of pollutant mass over time. Therefore, the GLPC caused by pollutants
emitted at time τ at location (x, y) during monitoring time t can be expressed as [45]

CGLPC(τ, t′ ; x, y) =

NG
∑

i=1
Eτ(PGi)

2uπσyσz
exp(− t′ − τ

Tres
) exp[−1

2

(
y2

σ2
y
+

Zs
2

σ2
z

)
] (20)

where t′ denotes the monitoring time of air quality. Tres represents the residence time of the
pollutant puff, signifying the average lifespan of atmospheric pollutants during continuous
physical–chemical decay. It is generally considered that after a duration Tres from the
emission time τ of the plume, the impact of the pollutant plume on the concentration level
of atmospheric pollution is negligibly small.

From the above discussion, the characteristics of the Gaussian plume model are
as follows:

1. The model typically assumes that the environmental conditions of the atmosphere
and emission sources remain in a steady state during the simulated time period.

2. This makes the model suitable for short-term predictions. In the direction of wind
flow, when the wind speed is greater than the dispersion speed, advective transport
has a much greater impact than diffusion.

3. The model may fail in complex atmospheric environments, for example, under condi-
tions of an unstable atmosphere or non-uniform wind fields.
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In reality, meteorological conditions such as wind speed will continuously change
with the movement of pollutants and the passage of time. If the Gaussian plume model is
used to estimate the GLPC from power plants, it will fail to reflect the impacts of changing
meteorological conditions and emission rates. Therefore, the Gaussian plume model is not
suitable for actual power dispatch scenarios with variable meteorological conditions and
continuously changing power plant output [45].

3.1.2. Gaussian Puff Model

The Gaussian puff model treats instantaneous pollutant emissions as a puff, as il-
lustrated in Figure 2 [46,47]. As the puff moves with the wind, it undergoes diffusion
by expanding its diameter. In comparison to the traditional Gaussian plume model, the
Gaussian puff model is more suitable for describing situations with rapid changes in wind
speed and wind direction over short periods. It is commonly employed for short-term
air quality simulations. Clearly, the time difference ∆tpu f f between two adjacent puffs
should be sufficiently small to ensure the accuracy of simulations of the original continuous
plume. Typically, the basic time step ∆tpu f f for puff emissions should satisfy the following
equation [48]:

[u2 + v2]
1/2

∆tpu f f ≤ Rpy (21)

where u and v are the wind speeds in the x and y directions at any given moment, respec-
tively. Rpy represents the half-width of the puff, typically set as σx = σy and defined as
Rpy = 2.15σy.

The Gaussian puff model also assumes that the dispersion of pollutants in both
horizontal and vertical directions follows a Gaussian distribution. It further assumes
that the emission intensity, wind speed, wind direction, and atmospheric stability are
constant during the basic time step. The GLPC at the location (x, y, z) can be expressed as
follows [49]:

CGLPC
(
τ, t′; x, y, z

)
=

NG

∑
i=1

t′−1

∑
τ=t′−Tres

Eτ(PGi)Gi
(
τ, t′; x, y, z

)
· exp

(
− t′ − τ

Tres

)
(22)

In Equation (22), Gi(·) represents the dispersion distribution function of puff emitted
from the pollution source, expressed as

Gi(τ, t′; x, y, z) =
(
(2π)

3
2 σx(τ, t′)σy(τ, t′)σz(τ, t′)

)−1
·

exp
(
− 1

2

((
x−xc(τ,t′)

σx(τ,t′)

)2
+
(

y−yc(τ,t′)
σy(τ,t′)

)2
+
(

z−zc(τ,t′)
σz(τ,t′)

)2
)) (23)

where σx(τ, t′), σy(τ, t′) and σz(τ, t′) represent the diffusion parameters in the three dimen-
sions x, y, and z respectively, while xc(τ, t′), xy(τ, t′), and xz(τ, t′) denote the coordinates of
the puff center. These coordinates continuously update at different monitoring times [50,51]. xc(τ, t′)

yc(τ, t′)
zc(τ, t′)

 =

 xs
ys
zs

+
t′

∑
t=τ+1

u(t)
v(t)
w(t)

∆t (24)

where xs, ys, and zs represent the three-dimensional geographical coordinates of the coal-
fired power plant’s pollution source; t signifies a particular moment between the puff
emission time and the monitoring point’s observation time; ∆t denotes the time interval be-
tween the two observation times, often set as ∆t = 1h; and u(t), v(t), and w(t), respectively,
indicate the average wind speeds in the x, y, and z directions over the time interval ∆t.
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When the atmospheric environment remains stable within the time interval [τ, t], the
diffusion parameters from moments τ to t satisfy σx(τ, t) = σy(τ, t) = α(t)(t − τ)λ(t)

σz(τ, t) = β(t)(t − τ)γ(t)
(25)

where α, β, λ, and γ represent the calculation coefficients for the diffusion parameters,
contingent upon the atmospheric stability grade of the puff center at various moments.

According to GB/T 3840-91 [52], atmospheric stability is categorized into six levels:
very unstable, unstable, weakly unstable, neutral, moderately stable, and stable, where a
lower stability level indicates higher atmospheric instability. These are denoted by the let-
ters A, B, C, D, E, and F, respectively [53]. The coefficients for Equation (25), as summarized
by the Japanese Ministry of the Environment [54], are presented in the Tables 2 and 3.

Table 2. The horizontal diffusion parameter calculation coefficients.

Atmospheric Stability Level α λ

A 1.92091 0.88479

B 1.42501 0.89034

C 1.01538 0.89635

D 0.68240 0.88671

E, F 0.61003 0.88547

Table 3. The vertical diffusion parameter calculation coefficients.

Atmospheric Stability Level β γ t − τ/s

A

0.22821 1.16593 0~500

0.04906 1.41327 500~2000

0.01726 1.55074 2000~∞

B
0.36076 1.01128 0~1000

0.19202 1.11026 1000~∞

C 0.42641 0.91251 0~∞
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Table 3. Cont.

Atmospheric Stability Level β γ t − τ/s

D
0.44691 0.85576 0~1000

1.30023 0.70115 1000~∞

E

0.52328 0.77422 0~1000

1.40800 0.63093 1000~3000

4.09832 0.49749 3000~∞

F

0.64000 0.69897 0~1000

1.02400 0.63003 1000~3000

4.65031 0.44197 3000~∞

Taking the standards for atmospheric pollutant emissions in China as an example,
determining atmospheric stability involves several calculation and analysis steps [55].

Firstly, the calculation of the solar declination angle δ is performed using the follow-
ing formula:

δ = (0.006918 − 0.399912 cos θ0 + 0.070257 sin θ0 − 0.006758 cos 2θ0

+0.000907 sin 2θ0 − 0.002697 cos 3θ0 + 0.001480 sin 3θ0) · 180
π

(26)

θ0 =
360dn

365
(27)

where dn represents the ordinal date within a year, with values in the range 0, 1, 2, . . ., 364,
indicating the chronological order of the day within the year.

Secondly, we introduce the solar declination angle δ as a computational parameter,
and the calculation of the solar radiation angle h0 is obtained using the following formula:

h0 = arcsin(sin ϕ sin δ + cos ϕ cos(15t + λ − 300)) (28)

where ϕ represents the local geographical latitude, and λ represents the local geographical
longitude. Given the variability in geographical coordinates, the solar radiation angle
differs accordingly. Following the computation of the solar elevation angle for a specific
day, the corresponding solar radiation level for that day can be determined by referencing
Table 4 based on the observed cloud-cover conditions [56].

Table 4. Solar radiation level according to cloud condition and solar radiation.

Total Cloud Cover/Low Cloud Cover Night Time
Solar Radiation Angle

h0 ≤ 15
◦

15
◦

< h0 ≤ 35
◦

35
◦

< h0 ≤ 65
◦

h0 > 65
◦

≤4/ ≤4 −2 −1 +1 +2 +3

5∼7/≤4 −1 0 +1 +2 +3

≥8/≤4 −1 0 0 +1 +1

≥5/5∼7 0 0 0 0 +1

≥8/≥8 0 0 0 0 0

Finally, the atmospheric stability level is obtained in Table 5 [56].



Energies 2024, 17, 1878 12 of 30

Table 5. Atmospheric stability level according to solar radiation and ground-level wind speed.

Ground-Level Wind Speed (m/s)
Solar Radiation Level

+3 +2 +1 0 −1 −2

≤1.9 A A~B B D E F

2∼2.9 A~B B C D E F

3∼4.9 B B~C C D D E

5∼5.9 C C~D D D D D

≥6 D D D D D D

If the atmospheric stability remains constant from moment τ to t and there is a change
in atmospheric stability at time t + ∆t, then the atmospheric diffusion parameters follow a
continuous transitional relationship [50,57] as follows:σy(τ, t) = α(t)(t − τ)λ(t) = α(t + ∆t)

(
t − τ + ∆δy

)λ(t+∆t)

σz(τ, t) = β(t)(t − τ)γ(t) = β(t + ∆t)(t − τ + ∆δz)
γ(t+∆t)

(29)

where ∆δy and ∆δz are the translation variables introduced to ensure the continuity transi-
tion of atmospheric diffusion parameters.

The following two equations are obtained by solving Equation (29):∆δy =
(
α−1(t + ∆t)σy(τ, t)

) 1
λ(t+∆t) − (t − τ)

∆δz =
(
α−1(t + ∆t)σz(τ, t)

) 1
γ(t+∆t) − (t − τ)

(30)


σy(τ, t + ∆t) =

(
α(t + ∆t)

1
λ(t+∆t) ∆t+ σy(τ, t)

1
λ(t+∆t)

)λ(t+∆t)

σz(τ, t + ∆t) =
(

β(t + ∆t)
1

γ(t+∆t) ∆t+ σz(τ, t)
1

γ(t+∆t)

)γ(t+∆t) (31)

3.2. The STD Model of Air Pollutants Considering the Influence of ABL

The ABL undergoes significant diurnal variations throughout the day [58]. During
the day, the intense radiation energy from the sun vigorously heats the Earth's surface,
causing the temperature of the air layer in contact with the ground to rise. This process
leads to the formation of a dynamic and active mixed layer (ML) near the surface, where
the air undergoes vigorous mixing due to heat-induced rising and strong turbulent effects.
Above this ML, a more stable entrainment layer (EL) forms, where air ascent and mixing
are more pronounced. As the sun sets and night falls, the ground cools down due to the
loss of solar radiation. This cooling effect renders the air near the ground colder and more
stable, forming a stable boundary layer (SBL). The airflow in this layer is slower, and the
vertical turbulent and mixing effects are reduced, facilitating the accumulation of pollutants
near the surface. Above the SBL, there is the residual layer (RL), which retains some of the
characteristics of the mixed layer formed during the day. Although the strong turbulence of
the daytime has subsided, this layer level maintains certain mixing properties. As a result,
the dispersion does not consistently adhere to a Gaussian distribution but manifests three
typical pollutant diffusion forms: fumigation type, enclosed type, and downward inhibited
type, as illustrated in Figure 3 [59].

zi refers to the bottom of the unstable ML. During the daytime, if zi has not exceeded
zs, the pollutants disperse following fumigation or enclosed type. After sunset, the SBL
starts forming from the surface, while the daytime ML gradually transforms into a RL
existing above the SBL. The ABL height zi is the height at the top of SBL, and pollutants
disperse following the downward inhibited type [60].
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3.2.1. Fumigation Type

Fumigation-type diffusion often occurs at night or in the early morning when the air
temperature near the ground is lower than the air above due to radiative cooling, creating
a temperature inversion layer. As a kind of air layer, the temperature inversion layer
prevents pollutants near the ground from rising, leading to the accumulation of pollutants
near the ground. Under these conditions, the pollutants exhibit a uniform distribution
in the vertical direction and a Gaussian distribution in the horizontal direction. It can be
expressed as: [50,61]

Gi(τ, t′; x, y) =

∫ m
−∞ exp

(
− m2

2

)
dm·exp

− (x−xc(τ,t′))2
+(y−yc(τ,t′))2

2

(
σy0(τ,t′)+

zc(τ,t′)
8

)2


(2π)

3
2

(
σy0(τ,t′)+

zc(τ,t′)
8

)2
zi(t)

(L(κ) ≥ 4|zs > zi(κ))&L(ω) < 4)

m(t′) = zi(t)−zc(τ,t′)
σz0(τ,t′)

(32)

where L(ω) represents the atmospheric stability level below the height zi of the ABL at
time τ. L(ω) = 4 signifies neutrality. (L(κ) ≥ 4|zs > zi(κ)) signifies the initial emission of
pollutants within the stable layer. L(ω) < 4 denotes the formation of the ML. σy0 and σz0
represent the horizontal and vertical diffusion coefficients of pollutants initially within the
stable layer. m stands for the operator.

3.2.2. Enclosed Type

This enclosed atmospheric pollutant diffusion generally occurs in the afternoon until
before sunset during the day when the structure of the ABL exhibits stratification due to
solar radiation heating. Under enclosed diffusion conditions, the ABL can be divided into
two main parts: the upper EL and the lower ML. The EL has relatively stable meteorological
conditions and can be seen as a “ceiling” that limits the upward diffusion of pollutants,
making it difficult for pollutants to continue to penetrate upwards. Below the EL is the ML,
where, due to the influence of ground heat radiation, air activity is frequent, aiding in the
diffusion of pollutants both vertically and horizontally. During the enclosed atmospheric
pollutant diffusion process, pollutants undergo continuous diffusion, reflection, and re-
diffusion between these two levels, namely between the ground and the EL, creating a
relatively closed diffusion environment. The expression can be represented as [62]:
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

Gi(τ, t′; x, y) =
exp

(
− 1

2

(
x−xc(τ,t′)

σx(τ,t′)

)2
− 1

2

(
y−yc(τ,t′)

σy(τ,t′)

)2
)

O(τ,t′)

(2π)
3
2 σ2

y (τ,t′)σz(τ,t′)

(L(κ) < 4&zs ≤ zi(κ)&L(ω) < 4)

O(τ, t′) =
NR
∑

n=−NR

exp
(
− (2nzi(t)−zc(τ,t′))2

2σ2
z (τ,t′)

)
+

NR
∑

n=−NR

exp
(
− (2nzi(t)+zc(τ,t′))2

2σ2
z (τ,t′)

)
(33)

where L(κ) < 4&zs ≤ zi(κ)&L(ω) < 4 denotes the puff that is emitted into the unstable
ML. L(ω) < 4 denotes that the ABL still possesses a structure with the EL above and the
ML below. NR represents the number of reflections of the pollutants’ puff, typically set at
NR = 4 [63].

3.2.3. Downward Inhibited Type

After sunset, the ground receives weakened radiation, forming a neutral RL. As the
night progresses, the RL bottom in direct contact with the ground gradually evolves into
the SBL. Therefore, pollutants from the power plant are directly emitted into the RL at
night. The pollutants spread equally in all directions, forming a cone-shaped diffusion
profile. When the lower edge of the puff reaches the SBL, its downward diffusion begins to
be inhibited, causing the distortion of the diffusion profile, hence referred to as downward-
inhibited diffusion. The distortion of the diffusion profile is actually the variations in y and
z, which can be adjusted by modifying the values of α, β, λ, and γ and then correcting the
puff dispersion coefficient based on Equation (29). During this period, the atmospheric
stability condition is L(ω) ≥ 4, signifying that the pollutants are emitted into the SBL or
the RL. The computation of the dispersion distribution function is as follows [57]:

Gi(τ, t′; x, y) =
[
(2π)

3
2 σ2

y (τ, t′)σz(τ, t′)
]−1

· exp
(
− 1

2

((
x−xc(τ,t′)

σx(τ,t′)

)2
+(

y−yc(τ,t′)
σy(τ,t′)

)2
+
(

z−zc(τ,t′)
σz(τ,t′)

)2
)) (34)

where σx, σy, and σz are atmospheric pollutant diffusion parameters that have been adjusted
according to Equation (25).

3.3. Discussions of the EED Model Considering the STD of Air Pollutant Emissions

Research on the STD of pollutants and their impact on the operation of the power
system often involves the complex inter-relationships between multiple electrical and
non-electrical source flows and the integration of multiple spatial and temporal levels.
Research on the spatial and temporal constraints of various electrical and non-electrical
composite source flows mainly focuses on two aspects: Firstly, the impact of electrical
quantities on the distribution of atmospheric pollutants and non-electrical quantities, such
as public health. This involves studying the “positive impact” of power system operation
on the atmospheric environment. Secondly, there is a reverse driving process where the
concentration of pollutants in living environments or non-electrical targets, such as the air
quality index (AQI), influences the optimization dispatch of electricity. This constitutes
“reverse pressure control” research, considering the impact of the atmospheric environment
on power operation. The following discussion addresses two categories of research: the
direct and indirect impacts of power system operation on the atmospheric environment.
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3.3.1. Research on the Direct Impact of Power System Operation on the
Atmospheric Environment

The operational mode of the power system primarily refers to its direct impact on the
atmospheric environment, specifically influencing the distribution of regional air pollutant
concentrations. In the 1970s, Sullivan R L and Hackett D Fi [44] introduced the charac-
teristics of pollutant distribution into the optimization dispatch of power systems. They
replaced the objective function of minimizing coal consumption with an objective function
of minimizing the contribution of coal-fired units to the surface concentration of SO2 at a
specified location. As described in the previous section, the Gaussian plume dispersion
model was utilized to calculate the contribution of unit emissions to the surface pollution
concentration at the specified location. This led to the development of a “meteorology-
sensitive” power dispatch plan. The results indicated that while the modeled system
exhibited a slight increase in total SO2 emissions, it effectively reduced the surface concen-
tration of SO2 at the specified location. The Gaussian plume model was also employed
in [45], proposing an optimal decision model considering the pollutant diffusion process
and meteorological conditions variations for high-sulfur and low-sulfur coal. Constraints
were introduced into the model, including pollution concentration constraints at seven air
quality monitoring points within urban communities. The concentration constraint of PM2.5
was considered in [64], where the Gaussian plume model was employed to describe the
dispersion of air pollutants around the load center. The results showed that it can effectively
restrict the PM2.5 concentration at the load center compared to the seasonal management
system. Chu K et al. [46,47] proposed an urban power dispatch method considering air
quality constraints using the Gaussian plume model. The dynamic characteristics of pollu-
tant diffusion were emphasized in [46], incorporating pollution concentration constraints
into short-term economic dispatch plans and conducting simulation analysis in a power
system with three power plants and three environmental monitoring points.

As international society gradually emphasizes environmental protection and atmo-
spheric dispersion models such as CALPUFF [65] and CMAQ [66] become more mature,
related research has advanced further. Dawar V. et al. [67] utilized the CMAQ disper-
sion model to simulate the distribution of PM2.5 and ASO4 concentrations resulting from
unit-emitted SO2 after secondary chemical transformations. They employed partial least
squares techniques to sample the randomly generated outputs of the air quality model as
constraints in the optimal power flow problem, aiming to enhance air quality. The com-
mitment and dispatch model for power system units, taking into account air quality, was
established in [68]. It incorporated robust optimization to ensure the pollutant concentra-
tion constraints. In [69], a comprehensive discussion was conducted on the “environmental
coordinated dispatch” in the operation of power system dispatching, considering its mutual
impact and synergy with the environmental system. It thoroughly analyzed the connota-
tion and development of environmental coordinated dispatch, focusing on aspects such
as environmentally sensitive power sources, multidimensional pollutant emission char-
acteristics, and the impact patterns of pollutants on air quality. This discussion provided
valuable insights for power dispatch, considering coordinated control with environmental
meteorological conditions. The emission of various pollutants from coal-fired and gas-fired
generators with different emission control devices was discussed in [70]. It proposed an
environmental power generation dispatching model, taking into account the AQI and its
weather influence, and optimized the spatial distribution of power generation between
regions, balancing operational costs and the emissions of these pollutants. An approach to
determine maintenance schedules for generating units based on AQI ranking results was
presented in [71]. This method, involving the analysis of pollutant emissions and dispersion
from coal-fired power units, can regulate the annual distribution of AQI contribution values
from these units and alleviate air pollution levels during critical months. Li Z et al. [50]
proposed an atmospheric pollutant dispersion model that considered both the temporal and
spatial dimensions. In the temporal dimension, the model can coordinate multiple emission
sources in the presence of atmospheric condition variations. In the spatial dimension,



Energies 2024, 17, 1878 16 of 30

correlations between power plant siting, pollutant dispersion pathways, and the ABL were
taken into account. The proposed model positively improved air quality, especially under
adverse atmospheric conditions, where pollutant accumulation was significant and clean
energy output was restricted across two distinct atmospheric conditions. Dai H et al. [72]
proposed a high-dimensional multi-objective optimization dispatching strategy for power
systems that considered the STD of multiple pollutants. The strategy encompassed models
for the STD of pollutants, high-dimensional multi-objective optimization, multi-objective
decision-making methods, and flexible dispatching based on environmental characteristics.
By simultaneously reducing the generation cost, carbon emissions, and the impacts of
VOCs, SO2, and NO2 on air quality, a balance was achieved between the reduction in
generation cost and the impact on air quality. The multi-objective decision-making method
filtered compromise solutions, effectively balancing the trade-off between cost reduction
and environmental impact. Moreover, the flexible dispatching method allowed adjustments
based on spatial and temporal variations in environmental capacity, enabling economically
and environmentally friendly power dispatching.

In addition, some scholars have shifted the research focus to integrated energy systems,
and utilizing clean energy sources such as natural gas and wind power is an effective way
to reduce atmospheric pollution. The impacts of meteorological condition uncertainties
on emission constraints were considered in [73], where a two-stage stochastic dispatching
model was proposed. Wind power and energy storage can work together to help to reduce
costs and/or emissions. The introduction of energy storage can balance the uncertainty
of wind power, thus maintaining the balance of the grid’s power. Furthermore, it allowed
for charging during periods of low pollution and discharging during periods of high pol-
lution to meet emission restrictions during critical periods. In [74], an EED method was
established for power-to-gas integrated systems, incorporating various emission controls.
Traditional emission quantity control was applied to carbon emissions, while the STD was
proposed for atmospheric pollutant emissions, considering ground concentrations and spa-
tial environmental requirements. Two layers of convex dispersion optimization problems
were presented, confirming the superiority of spatiotemporal diffusion control in reducing
atmospheric pollutant concentrations. In [51], an EED strategy was proposed for coastal
regional electrical and gas interconnected systems, considering the STD of pollutants, as
well as power-to-gas integration. The study explored an atmospheric pollutant dispersion
model considering local sea–land circulation and the coal-fired internal boundary layer.
Addressing the increasing interdependence between power and natural gas systems, a new
multi-objective optimal power-to-natural gas flow model with STD control was introduced
in [75]. A convex-based generalized membership degree optimization method was em-
ployed to resolve target conflicts and non-convex gas transmission constraints, resulting in
a high-quality solution.

3.3.2. Research on the Indirect Impacts of Power System Operation on the
Atmospheric Environment

The operational mode of the power system has indirect impacts on the atmospheric
environment, primarily referring to the adverse effects on population health and ecosystems
within the atmospheric coverage zone. In the field of environmental engineering, research
on the detrimental effects of power system emissions on population health often focuses on
modeling the mapping relationship of “emission quantity-concentration distribution-health
impacts”. The impacts of particulate matter, SO2, and NOx on health from an individual
coal-fired power plant were estimated in [76]. In [77], the concept of intake fraction was
introduced to assess the influence of emission source locations on the exposure of the
population to fine particulate matter and sulfur dioxide. The CALPUFF atmospheric
dispersion model was utilized to simulate the concentration distribution of air pollutants
from 29 power plants in China. Based on a regression analysis considering regional climate,
deposition capability, and population distribution, the intake fractions of pollutants such
as inhalable PM and SO2 for populations within different distances from power plants
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were determined. In [65], the CALPUFF model and meteorological data were applied
to nine Illinois power plants to assess the impacts of primary and secondary particulate
matter on the Midwest power grid. The results indicated that a significant population being
influenced by long-distance transport and emissions from power plants across the United
States may have substantial implications for public health. The CMAQ-RSM model was
employed in [78] to simulate the distribution of PM2.5 concentration changes in various
US cities due to pollution source reduction. Subsequently, corresponding population
health costs were calculated. The relationship between PM2.5 concentration in the air and
population epidemiology was discussed in [79], revealing positive correlations with the
overall mortality rate, cardiovascular mortality rate, and lung cancer mortality rate based
on environmental PM2.5 concentration.

Currently, few power dispatch models take into account the adverse effects of coal-
fired unit emissions on population health. In [80], a simulation was conducted to monetize
damages associated with 407 coal-fired power plants in the United States. This consider-
ation of unit emissions enabled the identification of more efficient control strategies that
accounted for the variability in damage across facilities, ultimately contributing to the
design of optimal energy policy and the evaluation of competing fuels for electricity gen-
eration. Lei S et al. [81] calculated unit emissions’ population health costs by considering
population and AQI levels. They introduced penalty costs into the objective function of
the unit combination model and utilized robust optimization to adapt to the uncertainty
of wind power. Kerl P Y et al. [82] utilized the CMAQ-DDM dispersion model and health
functions to establish a response function for unit emissions and population health costs.
Taking into account the goal of power generation cost, the results indicated that the devel-
oped dispatch strategy could save 175.9 million US dollars in health costs for the state of
Georgia from 2004 to 2011. Ban M et al. [83] computed the population health impacts of unit
emissions, establishing a combination model incorporating wind power and energy storage
while considering differentiated population health effects. Additionally, they addressed the
optimal charging and discharging paths for electric vehicles, further enhancing the model’s
effectiveness [84].

In summary, through the study of atmospheric dispersion models, a more accurate
understanding of the spread patterns of pollutants in the air can be obtained, providing
real-time and precise environmental data for electric power dispatch decision-making. The
robustness of the air quality monitoring network allows for comprehensive monitoring of
air quality conditions in different regions, enabling the timely detection and addressing of
potential environmental issues. Consequently, advancements in atmospheric dispersion
models and air quality monitoring networks inject new vitality into the field of power
dispatch, laying a solid foundation for achieving a clean and sustainable power supply.
Simultaneously, an in-depth exploration of two types of research focusing on the direct and
indirect impacts of the power system’s operational mode on the atmospheric environment
allows for a more comprehensive understanding of the inter-relationship between the
power system and the environment. This, in turn, provides scientific support for the
intelligent and sustainable development of future power systems.

4. Solution Methods for the EED Models

Sections 2 and 3 introduce different models of EED. To significantly improve the perfor-
mances of these EED models and ensure that the power system operates both cleanly and
efficiently, various optimization strategies have been applied to solve the EED challenges
while complying with environmental and sustainable development standards. These strate-
gies fall into three categories: (i) conventional methods, (ii) non-conventional methods, and
(iii) hybrid methods.

4.1. Conventional Methods

Conventional mathematical programming methods for solving the EED models in-
clude Lagrangian relaxation [85], linear programming [86,87], dynamic programming [88],
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quadratic programming [89,90], λ-iteration [91], Newton–Raphson [92], the interior point
method [93], and weighted extremum-seeking [94]. Conventional methods have certain
advantages, such as their lack of problem-specific parameters [95], mathematically proven
optimality [21], and faster convergence for smaller system sizes [20]. However, these
methods also have corresponding drawbacks. For instance, the dynamic programming
method is prone to the curse of dimensionality, and linear programming may lose accu-
racy when solving nonlinear objective functions. Additionally, when using mathematical
programming methods, the impact of initial values on the solution is sensitive, making
algorithms susceptible to local optima. Moreover, these methods typically require the
differentiability of the objective function, and if the objective function is non-convex (due
to effects like valve-point loading in coal-fired power units or prohibited zones), it may
lead to unsolvability issues.

4.2. Non-Conventional Methods

In recent decades, numerous unconventional methods based on artificial intelligence
have been widely utilized to address the constraints associated with conventional methods
based on mathematical models when solving the EED problems. These unconventional
approaches, including the genetic algorithm (GA), the particle swarm optimization algo-
rithm (PSO), and other artificial intelligence algorithms, have fewer restrictions compared
to mathematical programming methods. This flexibility allows them to solve objective
functions characterized by nonlinearity and non-convexity effectively.

4.2.1. GA Method

GA is an optimization and search algorithm inspired by natural selection [96]. It is
used to find solutions to complex problems by mimicking the principles of genetics and
evolution. It has been applied by Koridak et al. [97] and employed to determine the fuel
cost and the function of emission gas in the electric power network, optimizing the fuel
cost of production and the quantities of emission gases in the environment at the same
time. Srinivas N et al. [98] proposed a method utilizing non-dominated sorting in genetic
algorithms to address multi-objective optimization problems. They applied this approach to
three dual-objective test problems. However, the non-dominated sorting genetic algorithm-
II for solving combined heat and power economic emission dispatch problem was proposed
in [99], providing a competitive performance in terms of solution quality. Abido M A [100]
introduced an approach based on the niched Pareto genetic algorithm (NPGA) to address
the multi-objective EED problem. A key benefit of this method is its lack of constraints on
the number of optimized objectives. In [101], a lambda-based hybrid genetic algorithm
was employed to solve the EED problem. The real-coded genetic algorithm was utilized
for global search, and Tabu Search conducted fine-tunings to guide the search toward the
optimal region and ensure local optimization.

4.2.2. PSO Method

PSO is a swarm intelligence algorithm inspired by collective behaviors observed in
organisms such as flocks of birds and schools of fish. It was initially proposed by James
Kennedy and Russell Eberhart in 1995 [102]. The fundamental idea of PSO is to search
for the optimal solution to a problem by simulating cooperation and information sharing
between individuals in a swarm. Ratniyomchai T et al. applied the PSO algorithm to a
dual-objective optimization problem involving the minimization of both fuel costs and
pollutant emissions [23]. They achieved a well-distributed Pareto frontier. Kheshti M
et al. [103] proposed double-weighted particle swarm optimization (DWPSO) to address
wind power penetration in non-convex combined emission economic dispatch and non-
convex multi-fuel selection economic dispatch problems. Zhang et al. utilized a bare-bones
multi-objective particle swarm optimization (BB-MOPSO) to address optimization prob-
lems in the EED problem. The algorithm, requiring no adjustment of control parameters
in the particle update strategy, incorporated a time-varying mutation operator to enhance
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search capabilities [104]. Hadji B et al. proposed a PSO algorithm based on time-varying
acceleration (PSO-TVAC), dynamically adjusting acceleration coefficients during the search
process to balance exploration and exploitation abilities, thereby improving the perfor-
mance of the standard PSO algorithm [105]. Rezaie H et al. proposed an advanced particle
swarm optimization (APSO) to solve the EED problem considering transmission losses,
valve-point loading effects, ramp rate limits, and prohibited operating zones [106]. Zuo
et al. introduced a new global particle swarm optimization (NGPSO) to address carbon
emission and cost optimization problems. This algorithm balanced the minimization of fuel
costs and emissions with the requirements of power balance and generation limits [107].

4.2.3. Other Artificial Intelligence Algorithm Methods

In [22], a differential evolution (DE) algorithm was developed to solve emission-
constrained economic power dispatch problems. Sharma R et al. [108] presented a multi-
objective differential evolution algorithm (MODE) to solve a nonlinear constrained multi-
objective problem with the competing and non-commensurable objectives of fuel cost
and emission. Yu X et al. [109] improved conventional DE by employing two mutation
strategies: DE/rand/1 and DE/current-to-rand/1. In [110], an enhanced multi-objective
differential evolution algorithm (EMODE) was proposed. This algorithm enhanced opti-
mization performance by incorporating the advantages of two selection strategies: feasible
solution and non-dominated sorting. It combined total constraint violation and penalty
functions to handle various constraints, providing better dynamic dispatching solutions
for power systems.

Almost simultaneously, Ramesh et al. [111] and Nikman T et al. [112] proposed the
bat algorithm (BA) for solving the EED problems. Nikman T et al. [112] employed a
metaheuristic BA to achieve the Pareto optimal solution set. This algorithm incorporated a
novel adaptive learning approach, enhancing the diversity of the population and refining
the convergence criteria.

In 2011, a multi-objective teaching–learning-based optimization algorithm (TLBO)
with non-domination based sorting was applied to solve the EED problem [113]. Niknam
T et al. [114] proposed the θ-teaching–learning-based optimization (θ-TLBO) algorithm
based on the TLBO algorithm. In this proposed method, the optimization process was
based on phase angles rather than the design variables themselves. This approach more
effectively considered the nonlinear characteristics of the problem and avoided falling into
local optima. It was compared with algorithms such as GA and PSO, demonstrating its
superior solving efficiency.

Other artificial intelligence algorithms such as the firefly algorithm (FFA) [115], simu-
lated annealing (SA) [116,117], the gravitational search algorithm (GSA) [118], grey wolf
optimization (GWO) [119,120], and artificial bee colony (ABC) [121,122] have also played
crucial roles in addressing the EED model. Table 6 presents a summary of non-conventional
methods related to the EED problems.

Each individual algorithm has its strengths and weaknesses. Combining different
algorithms can effectively enhance solution efficiency and accuracy, thus introducing
hybrid algorithms.

Table 6. Summary of non-conventional methods related to the EED problems.

Author/Year Methods Single-Objective or
Multi-Objective Optimization Objective(s)

Basu, M. (2005) [116] SA Multi-objective [Generation cost, Emission cost]

Koridak, L.A. et al. (2008) [97] GA Single-objective Generation cost, Emission cost

Ratniyomchai, T. et al. (2010) [23] PSO Multi-objective [Generation cost, Emission cost]

Abou El Ela, A. et al. (2010) [22] DE Single-objective Generation cost
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Table 6. Cont.

Author/Year Methods Single-Objective or
Multi-Objective Optimization Objective(s)

Krishnanand, K. et al. (2011) [113] TLBO Multi-objective [Generation cost, Emission cost]

Niknam, T. et al. (2012) [114] θ-TLBO Multi-objective [Generation cost, Emission cost]

Chandrasekaran, K. et al. (2012) [115] FFA Multi-objective [Generation cost, Emission cost,
The reliability of the system]

Güvenc, U. et al. (2012) [118] GSA Multi-objective [Generation cost, Emission cost]

Zhang, Y. et al. (2012) [104] BB-MOPSO Multi-objective [Generation cost, Emission cost]

Basu, M. (2013) [99] NSGA-II Multi-objective
[Combined heat and power

generation cost, Emission costs
for SO2 and NOx]

Niknam, T. et al. (2013) [112] BA Multi-objective [Generation cost, Emission cost]

Hadji, B. et al. (2015) [105] PSO-TVAC Multi-objective [Generation cost, Emission cost]

Chopra, N. et al. (2016) [119] GWO Multi-objective
[Combined heat and power

generation cost, Emission costs
for SO2, CO2, and NOx]

Zou, D. et al. (2017) [107] NGPSO Multi-objective [Generation cost, Emission cost]

Kheshti, M. et al. (2018) [103] DWPSO Single-objective [Generation cost, Emission cost]

Abdullah, M. et al. (2018) [121] ABC Multi-objective [Generation cost, Emission cost]

Bai, Y. et al. (2021) [110] EMODE Multi-objective [Generation cost, Emission cost]

4.3. Hybrid Methods

Hybrid methods combine two or more different types of algorithms or techniques.
With characteristics such as strong adaptability, handling diverse data, and improving
robustness, hybrid algorithms can effectively overcome the limitations of a single algorithm,
providing a more comprehensive solution for complex problems. In [123], a hybrid multi-
objective optimization algorithm based on PSO and DE was proposed. In this algorithm, a
particle swarm with a time-varying acceleration coefficient was designed to explore the en-
tire search space, and a local version of the particle swarm was introduced to exploit sparse
solutions in developing subspaces. In [124], a hybrid approach combining the bacterial
foraging (BF) algorithm with the Nelder–Mead (NM) algorithm (BF-NM algorithm) was
employed to solve the EED problem. The objective function of this problem simultaneously
considered generation, spinning reserve, and emission costs. Various constraints such as
frequency deviation, minimum frequency limit, ramp rate limit, transmission line losses,
maximum emission limits for specific power plants or the entire power system, prohibited
operating zones, and frequency constraints were also taken into account. Performance
comparison with other intelligent algorithms such as PSO, GA, DE, and BF algorithm re-
veals the superiority of this method for reducing the overall system cost. Jiang S et al. [125]
proposed a hybrid algorithm called the hybrid particle swarm optimization and grav-
itational search algorithm (HPSO-GSA), which incorporated features of both PSO and
GSA. The algorithm employed cooperative evolution techniques, synchronizing particle
positions with the particle swarm velocity and acceleration updates. When compared with
algorithms such as PSO, GSA, MODE, and NSGA-II, the proposed method demonstrated
its potential and effectiveness.

Recently, based on the rapid convergence of the DE algorithm and the particle diversity
of the GA crossover operator, Zhao et al. [126] proposed a differential evolution-crossover
quantum particle swarm optimization (DE-CQPSO) algorithm. To achieve better optimiza-
tion results, a parameter adaptive control method was employed to update the crossover
probability. A penalty factor was introduced to address multi-objective optimization prob-
lems. The results indicated that the evaluation metrics and convergence speed of the
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DE-CQPSO algorithm outperformed algorithms such as quantum particle swarm opti-
mization (QPSO) and NGPSO, whether in terms of single-objective fuel cost and emission
optimization or multi-objective optimization considering both objectives. In [127], a hybrid
optimization algorithm based on the weighted vertex optimizer and particle swarm opti-
mization (WVO-PSO) method was proposed for solving environment economic dispatch,
combined heat and power economic dispatch, and combined heat and power environment
economic dispatch problems. Ellahi M et al. [24] proposed a modified hybrid PSO algorithm
with a BA parameter inspiration acceleration coefficient (MHPSO-BAAC). The algorithm’s
performance was validated by solving the EEDs of all RES-based power systems under
three conditions: unconstrained, time-varying demand, and regional load-sharing dispatch.
Dashtdar M et al. [128] proposed a combination of the FFA and GA to solve the EED
problem among coal-fired power plants. This approach took into account nonlinear con-
straints such as the valve effect, generation-restricted zones, and generation variation rates.
Bhargava G and Yadav N K [129] utilized a hybrid algorithm combining the crow search
and differential evolution algorithms (CSA-DE) to balance emission and economic costs.
In [130], a multi-objective Multi-Verse Optimization Algorithm Based on Gridded Knee
Points and Plane Measurement (GKPPM-MVO) technique was proposed. This algorithm
demonstrates good adaptability and also provides a greater number of Pareto solutions.
Chandrashekhar M et al. [131] proposed the Honey Bee Simulated Annealing (HB-SA)
algorithm to concurrently address the load flow analysis and the economic and emission
dispatch problem while accommodating valve point loading effects. This approach pro-
vided a novel method for addressing the complex power flow issues inherent in the EED
problem, presenting a compelling strategy for resolving power system challenges. A short
summary of hybrid methods related to the EED problems is presented in Table 7.

Table 7. Summary of hybrid methods related to the EED problems.

Author/Year Methods Single-Objective or
Multi-Objective Optimization Objective(s)

Gong, D. et al. (2010) [123] MO-DE/PSO Multi-objective [Generation cost, Emission cost]

Hooshmand, R.-A. et al. (2012) [124] BF-NM Multi-objective
[Generation cost, Emission cost,
Power plant spinning reserve

cost]

Jiang, S. et al. (2014) [125] HPSO-GSA Multi-objective [Generation cost, Emission cost]

Zhao et al. (2020) [126] DE-CQPSO Multi-objective [Generation cost, Emission cost]

Dolatabadi, S. et al. (2020) [127] WVO-PSO Multi-objective [Generation cost, Emission cost]

Ellahi, M. et al. (2021) [24] MHPSO-
BAAC Multi-objective [Generation cost, Emission cost,

RES production cost]

Dashtdar, M. et al. (2022) [128] FFA-GA Multi-objective [Generation cost, Emission cost]

Bhargava, G. et al. (2022) [129] CSA-DE Multi-objective [Generation cost, Emission cost]

Xu, W. et al. (2023) [130] GKPPM-MVO Multi-objective [Generation cost, Emission cost]

Chandrashekhar, M. et al. (2024) [131] HB-SA Multi-objective [Generation cost, Emission cost]

5. Research on the Multi-Area EED Models

The EED models discussed above optimize the atmospheric environmental objectives
for a specific region. However, differences in the economy and environment across various
regions suggest that employing multi-area dispatch can lead to efficient power distribution,
reduce system operational costs, and alleviate the level of atmospheric pollution in high-
pollution areas [132,133]. Currently, research on optimization dispatch that considers
the environmental mutual benefits of multi-area power grids is relatively scarce and can
generally be classified into two categories: economic dispatch that minimizes pollutant
emissions within each region or across the entire grid and economic dispatch that takes
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into account the environmental factors of each region. In [134,135], a multi-area power grid
environmental economic dispatch model was established with the objective functions of
overall network economic efficiency and environmental friendliness. Jadoun V K et al. [136]
proposed an enhanced particle swarm optimization method to address the multi-area
environmental economic dispatch problem with reserve constraints. In [137], the objective
of the multi-area EED problem was to establish an optimal plan for the operation of coal-
fired power generation units in different regions of the power system and determine power
transfers between regions to minimize the overall system operating costs and emissions.
The multi-area EED problem was solved in two stages. In the first stage, the optimal
power of the generators was determined to minimize costs and emissions, considering unit
operation within a single region. In the second stage, starting from the results obtained
in the first stage, the transfer of power between regions was determined to ensure power
balance in each region of the analyzed system.

The aforementioned research provides an effective solution for controlling the total
pollution emissions in multi-area power grids. However, it lacks consideration of environ-
mental factors such as AQI indicators and population health impacts in densely populated
areas within each region. Following the principle of “regional optimization, inter-regional
coordination”, Guo D et al. [138,139] established a day-ahead power dispatching model for
regional power grids with environmental benefit optimization and a multi-area power grid
coordination model to enhance environmental mutual assistance benefits. Incentives for
green certificates during heavy pollution weather encouraged the substitution of clean elec-
tricity across regions. Simultaneously, by adjusting the interconnection line plans, surplus
atmospheric environmental capacity in one region’s power grid supports power supplied to
regions facing heavy pollution. The results indicated that the proposed strategies effectively
alleviated heavy pollution weather conditions in densely populated areas.

6. Discussion and Future Directions

The authors have conducted extensive searches and surveys on the issue of EED. The
retrieved content includes the EED model considering TAPC, where most of the literature
focuses on technological innovation through research on optimization algorithms. Another
part of the literature studies the EED model based on the optimization of the STD of air
pollutant emissions, primarily focusing on the establishment of gas diffusion models. This
paper organizes and summarizes these two parts of the literature, providing convenient
technical support for relevant researchers.

The EED model considering TAPC is suitable for establishing more general macro-level
generation planning for power systems. Similar models can also be applied to economic
dispatch models that control carbon emissions because controlling CO2 emissions from the
perspective of total emissions can effectively mitigate global warming. The EED model
based on the optimization of the STD of air pollutant emissions takes into full consideration
the influence of diurnal variations in the ABL, employing a more precise approach to
constrain the GPLC, thereby achieving sustainable development, both environmentally
and economically. Section 4 introduces three categories of methods for solving EED
problems. Although each method has its pros and cons, in recent years, researchers have
shown a growing interest in the development and use of hybrid methods to address EED
problems, aiming to harness the advantages of different methods and overcome their
respective shortcomings. After discussing EED models for specific areas, this paper further
expands and summarizes the current state of and methods for existing multi-area EED
model research, with the goal of making flexible power dispatch decisions based on the
atmospheric pollution tolerance conditions of different areas.

Despite this, the EED models discussed in this paper still have certain limitations.
When introducing models of the STD of atmospheric pollutants, they failed to fully consider
the influence of meteorological factors such as rainfall and air humidity, nor did they con-
sider the constraints of topographical conditions [50]. In practice, the STD of atmospheric
pollutants is a complex physical model influenced by various uncertainties, and traditional
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modeling approaches may not fully align with real-world situations. In recent years, the
rise of artificial intelligence has had significant implications for the fields of electricity and
the atmospheric environment. It can be utilized not only for optimization solutions but
also to guide the dispatching of power systems, enhancing the efficiency, reliability, and
stability of power systems [140–143]. In the atmospheric environment domain, artificial
intelligence algorithms can be employed for meteorological data analysis and climate
model development, providing a better understanding of climate change trends [144–146].
Consequently, applying artificial intelligence algorithms to the EED model is poised to
become a future trend. At the same time, with the large-scale integration of renewable
energy into the power grid, although environmental issues have seen improvements, the
inherent uncertainty of renewable energy sources has led to increased volatility in the
power system, making it difficult to achieve stable electricity supply [147]. This has added
to the complexity of power system dispatch, and it may be necessary to consider a variety
of reserve and flexibility resources to balance supply and demand, thereby improving the
reliability of the power system [148–150]. It is essential to consider that when factoring
in backup resources such as energy storage and flexibility resources like electric vehicles,
the environmental impact of battery aging must also be taken into account [151,152]. The
broader strategy for managing pollution within the power system requires careful planning
from a macroscopic viewpoint, a topic that extends beyond the scope of this discussion. In
conclusion, future EED models that integrate a variety of renewable energy sources along
with diverse backup and flexible resources hold the promise of unlocking the potential for
greener power dispatch. This approach has extensive application potential and could lead
to significant advancements in the field.

7. Conclusions

This paper aims to summarize and synthesize the existing EED models and their
solutions. Two types of single-area EED models with different control strategies, solution
methods, multi-area EED models, discussion, and future directions have been covered.

While there have been several articles summarizing the EED models, most of them
have only focused on summarizing and comparing the solution algorithms of the model, ne-
glecting the discussion on the distinction between total pollutant control and ground-level
pollutant concentration control. Furthermore, while summarizing the EED models, this
article identifies certain limitations: there is a lack of research on multi-area EED problems
that dispatch separately for densely populated and sparsely populated areas; existing
atmospheric pollutant dispersion models neglect natural conditions such as rainfall, hu-
midity, and terrain; and there is scarce consideration of the coordinated EED involving the
uncertainties of renewable energy sources and a variety of flexible resources. Conducting
further in-depth research on such models is of significant importance for the improvement
of public welfare and government management. Ultimately, it also provides a variety of
novel dispatch strategies for the actual power grid’s EED, carrying considerable theoretical
and practical value.
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Abbreviations

The following abbreviations are used in this manuscript:

EED Environmental/economic dispatch
TAPC Total air pollutant control
STD Spatial and temporal diffusion
ABL Atmospheric boundary layer
GLPC Ground-level pollutant concentration
ML Mixed layer
EL Entrainment layer
SBL Stable boundary layer
RL Residual layer
AQI Air quality index
GA Genetic algorithm
NPGA Niched Pareto genetic algorithm
PSO Particle swarm optimization
DWPSO Double-weighted particle swarm optimization
BB-MOPSO Barebones multi-objective particle swarm optimization
PSO-TVAC Particle swarm optimization algorithm based on time-varying acceleration
APSO Advanced particle swarm optimization
NGPSO New global particle swarm optimization
DE Differential evolution
MODE Multi-objective differential evolution
EMODE Enhanced multi-objective differential evolution
BA Bat algorithm
TLBO Teaching–learning-based optimization
θ-TLBO θ-teaching–learning-based optimization
FFA Firefly algorithm
SA Simulated annealing
GSA Gravitational search algorithm
GWO Grey wolf optimization
ABC Artificial bee colony
BF-NM Bacterial foraging algorithm with the Nelder–Mead algorithm
HPSO-GSA Hybrid particle swarm optimization and gravitational search algorithm
DE-CQPSO Differential evolution-crossover quantum particle swarm optimization
QPSO Quantum particle swarm optimization

MHPSO-BAAC
Modified hybrid PSO algorithm with a BA parameter inspiration
acceleration coefficient

CSA-DE Crow search and differential evolution algorithm
WVO-PSO Weighted vertex optimizer and particle swarm optimization

GKPPM-MVO
Multi-Verse Optimization Algorithm Based on Gridded Knee Points
and Plane Measurement

HB-SA Honey Bee Simulated Annealing
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5. Wolniak, R.; Skotnicka-Zasadzień, B. Development of Wind Energy in EU Countries as an Alternative Resource to Fossil Fuels in

the Years 2016–2022. Resources 2023, 12, 96. [CrossRef]

https://doi.org/10.1016/j.envint.2022.107556
https://doi.org/10.3390/batteries8110202
https://doi.org/10.1016/j.renene.2023.119797
https://doi.org/10.3390/resources12080096


Energies 2024, 17, 1878 25 of 30

6. Zhang, G.-X.; Yang, Y.; Su, B.; Nie, Y.; Duan, H.-B. Electricity production, power generation structure, and air pollution: A
monthly data analysis for 279 cities in China (2015–2019). Energy Econ. 2023, 120, 106597. [CrossRef]

7. Liu, Y.; Li, X.; Liu, Y. A Low-Carbon and Economic Dispatch Strategy for a Multi-Microgrid Based on a Meteorological
Classification to Handle the Uncertainty of Wind Power. Sensors 2023, 23, 5350. [CrossRef] [PubMed]

8. Luo, Q.; Garcia-Menendez, F.; Yang, H.; Deshmukh, R.; He, G.; Lin, J.; Johnson, J.X. The health and climate benefits of economic
dispatch in China’s power system. Environ. Sci. Technol. 2023, 57, 2898–2906. [CrossRef] [PubMed]

9. Cai, W.; Wang, C.; Wang, K.; Zhang, Y.; Chen, J. Scenario analysis on CO2 emissions reduction potential in China’s electricity
sector. Energy Policy 2007, 35, 6445–6456. [CrossRef]

10. Zhang, N.; Kang, C.; Kirschen, D.S.; Xia, Q.; Xi, W.; Huang, J.; Zhang, Q. Planning pumped storage capacity for wind power
integration. IEEE Trans. Sustain. Energy 2012, 4, 393–401. [CrossRef]

11. Mirzaesmaeeli, H.; Elkamel, A.; Douglas, P.L.; Croiset, E.; Gupta, M. A multi-period optimization model for energy planning
with CO2 emission consideration. J. Environ. Manag. 2010, 91, 1063–1070. [CrossRef] [PubMed]

12. Li, J.F.; Wang, X.; Zhang, Y.X.; Kou, Q. The economic impact of carbon pricing with regulated electricity prices in China—An
application of a computable general equilibrium approach. Energy Policy 2014, 75, 46–56. [CrossRef]

13. Hammoudeh, S.; Lahiani, A.; Nguyen, D.K.; Sousa, R.M. An empirical analysis of energy cost pass-through to CO2 emission
prices. Energy Econ. 2015, 49, 149–156. [CrossRef]

14. Bhanarkar, A.D.; Purohit, P.; Rafaj, P.; Amann, M.; Bertok, I.; Cofala, J.; Rao, P.S.; Vardhan, B.H.; Kiesewetter, G.; Sander, R.
Managing future air quality in megacities: Co-benefit assessment for Delhi. Atmos. Environ. 2018, 186, 158–177. [CrossRef]

15. Shi, Q.; Zheng, B.; Zheng, Y.; Tong, D.; Liu, Y.; Ma, H.; Hong, C.; Geng, G.; Guan, D.; He, K. Co-benefits of CO2 emission reduction
from China’s clean air actions between 2013–2020. Nat. Commun. 2022, 13, 5061. [CrossRef]

16. Lu, Z.; Huang, L.; Liu, J.; Zhou, Y.; Chen, M.; Hu, J. Carbon dioxide mitigation co-benefit analysis of energy-related measures in
the Air Pollution Prevention and Control Action Plan in the Jing-Jin-Ji region of China. Resour. Conserv. Recycl. X 2019, 1, 100006.
[CrossRef]

17. Pandit, N.; Tripathi, A.; Tapaswi, S.; Pandit, M. An improved bacterial foraging algorithm for combined static/dynamic
environmental economic dispatch. Appl. Soft Comput. 2012, 12, 3500–3513. [CrossRef]

18. Carrillo-Galvez, A.; Flores-Bazan, F.; Lopez, E. A duality theory approach to the environmental/economic dispatch problem.
Electr. Power Syst. Res. 2020, 184, 106285. [CrossRef]

19. Zhu, L.; Ren, H.; Habibi, M.; Mohammed, K.J.; Khadimallah, M.A. Predicting the environmental economic dispatch problem for
reducing waste nonrenewable materials via an innovative constraint multi-objective Chimp Optimization Algorithm. J. Clean.
Prod. 2022, 365, 132697. [CrossRef]

20. Pandian, S.M.V.; Thanushkodi, K.; Anjana, P.S.; Dilesh, D.; Kiruthika, B.; Ramprabhu, C.S.; Vibinth, A. An efficient particle swarm
optimization technique to solve combined economic emission dispatch problem. Eur. J. Sci. Res. 2011, 54, 187–192.

21. Bansal, R.C. Optimization methods for electric power systems: An overview. Int. J. Emerg. Electr. Power Syst. 2005, 2, 1021.
[CrossRef]

22. Abou El Ela, A.A.; Abido, M.A.; Spea, S.R. Differential evolution algorithm for emission constrained economic power dispatch
problem. Electr. Power Syst. Res. 2010, 80, 1286–1292. [CrossRef]

23. Ratniyomchai, T.; Oonsivilai, A.; Pao-La-Or, P.; Kulworawanichpong, T. Particle swarm optimization for solving combined
economic and emission dispatch problems. In Proceedings of the 5th IASME/WSEAS International Conference on Energy &
Environment, Stevens Point, WI, USA, 23–25 February 2010; pp. 211–216.

24. Ellahi, M.; Abbas, G.; Satrya, G.B.; Usman, M.R.; Gu, J. A modified hybrid particle swarm optimization with bat algorithm
parameter inspired acceleration coefficients for solving eco-friendly and economic dispatch problems. IEEE Access 2021, 9,
82169–82187. [CrossRef]

25. Talaq, J.; El-Hawary, F.; El-Hawary, M. A summary of environmental/economic dispatch algorithms. IEEE Trans. Power Syst.
1994, 9, 1508–1516. [CrossRef]

26. Qu, B.Y.; Zhu, Y.S.; Jiao, Y.C.; Wu, M.Y.; Suganthan, P.N.; Liang, J.J. A survey on multi-objective evolutionary algorithms for the
solution of the environmental/economic dispatch problems. Swarm Evol. Comput. 2018, 38, 1–11. [CrossRef]

27. Mahdi, F.P.; Vasant, P.; Kallimani, V.; Watada, J.; Fai, P.Y.S.; Abdullah-Al-Wadud, M. A holistic review on optimization strategies
for combined economic emission dispatch problem. Renew. Sustain. Energy Rev. 2018, 81, 3006–3020. [CrossRef]

28. Marouani, I.; Guesmi, T.; Hadj Abdallah, H.; Alshammari, B.M.; Alqunun, K.; Alshammari, A.S.; Rahmani, S. Combined Economic
Emission Dispatch with and without Consideration of PV and Wind Energy by Using Various Optimization Techniques: A
Review. Energies 2022, 15, 4472. [CrossRef]

29. Gent, M.; Lamont, J.W. Minimum-emission dispatch. IEEE Trans. Power Appar. Syst. 1971, PAS-90, 2650–2660. [CrossRef]
30. Lu, Y.; Zhou, J.; Qin, H.; Wang, Y.; Zhang, Y. A hybrid multi-objective cultural algorithm for short-term environmental/economic

hydrothermal scheduling. Energy Convers. Manag. 2011, 52, 2121–2134. [CrossRef]
31. Guo, C.; Bai, Y.; Zheng, X.; Zhan, J.; Wu, Q. Optimal generation dispatch with renewable energy embedded using multiple

objectives. Int. J. Electr. Power Energy Syst. 2012, 42, 440–447. [CrossRef]
32. Wang, A.C.; Pan, W.G.; Wang, W.H. A study of multi-objective load optimal dispatch in thermal power unit based on improved

particle swarm optimization algorithm. Adv. Mater. Res. 2014, 860, 1425–1430. [CrossRef]

https://doi.org/10.1016/j.eneco.2023.106597
https://doi.org/10.3390/s23115350
https://www.ncbi.nlm.nih.gov/pubmed/37300077
https://doi.org/10.1021/acs.est.2c05663
https://www.ncbi.nlm.nih.gov/pubmed/36758223
https://doi.org/10.1016/j.enpol.2007.08.026
https://doi.org/10.1109/TSTE.2012.2226067
https://doi.org/10.1016/j.jenvman.2009.11.009
https://www.ncbi.nlm.nih.gov/pubmed/20149519
https://doi.org/10.1016/j.enpol.2014.07.021
https://doi.org/10.1016/j.eneco.2015.02.013
https://doi.org/10.1016/j.atmosenv.2018.05.026
https://doi.org/10.1038/s41467-022-32656-8
https://doi.org/10.1016/j.rcrx.2019.100006
https://doi.org/10.1016/j.asoc.2012.06.011
https://doi.org/10.1016/j.epsr.2020.106285
https://doi.org/10.1016/j.jclepro.2022.132697
https://doi.org/10.2202/1553-779X.1021
https://doi.org/10.1016/j.epsr.2010.04.011
https://doi.org/10.1109/ACCESS.2021.3085819
https://doi.org/10.1109/59.336110
https://doi.org/10.1016/j.swevo.2017.06.002
https://doi.org/10.1016/j.rser.2017.06.111
https://doi.org/10.3390/en15124472
https://doi.org/10.1109/TPAS.1971.292918
https://doi.org/10.1016/j.enconman.2010.12.003
https://doi.org/10.1016/j.ijepes.2012.03.047
https://doi.org/10.4028/www.scientific.net/AMR.860-863.1425


Energies 2024, 17, 1878 26 of 30

33. Chandrasekaran, K.; Simon, S.P. Multi-objective unit commitment problem with reliability function using fuzzified binary real
coded artificial bee colony algorithm. IET Gener. Transm. Distrib. 2012, 6, 1060–1073. [CrossRef]

34. Subbaraj, P.; Rengaraj, R.; Salivahanan, S. Enhancement of self-adaptive real-coded genetic algorithm using Taguchi method for
economic dispatch problem. Appl. Soft Comput. 2011, 11, 83–92. [CrossRef]

35. Park, J.-B.; Jeong, Y.-W.; Shin, J.-R.; Lee, K.Y. An improved particle swarm optimization for nonconvex economic dispatch
problems. IEEE Trans. Power Syst. 2009, 25, 156–166. [CrossRef]

36. Cai, J.; Li, Q.; Li, L.; Peng, H.; Yang, Y. A hybrid FCASO-SQP method for solving the economic dispatch problems with valve-point
effects. Energy 2012, 38, 346–353. [CrossRef]

37. Fraga, E.S.; Yang, L.; Papageorgiou, L.G. On the modelling of valve point loadings for power electricity dispatch. Appl. Energy
2012, 91, 301–303. [CrossRef]

38. Hannun, R.M.; Razzaq, A.H.A. Air Pollution Resulted from Coal, Oil and Gas Firing in Thermal Power Plants and Treatment: A
Review. In IOP Conference Series: Earth and Environmental Science, Proceedings of the First International Scientific Conference on the
Environment of Marshes and Water Surfaces (ISCEMWS-2021), Nasiriyah, Iraq, 17–18 November 2021; IOP Publishing: Bristol, UK,
2022; Volume 1002, p. 012008.

39. Wang, G.; Deng, J.; Zhang, Y.; Zhang, Q.; Duan, L.; Hao, J.; Jiang, J. Air pollutant emissions from coal-fired power plants in China
over the past two decades. Sci. Total Environ. 2020, 741, 140326. [CrossRef]

40. Zhao, B.; Guo, C.; Cao, Y. Dynamic economic dispatch in electricity market using particle swarm optimization algorithm. In
Proceedings of the Fifth World Congress on Intelligent Control and Automation (IEEE Cat. No.04EX788), Hangzhou, China,
15–19 June 2004; Volume 6, pp. 5050–5054.

41. Bouktir, T.; Labdani, R.; Slimani, L. Economic power dispatch of power system with pollution control using multiobjective particle
swarm optimization. J. Pure Appl. Sci. 2007, 4, 57–77.

42. Lu, S.; Makarov, Y.V.; Zhu, Y.; Lu, N.; Kumar, N.P.; Chakrabarti, B.B. Unit commitment considering generation flexibility and
environmental constraints. In Proceedings of the IEEE PES General Meeting, Minneapolis, MN, USA, 25–29 July 2010; pp. 1–11.

43. Wu, L.; Shahidehpour, M.; Li, T. Stochastic security-constrained unit commitment. IEEE Trans. Power Syst. 2007, 22, 800–811.
[CrossRef]

44. Sullivan, R.L.; Hackett, D.F. Air quality control using a minimum pollution-dispatching algorithm. Environ. Sci. Technol. 1973, 7,
1019–1022. [CrossRef]

45. Chen, Y. Optimal Environmental Economic Power Dispatch Considering Carbon Footprint and Meteorological Diffusion of Air Pollutants;
South China University of Technology: Guangzhou, China, 2019.

46. Chu, K.-C.; Jamshidi, M.; Levitan, R. An approach to on-line power dispatch with ambient air pollution constraints. IEEE Trans.
Autom. Control 1977, 22, 385–396.

47. Chu, K.-C.; Jamshidi, M.; Levitan, R.E. Real-time urban power dispatch with ambient air quality constraints. Automatica 1978, 14,
19–30. [CrossRef]

48. Ludwig, F.; Gasiorek, L.; Ruff, R. Simplification of a Gaussian puff model for real-time minicomputer use. Atmos. Environ. 1977,
11, 431–436. [CrossRef]

49. Cao, X.; Roy, G.; Hurley, W.J.; Andrews, W.S. Dispersion coefficients for Gaussian puff models. Bound.-Layer Meteorol. 2011, 139,
487–500. [CrossRef]

50. Li, Z.; Yu, T.; Chen, Y.; Zhu, H.; Wu, W. Multi-Objective Optimization Dispatching Strategy for Wind-Thermal-Storage Generation
System Incorporating Temporal and Spatial Distribution Control of Air Pollutant Dispersion. IEEE Access 2020, 8, 44263–44275.
[CrossRef]

51. Li, Z.; Yu, Z.; Lin, D.; Wu, W.; Zhu, H.; Yu, T.; Li, H. Environmental Economic Dispatch Strategy for Power-Gas Interconnection
System Considering Spatiotemporal Diffusion of Air Pollutant and P2G in Coastal Areas. IEEE Access 2020, 8, 123662–123672.
[CrossRef]

52. GB/T 3840-91; Technical Methods for Making Local Emission Standards of Air Pollutants. Ministry of Ecology and Environment
of People’s Republic of China: Beijing, China, 1991.

53. Zoras, S.; Triantafyllou, A.; Deligiorgi, D. Atmospheric stability and PM10 concentrations at far distance from elevated point
sources in complex terrain: Worst-case episode study. J. Environ. Manag. 2006, 80, 295–302. [CrossRef] [PubMed]

54. Wei, S.; Geng, F. Deepwater gas concentration feature extraction based on fluid mechanics. Arab. J. Geosci. 2021, 14, 597. [CrossRef]
55. Xu, Q.; Fan, Y.; Jing, Y.; Du, K.; Zhang, J.; Liu, J. Climate Change Characteristics of Atmospheric Environmental Capacity in Hebei

Province during 1972-2013. Plateau Meteorol. 2017, 36, 1682–1692.
56. Guo, D.; Yu, J.; Ban, M. Security-Constrained Unit Commitment Considering Differentiated Regional Air Pollutant Intensity.

Sustainability 2018, 10, 1433. [CrossRef]
57. Hunt, J. Diffusion in the stable boundary layer. In Atmospheric Turbulence and Air Pollution Modelling: A Course held in The Hague,

21–25 September, 1981; Springer: Berlin/Heidelberg, Germany, 1984; pp. 231–274.
58. Stull, R.B. An Introduction to Boundary Layer Meteorology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012;

Volume 13, ISBN 94-009-3027-5.
59. Chen, Y.; Qu, K.; Yu, T.; Yang, B.; Zhang, X.; Lan, C. Multi-timescale and multi-objective power dispatch strategy incorporating air

pollutant temporal and spatial distribution control. J. Clean. Prod. 2020, 253, 119453. [CrossRef]
60. Scorer, R. Air Pollution Meteorology; Woodhead Publishing: Sawston, UK, 2014; ISBN 1-78242-436-9.

https://doi.org/10.1049/iet-gtd.2012.0193
https://doi.org/10.1016/j.asoc.2009.10.019
https://doi.org/10.1109/TPWRS.2009.2030293
https://doi.org/10.1016/j.energy.2011.11.052
https://doi.org/10.1016/j.apenergy.2011.10.001
https://doi.org/10.1016/j.scitotenv.2020.140326
https://doi.org/10.1109/TPWRS.2007.894843
https://doi.org/10.1021/es60083a008
https://doi.org/10.1016/0005-1098(78)90073-0
https://doi.org/10.1016/0004-6981(77)90005-1
https://doi.org/10.1007/s10546-011-9595-3
https://doi.org/10.1109/ACCESS.2020.2978092
https://doi.org/10.1109/ACCESS.2020.3006025
https://doi.org/10.1016/j.jenvman.2005.09.010
https://www.ncbi.nlm.nih.gov/pubmed/16678964
https://doi.org/10.1007/s12517-021-06868-z
https://doi.org/10.3390/su10051433
https://doi.org/10.1016/j.jclepro.2019.119453


Energies 2024, 17, 1878 27 of 30

61. Turner, D.B. Workbook of Atmospheric Dispersion Estimates: An Introduction to Dispersion Modeling; CRC press: Boca Raton, FL, USA,
2020; ISBN 0-429-60722-9.

62. Daly, A.; Zannetti, P. Air pollution modeling—An overview. In Ambient Air Pollution; The Arab School for Science and Technology
(ASST): Damascus, Syria, 2007; pp. 15–28.

63. Liu, Y.; Lu, W.; Wang, H.; Huang, Q.; Gao, X. Odor impact assessment of trace sulfur compounds from working faces of landfills
in Beijing, China. J. Environ. Manag. 2018, 220, 136–141. [CrossRef] [PubMed]

64. Lee, H.P.; Lei, S.; Mathieu, J.L. Generation Scheduling to Limit PM 2.5 Emissions and Dispersion: A Study on the Seasonal
Management System of South Korea. In Proceedings of the 2020 International Conference on Smart Grids and Energy Systems
(SGES), Perth, Australia, 23–26 November 2020; pp. 538–543.

65. Levy, J.I.; Spengler, J.D.; Hlinka, D.; Sullivan, D.; Moon, D. Using CALPUFF to evaluate the impacts of power plant emissions in
Illinois: Model sensitivity and implications. Atmos. Environ. 2002, 36, 1063–1075. [CrossRef]

66. Napelenok, S.L.; Cohan, D.S.; Hu, Y.; Russell, A.G. Decoupled direct 3D sensitivity analysis for particulate matter (DDM-3D/PM).
Atmos. Environ. 2006, 40, 6112–6121. [CrossRef]

67. Dawar, V.; Lesieutre, B.; Holloway, T. An optimal power flow with a quadratic environmental constraint using partial least squares
technique. In Proceedings of the 2013 North American Power Symposium (NAPS), Manhattan, KS, USA, 22–24 September 2013;
pp. 1–6.

68. Wang, Y.; Lou, S.; Wu, Y.; Lv, M. Robust unit commitment and dispatch considering with atmospheric pollutant concentration
constraints. In Proceedings of the 2018 IEEE Power & Energy Society General Meeting (PESGM), Portland, OR, USA, 5–10 August
2018; pp. 1–5.

69. Zhaowei, G.; Qixin, C.; Qing, X. Dispatching and operation of power system towards environmental synergy: Connotations and
prospects. Autom. Electr. Power Syst. 2017, 41, 1–9.

70. Xu, Z.; Zhu, Q. Environment-aware power generation scheduling in smart grids. In Proceedings of the 2015 IEEE International
Conference on Smart Grid Communications (SmartGridComm), Miami, FL, USA, 2–5 November 2015; pp. 253–258.

71. Yin, N.; Yu, J. Generator maintenance scheduling and electric energy decomposition method considering influence of thermal
power on air quality. Autom. Electr. Power Syst. 2017, 41, 72–79.

72. Dai, H.; Huang, G.; Zeng, H. Multi-objective optimal dispatch strategy for power systems with Spatio-temporal distribution of air
pollutants. Sustain. Cities Soc. 2023, 98, 104801. [CrossRef]

73. Geng, Z.; Conejo, A.J.; Kang, C.; Chen, Q. Stochastic scheduling ensuring air quality through wind power and storage coordination.
IET Gener. Transm. Distrib. 2017, 11, 2031–2040. [CrossRef]

74. Qu, K.; Shi, S.; Yu, T.; Wang, W. A convex decentralized optimization for environmental-economic power and gas system
considering diversified emission control. Appl. Energy 2019, 240, 630–645. [CrossRef]

75. Qu, K.; Yu, T.; Shi, S.; Chen, Y. Synergetic Power-Gas Flow with Space-Time Diffusion Control of Air Pollutants Using a Convex
Multi-Objective Optimization. IEEE Trans. Sustain. Energy 2020, 11, 726–735. [CrossRef]

76. Cropper, M.; Gamkhar, S.; Malik, K.; Limonov, A.; Partridge, I. The health effects of coal electricity generation in India. In
Resources for the Future Discussion Paper No. 12-25; SSRN: Amsterdam, The Netherlands, 2012.

77. Zhou, Y.; Levy, J.I.; Evans, J.S.; Hammitt, J.K. The influence of geographic location on population exposure to emissions from
power plants throughout China. Environ. Int. 2006, 32, 365–373. [CrossRef]

78. Fann, N.; Fulcher, C.M.; Hubbell, B.J. The influence of location, source, and emission type in estimates of the human health
benefits of reducing a ton of air pollution. Air Quality, Atmos. Health 2009, 2, 169–176. [CrossRef] [PubMed]

79. Laden, F.; Schwartz, J.; Speizer, F.E.; Dockery, D.W. Reduction in fine particulate air pollution and mortality: Extended follow-up
of the Harvard Six Cities study. Am. J. Respir. Crit. Care Med. 2006, 173, 667–672. [CrossRef] [PubMed]

80. Levy, J.I.; Baxter, L.K.; Schwartz, J. Uncertainty and variability in health-related damages from coal-fired power plants in the
United States. Risk Anal.: Int. J. 2009, 29, 1000–1014. [CrossRef] [PubMed]

81. Lei, S.; Hou, Y.; Wang, X.; Liu, K. Unit commitment incorporating spatial distribution control of air pollutant dispersion. IEEE
Trans. Ind. Inform. 2016, 13, 995–1005. [CrossRef]

82. Kerl, P.Y.; Zhang, W.; Moreno-Cruz, J.B.; Nenes, A.; Realff, M.J.; Russell, A.G.; Sokol, J.; Thomas, V.M. New approach for optimal
electricity planning and dispatching with hourly time-scale air quality and health considerations. Proc. Natl. Acad. Sci. USA 2015,
112, 10884–10889. [CrossRef] [PubMed]

83. Ban, M.; Yu, J.; Shahidehpour, M.; Guo, D.; Yao, Y. Considering the differentiating health impacts of fuel emissions in optimal
generation scheduling. IEEE Trans. Sustain. Energy 2018, 11, 15–26. [CrossRef]

84. Ban, M.; Yu, J.; Shahidehpour, M.; Guo, D.; Yao, Y. Electric vehicle battery swapping-charging system in power generation
scheduling for managing ambient air quality and human health conditions. IEEE Trans. Smart Grid 2019, 10, 6812–6825. [CrossRef]

85. Hindi, K.; Ab Ghani, M. Dynamic economic dispatch for large scale power systems: A Lagrangian relaxation approach. Int. J.
Electr. Power Energy Syst. 1991, 13, 51–56. [CrossRef]

86. Wu, Z.; Ding, J.; Wu, Q.; Jing, Z.; Zheng, J. Reserve constrained dynamic economic dispatch with valve-point effect: A two-stage
mixed integer linear programming approach. CSEE J. Power Energy Syst. 2017, 3, 203–211. [CrossRef]

87. Somuah, C.; Khunaizi, N. Application of linear programming redispatch technique to dynamic generation allocation. IEEE Trans.
Power Syst. 1990, 5, 20–26. [CrossRef]

https://doi.org/10.1016/j.jenvman.2018.04.122
https://www.ncbi.nlm.nih.gov/pubmed/29777996
https://doi.org/10.1016/S1352-2310(01)00493-9
https://doi.org/10.1016/j.atmosenv.2006.05.039
https://doi.org/10.1016/j.scs.2023.104801
https://doi.org/10.1049/iet-gtd.2016.1619
https://doi.org/10.1016/j.apenergy.2019.02.038
https://doi.org/10.1109/TSTE.2019.2904404
https://doi.org/10.1016/j.envint.2005.08.028
https://doi.org/10.1007/s11869-009-0044-0
https://www.ncbi.nlm.nih.gov/pubmed/19890404
https://doi.org/10.1164/rccm.200503-443OC
https://www.ncbi.nlm.nih.gov/pubmed/16424447
https://doi.org/10.1111/j.1539-6924.2009.01227.x
https://www.ncbi.nlm.nih.gov/pubmed/19392676
https://doi.org/10.1109/TII.2016.2631572
https://doi.org/10.1073/pnas.1413143112
https://www.ncbi.nlm.nih.gov/pubmed/26283358
https://doi.org/10.1109/TSTE.2018.2879566
https://doi.org/10.1109/TSG.2019.2911868
https://doi.org/10.1016/0142-0615(91)90018-Q
https://doi.org/10.17775/CSEEJPES.2017.0025
https://doi.org/10.1109/59.49081


Energies 2024, 17, 1878 28 of 30

88. Travers, D.L.; Kaye, R.J. Dynamic dispatch by constructive dynamic programming. IEEE Trans. Power Syst. 1998, 13, 72–78.
[CrossRef]

89. Wang, M.; Gooi, H.B.; Chen, S.; Lu, S. A mixed integer quadratic programming for dynamic economic dispatch with valve point
effect. IEEE Trans. Power Syst. 2014, 29, 2097–2106. [CrossRef]

90. Carrillo-Galvez, A.; Flores-Bazán, F.; Parra, E.L. On the solution of the Environmental/Economic Dispatch problem using
Lagrangian duality. In Proceedings of the 2020 IEEE International Conference on Industrial Technology (ICIT), Buenos Aires,
Argentina, 26–28 February 2020; pp. 619–623.

91. Zhan, J.; Wu, Q.; Guo, C.; Zhou, X. Fast lambda-iteration method for economic dispatch with prohibited operating zones. IEEE
Trans. Power Syst. 2013, 29, 990–991. [CrossRef]

92. Chen, S.-D.; Chen, J.-F. A direct Newton–Raphson economic emission dispatch. Int. J. Electr. Power Energy Syst. 2003, 25, 411–417.
[CrossRef]

93. Pan, S.; Jian, J.; Yang, L. A hybrid MILP and IPM approach for dynamic economic dispatch with valve-point effects. Int. J. Electr.
Power Energy Syst. 2018, 97, 290–298. [CrossRef]

94. Dhillon, J.; Parti, S.; Kothari, D. Stochastic economic emission load dispatch. Electr. Power Syst. Res. 1993, 26, 179–186. [CrossRef]
95. Papageorgiou, L.G.; Fraga, E.S. A mixed integer quadratic programming formulation for the economic dispatch of generators

with prohibited operating zones. Electr. Power Syst. Res. 2007, 77, 1292–1296. [CrossRef]
96. Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial

Intelligence; MIT press: Cambridge, MA, USA, 1992; ISBN 0-262-58111-6.
97. Koridak, L.A.; Rahli, M.; Younes, M. Hybrid optimization of the emission and economic dispatch by the genetic algorithm.

Leonardo J. Sci. 2008, 14, 193–203.
98. Srinivas, N.; Deb, K. Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 1994, 2, 221–248.

[CrossRef]
99. Basu, M. Combined heat and power economic emission dispatch using nondominated sorting genetic algorithm-II. Int. J. Electr.

Power Energy Syst. 2013, 53, 135–141. [CrossRef]
100. Abido, M. A niched Pareto genetic algorithm for multiobjective environmental/economic dispatch. Int. J. Electr. Power Energy

Syst. 2003, 25, 97–105. [CrossRef]
101. Kumarappan, N.; Mohan, M. Comparison of classical methods and lambda based economic and emission dispatch using a hybrid

genetic algorithm. Eng. Intell. Syst. Electr. Eng. Commun. 2006, 14, 71–77.
102. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural

Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.
103. Kheshti, M.; Ding, L.; Ma, S.; Zhao, B. Double weighted particle swarm optimization to non-convex wind penetrated emis-

sion/economic dispatch and multiple fuel option systems. Renew. Energy 2018, 125, 1021–1037. [CrossRef]
104. Zhang, Y.; Gong, D.-W.; Ding, Z. A bare-bones multi-objective particle swarm optimization algorithm for environmental/economic

dispatch. Inf. Sci. 2012, 192, 213–227. [CrossRef]
105. Hadji, B.; Mahdad, B.; Srairi, K.; Mancer, N. Multi-objective PSO-TVAC for environmental/economic dispatch problem. Energy

Procedia 2015, 74, 102–111. [CrossRef]
106. Rezaie, H.; Abedi, M.; Rastegar, S.; Rastegar, H. Economic emission dispatch using an advanced particle swarm optimization

technique. World J. Eng. 2019, 16, 23–32. [CrossRef]
107. Zou, D.; Li, S.; Li, Z.; Kong, X. A new global particle swarm optimization for the economic emission dispatch with or without

transmission losses. Energy Convers. Manag. 2017, 139, 45–70. [CrossRef]
108. Sharma, R.; Samantaray, P.; Mohanty, D.; Rout, P. Environmental economic load dispatch using multi-objective differential

evolution algorithm. In Proceedings of the 2011 International Conference on Energy, Automation and Signal, Bhubaneswar, India,
28–30 December 2011; pp. 1–7.

109. Yu, X.; Yu, X.; Lu, Y.; Sheng, J. Economic and emission dispatch using ensemble multi-objective differential evolution algorithm.
Sustainability 2018, 10, 418. [CrossRef]

110. Bai, Y.; Wu, X.; Xia, A. An enhanced multi-objective differential evolution algorithm for dynamic environmental economic
dispatch of power system with wind power. Energy Sci. Eng. 2021, 9, 316–329. [CrossRef]

111. Ramesh, B.; Mohan, V.C.J.; Reddy, V.V. Application of BAT algorithm for combimned economic load and emission dispatch.
J. Electr. Eng. 2013, 13, 6.

112. Niknam, T.; Azizipanah-Abarghooee, R.; Zare, M.; Bahmani-Firouzi, B. Reserve constrained dynamic environmental/economic
dispatch: A new multiobjective self-adaptive learning bat algorithm. IEEE Syst. J. 2013, 7, 763–776. [CrossRef]

113. Krishnanand, K.; Panigrahi, B.K.; Rout, P.K.; Mohapatra, A. Application of multi-objective teaching-learning-based algorithm to
an economic load dispatch problem with incommensurable objectives. In Proceedings of the Swarm, Evolutionary, and Memetic
Computing, Visakhapatnam, India, 19–21 December 2011; pp. 697–705.

114. Niknam, T.; Golestaneh, F.; Sadeghi, M.S. θ-multiobjective teaching–learning-based optimization for dynamic economic emission
dispatch. IEEE Syst. J. 2012, 6, 341–352. [CrossRef]

115. Chandrasekaran, K.; Simon, S.P. Firefly algorithm for reliable/emission/economic dispatch multi objective problem. Int. Rev.
Electr. Eng. 2012, 7, 3414–3425.

https://doi.org/10.1109/59.651616
https://doi.org/10.1109/TPWRS.2014.2306933
https://doi.org/10.1109/TPWRS.2013.2287995
https://doi.org/10.1016/S0142-0615(02)00075-3
https://doi.org/10.1016/j.ijepes.2017.11.004
https://doi.org/10.1016/0378-7796(93)90011-3
https://doi.org/10.1016/j.epsr.2006.09.020
https://doi.org/10.1162/evco.1994.2.3.221
https://doi.org/10.1016/j.ijepes.2013.04.014
https://doi.org/10.1016/S0142-0615(02)00027-3
https://doi.org/10.1016/j.renene.2018.03.024
https://doi.org/10.1016/j.ins.2011.06.004
https://doi.org/10.1016/j.egypro.2015.07.529
https://doi.org/10.1108/WJE-04-2018-0126
https://doi.org/10.1016/j.enconman.2017.02.035
https://doi.org/10.3390/su10020418
https://doi.org/10.1002/ese3.827
https://doi.org/10.1109/JSYST.2012.2225732
https://doi.org/10.1109/JSYST.2012.2183276


Energies 2024, 17, 1878 29 of 30

116. Basu, M. A simulated annealing-based goal-attainment method for economic emission load dispatch of fixed head hydrothermal
power systems. Int. J. Electr. Power Energy Syst. 2005, 27, 147–153. [CrossRef]

117. Ziane, I.; Benhamida, F.; Graa, A.; Salhi, Y. Wind power impact in the environmental/economic dispatch. In Proceedings of the
2015 4th International Conference on Electrical Engineering (ICEE), Boumerdes, Algeria, 13–15 December 2015; pp. 1–4.

118. Güvenc, U.; Sönmez, Y.; Duman, S.; Yörükeren, N. Combined economic and emission dispatch solution using gravitational search
algorithm. Sci. Iran. 2012, 19, 1754–1762. [CrossRef]

119. Chopra, N.; Kumar, G.; Mehta, S. Multi-objective Economic Emission Load Dispatch using Grey Wolf Optimization. Int. J. Adv.
Eng. Res. Sci. 2016, 3, 236901. [CrossRef] [PubMed]

120. Jayakumar, N.; Subramanian, S.; Ganesan, S.; Elanchezhian, E.B. Grey wolf optimization for combined heat and power dispatch
with cogeneration systems. Int. J. Electr. Power Energy Syst. 2016, 74, 252–264. [CrossRef]

121. Abdullah, M.; Sim, G.; Azmi, A.; Shamsudin, S. Combined economic and emission dispatch solution using artificial bee colony
algorithm with fuzzy approach. Int. J. Eng. Technol 2018, 7, 46–51. [CrossRef]

122. Ma, S.; Wang, Y.; Lv, Y. Multiobjective Environment/Economic Power Dispatch Using Evolutionary Multiobjective Optimization.
IEEE Access 2018, 6, 13066–13074. [CrossRef]

123. Gong, D.; Zhang, Y.; Qi, C. Environmental/economic power dispatch using a hybrid multi-objective optimization algorithm. Int.
J. Electr. Power Energy Syst. 2010, 32, 607–614. [CrossRef]

124. Hooshmand, R.-A.; Parastegari, M.; Morshed, M.J. Emission, reserve and economic load dispatch problem with non-smooth and
non-convex cost functions using the hybrid bacterial foraging-Nelder–Mead algorithm. Appl. Energy 2012, 89, 443–453. [CrossRef]

125. Jiang, S.; Ji, Z.; Shen, Y. A novel hybrid particle swarm optimization and gravitational search algorithm for solving economic
emission load dispatch problems with various practical constraints. Int. J. Electr. Power Energy Syst. 2014, 55, 628–644. [CrossRef]

126. Xin-gang, Z.; Ji, L.; Jin, M.; Ying, Z. An improved quantum particle swarm optimization algorithm for environmental economic
dispatch. Expert Syst. Appl. 2020, 152, 113370. [CrossRef]

127. Dolatabadi, S.; El-Sehiemy, R.A.; GhassemZadeh, S. Scheduling of combined heat and generation outputs in power systems using
a new hybrid multi-objective optimization algorithm. Neural Comput. Appl. 2020, 32, 10741–10757. [CrossRef]

128. Dashtdar, M.; Flah, A.; Hosseinimoghadam, S.M.S.; Reddy, C.R.; Kotb, H.; AboRas, K.M.; Jasińska, E.; Jasiński, M. Solving the
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