
Citation: Hu, S.; Liang, Y.; Ding, R.;

Xing, L.; Su, W.; Lin, X.; Zhou, N.

Research on Off-Design

Characteristics and Control of an

Innovative S-CO2 Power Cycle Driven

by the Flue Gas Waste Heat. Energies

2024, 17, 1871. https://doi.org/

10.3390/en17081871

Received: 29 February 2024

Revised: 2 April 2024

Accepted: 9 April 2024

Published: 14 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Research on Off-Design Characteristics and Control of an
Innovative S-CO2 Power Cycle Driven by the Flue Gas
Waste Heat
Shaohua Hu 1, Yaran Liang 1, Ruochen Ding 2, Lingli Xing 3, Wen Su 1,* , Xinxing Lin 2 and Naijun Zhou 1

1 School of Energy Science and Engineering, Central South University, Changsha 410083, China;
223911012@csu.edu.cn (S.H.); 213911016@csu.edu.cn (Y.L.); njzhou@csu.edu.cn (N.Z.)

2 China Three Gorges Corporation Science and Technology Research Institute, Beijing 100038, China;
ding_ruochen@ctg.com.cn (R.D.); lin_xinxing@ctg.com.cn (X.L.)

3 Hunan Province College Key Laboratory of Molecular Design and Green Chemistry, Hunan University of
Science and Technology, Xiangtan 411201, China; xinglingli@hnust.edu.cn

* Correspondence: suwenzn@csu.edu.cn

Abstract: Recently, supercritical CO2 (S-CO2) has been extensively applied for the recovery of waste
heat from flue gas. Although various cycle configurations have been proposed, existing studies
predominantly focus on the steady analysis and optimization of different S-CO2 structures under
design conditions, and there is a noticeable deficiency in off-design research, especially for the
innovative S-CO2 cycles. Thus, in this work aimed at the proposed novel S-CO2 power cycle,
off-design characteristics and corresponding control strategies are investigated for the waste heat
recovery. Based on the design parameters of the S-CO2 cycle, structural dimensions of printed circuit
heat exchangers (PCHEs) and shell-and-tube heat exchangers are determined, and design values of
turbines and compressors are specified. On this basis, off-design models for these key components are
formulated. By manipulating variables such as cooling water inlet temperature, cooling water mass
flow rate, flue gas inlet temperature and flue gas mass flow rate, cycle performances of the system are
analyzed under off-design conditions. The simulation results show that when the inlet temperature
and the mass flow rate of cooling water vary separately, the thermal efficiency both can reach
the maximum value of 28.43% at the design point. For the changes in heat source parameters, the
optimum point is slightly deviated from the design condition. Amidst the fluctuations in flue gas inlet
temperature, the thermal efficiency optimizes to a peak of 28.56% at 530 ◦C. In the case of variation
in the flue gas mass flow rate, the highest thermal efficiency 28.75% can be obtained. Furthermore,
to maintain the efficient and stable operation of the S-CO2 power cycle, the corresponding control
strategy of the cooling water mass flow rate is proposed for the cooling water inlet temperature
variation. Generally, when the inlet temperature of cooling water increases from 23 ◦C to 27 ◦C, the
cooling water mass flow should increase from 82.3% to 132.7% of the design value to keep the system
running as much as possible at design conditions.

Keywords: off-design condition; flue gas waste heat; S-CO2 power cycle; control strategy

1. Introduction
1.1. Background

Currently, fossil fuel energy is still the main source of energy with the increase in
primary energy consumption. However, the burning of coal, oil and other fossil fuels
generates a high amount of environmentally unfriendly gases, among which carbon diox-
ide causes a serious greenhouse effect [1,2]. To alleviate the dilemma of energy scarcity
while reducing the environmental impact of fossil fuels, it is imperative to enhance energy
efficiency. The waste heat from industrial waste gas has great recovery potential, and
scholars have extensively conducted research on the comprehensive recovery and optimal
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utilization of industrial waste heat without interfering with the original industrial manu-
facturing process [3,4]. The organic Rankine cycle (ORC) holds a pivotal position in the
realm of low temperature thermal power generation due to the low critical parameters
of the organic working fluid [5,6]. Although ORC is a mature technology that offers the
advantages of low maintenance costs, high operating pressure and autonomous operation,
it still suffers from disadvantages such as a low boiling point of organic working fluid, low
waste heat recovery efficiency, environmental pollution and safety issues [7,8]. In the case
of high-temperature waste heat utilization, the technically mature steam Rankine cycle is
usually used. However, the steam Rankine cycle has high heat loss, a large component
volume and high system cost [9]. In recent years, in view of the shortcomings of the existing
steam Rankine cycle and the low critical parameters of CO2 (Tc = 30.98 ◦C, Pc = 7.38 MPa),
scholars have proposed the application of the supercritical CO2 (S-CO2) Brayton power
cycle to recover the waste heat of high temperature flue gas [10,11]. In contrast with the
steam Rankine cycle, the S-CO2 cycle has the advantages of a compact system structure, a
low cost and high cycle efficiency [12].

1.2. Study on S-CO2 Cycle Layout and Performance

In order to improve thermal efficiency, scholars in various countries have conducted
many studies on optimizing the S-CO2 cycle. One approach is to combine thermodynamic
processes such as multi-stage compression, segmented expansion and reheating on the
basis of a simple S-CO2 cycle [13,14]. Several typical layouts of S-CO2 cycles have been
formed, including the simple recuperative cycle (SRC), the recompression cycle (RC),
the precompression cycle (PC), the partial cooling cycle (PCC), the intermediate cooling
cycle (ICC), and their layouts with reheating. Liao et al. analyzed five types of cycles
and compared the cycle efficiencies of the five cycle systems under the same operating
parameters, which showed that both the recompression cycle and the partial cooling cycle
exhibit superior efficiency, while no significant advantage in efficiency is observed for the
partial cooling cycle under low pressure ratios [15]. Fang et al. introduced a waste heat
recovery system predicated on the split expansion cycle. Compared to the conventional
recompression cycle, the fuel utilization rate of a 1 MW natural gas engine increases
by 14.9%, while achieving the net power and heat recovery rates of 174.2 kW and 58%,
respectively [16]. Another enhancement approach involves designing a combined cycle
layout with the S-CO2 cycle serving as the top cycle [13]. Given that the primary function of
the bottom cycle is to capture low-grade waste heat from the top cycle, the transcritical CO2
cycle (T-CO2), ORC, and refrigeration cycle are all integrated with the S-CO2 cycle, forming
well-combined cycles. Fu used the S-CO2 Brayton cycle as the top cycle and combined it
with an ORC system or a T-CO2 cycle system to establish a combined cycle with different
layouts. The performance of the combined cycle exhibited notable enhancements compared
to the stand-alone S-CO2 Brayton cycle. Moreover, in the recompression S-CO2/ORC
combined cycle, system efficiency reached its peak when employing isopentane as the
working fluid in the ORC [17]. The above research results show that the improvement
of thermal efficiency is closely related to the S-CO2 cycle structure, and the different
configuration of the cycle system has a crucial impact on the performance of the cycle.

1.3. Study on Off-Design Performance of S-CO2 Cycle

The above studies, all analyzed with the key system parameters unchanged, evaluated
the steady-state performance of different S-CO2 systems. In practical applications, the
performances of systems are likely to vary due to the fluctuations in cold and heat source
conditions influenced by environmental changes. To advance the practical engineering
application of the S-CO2 power cycle, it is imperative to analyze and study the performance
characteristics of the cycle under off-design conditions, so as to solve the problems that may
occur in the actual operation of the system. Andrew et al. studied the off-design operation
of the S-CO2 cycle by utilizing head and efficiency curves proposed by Dyreby. They
modified the dimensionless compression ratio and isentropic efficiency of the compressor
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based on these curves to characterize the performance characteristics of the compressor
under off-design operating conditions [18]. Duniam et al. conducted a study examining
the influence of ambient temperature at design values on the operational performance of
the S-CO2 recompression Brayton cycle under off-design conditions. The results showed
that the lower the design value, the higher the peak efficiency. However, the declines in
efficiency are greater with the increase in ambient temperature, and the benefit of low
ambient temperature is limited when the design values are higher [19]. In conclusion, these
existing studies focus more on the off-design performance analysis of typical S-CO2 cycles
and system components, and there is still a lack of studies on off-design conditions for
novel S-CO2 cycles.

1.4. Purpose of This Work

The system can run efficiently and stably by adjusting the key parameters when the
external conditions change, so it is necessary to study the off-design characteristics of the
cycle. Based on an innovative S-CO2 power cycle driven by flue gas waste heat proposed
by our research group [20], off-design characteristics and corresponding control strategies
are studied in this paper. Based on the design parameters of the S-CO2 cycle, along with the
determined structural parameters of heat exchangers and performance parameters of the
turbomachinery, off-design mathematical models are developed for the system components.
Subsequently, according to the simulation results, the performance characteristics of the
system are analyzed when the parameters of cold and hot sources change. In addition, since
the cooling water inlet temperature is prone to affect the cycle performance, a cooling water
mass flow rate control strategy is proposed to ensure the stable and efficient operation of
the cycle.

2. System Layout and Design Parameters

Figure 1 illustrates the layout of the S-CO2 power cycle driven by flue gas waste
heat, and the corresponding T-s diagram is shown in Figure 2. S-CO2 is divided into two
streams at the outlet of the cooler. One stream is compressed in Compressor1 (5–6), and
then successively flows into the high-pressure side of the low-temperature recuperator
(LTR, 6–7) and the high-temperature recuperator (HTR, 7–8) to be heated. After that, S-CO2
further absorbs waste heat from the flue gas in Heater1, expanded to carry out work in
the high-pressure turbine (HPT, 1–2), and finally cooled by HTR (2–3), LTR (3–4), and the
cooler (4–5). Another stream of S-CO2 is first compressed in Compressor2 (5–9), and then
heated by the flue gas in Heater2 (9–10). After being heated, S-CO2 is expanded into the
low-pressure turbine (LPT, 10–3) to carry out work, and finally S-CO2 is mixed with another
stream of fluid at the low-pressure outlet of HTR.
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The composition and parameters of the flue gas are obtained from a diesel engine,
as shown in Table 1. Besides the components listed in Table 1, the flue gas mixture also
contains SO2, SO3, NOX and other components. However, they are not included in the table
because of the extremely low content and small impact on the heat transfer characteristics
of the flue gas.

Table 1. Main parameters of flue gas [20,21].

Flue Gas Components Value Flue Gas Parameters Value

N2 (%) 71.6 Flue gas inlet temperature (◦C) 520
CO2 (%) 15.1 Flue gas mass flow (kg/s) 20
O2 (%) 7.8 Flue gas pressure (MPa) 0.1

H2O (%) 5.5

For the cycle, the parameters of design conditions are shown in Table 2. The high
pressure, medium pressure and low pressure of the cycle are set to be 25 MPa, 15 MPa and
7.8 MPa, respectively. The compressor inlet temperature represents the minimum cycle
temperature, which is set at 33 ◦C. For the pinch point temperature difference (PPTD),
considering the heat exchange efficiency and heat exchanger economy, the PPTD of the
heat exchangers are set above 5 ◦C. Under the design conditions, the parameters of each
state point of the cycle are shown in Table 3.

Table 2. System standard design conditions.

Design Parameters Value

HPT inlet temperature (◦C) 434.35
Compressor inlet temperature (◦C) 33

HPT inlet pressure (MPa) 25
LPT inlet pressure (MPa) 15

Compressor inlet pressure (MPa) 7.8
PPTD of Heater1 (◦C) 20
PPTD of Heater2 (◦C) 20

PPTD of HTR (◦C) ≥5
PPTD of LTR (◦C) ≥5

Isentropic efficiency of Compressor [20] 0.85
Isentropic efficiency of Turbine [20] 0.9

Energy efficiency coefficient of heat exchanger [20] 0.9



Energies 2024, 17, 1871 5 of 24

Table 3. Parameters of each state point of the cycle.

State Point m (kg/s) P (MPa) T (◦C) s (kJ/(kg·K)) h (kJ/kg)

1 24.44 25 434.35 2.5 887.36
2 24.44 7.8 307.9 2.53 762.17
3 37.94 7.8 170.52 2.22 606.76
4 37.94 7.8 85.16 1.96 501.11
5 37.94 7.8 33 1.38 318.06
6 24.44 25 75.32 1.4 349.02
7 24.44 25 155.6 1.82 513.01
8 24.44 25 261.73 2.15 668.43
9 13.5 15 55.66 1.39 331.95
10 13.5 15 231.66 2.21 654.43

Flue gas inlet 20 0.1 520 7.2 959.9
Flue gas outlet of Heater1 20 0.1 281.73 6.8 692.32

Flue gas outlet 20 0.1 75.69 6.31 474.63
cooling water inlet 110.79 0.1 25 0.37 104.92

cooling water outlet 110.79 0.1 40 0.57 167.62

For the performances of the S-CO2 Brayton cycle, the evaluation indexes include the
thermal efficiency (ηth) and net output work (Wnet) of the cycle. In order to obtain these
data, the expansion work, compression work and total heat absorption of the cycle should
be calculated.

The Wnet is the difference between the work of expansion and the work of compression,
which can be expressed by

Wnet = WHPT + WLPT − WCompressor1 − WCompressor2 (1)

The ηth is the ratio of Wnet to the total heat absorbed by the flue gas heat source, which
is calculated as follows:

ηth =
Wnet

QHeater1 + QHeater2
(2)

3. Structural Design and Off-Design Models of Heat Exchangers

The heat exchangers in the system include a cooler, two heaters and two recuperators.
The fluids used in the heat exchangers include CO2, flue gas and water. To simplify heat
transfer calculations, thermodynamic modeling makes the following assumptions:

• The pressure drop of the heat exchangers caused by inlet losses, outlet losses and
acceleration effects is neglected.

• The fluids are fully mixed in the tube and flow one-dimensionally.
• The heat conduction between the fluids and the tube wall along the axial direction

is ignored.
• The heat transfer with the external environment is ignored.

Based on the above assumptions and the heat transfer condition of the cycle, printed
circuit heat exchangers (PCHEs) and shell-and-tube heat exchangers are used to complete
the heat transfer in the system.

3.1. Structural Design of Heat Exchangers

The off-design performances of the system are affected by the capacity constraints
of the system components. Therefore, the heat exchangers should first be designed. The
structural design parameters of PCHEs and shell-and-tube heat exchangers are obtained
by calculating the parameters of each state point under the design conditions, as shown in
Tables 4 and 5.
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Table 4. Structural design parameters of PCHEs.

Parameters HTR LTR Cooler

Channel width (mm) 1 1 1
Channel depth (mm) 1 1 1
Plate thickness (mm) 1.5 1.5 1.5

Fin width (mm) 0.5 0.5 0.5
Number of channels per layer 300 300 300

Number of plies 300 300 300
Single channel heat transfer area (m2) 0.025 0.05 0.036

Table 5. Structural design parameters of shell-and-tube heat exchangers.

Parameters Heater1 Heater2

Number of one-way tubes 484 237
One way tube length (m) 16.64 40.44

Length of tube (m) 5 7
Number of tube sides 4 6
Number of shell sides 2 2

Number of centerline tubes 48 41
Calculated nominal diameter (m) 1.77 1.51

Nominal diameter (m) 1.8 1.6
Inside diameter of tube (m) 0.02 0.02
Outer diameter of tube (m) 0.025 0.025

Tube wall thickness (m) 0.0025 0.0025
Tube pitch (m) 0.032 0.032

Pipe flow area (m2) 0.0003 0.0003
Baffle thickness (m) 0.012 0.012
Baffle spacing (m) 0.3 0.3
Number of baffles 52 126

Total heat transfer area (m2) 596.97 706.9
Area margin 17.20% 1.65%

CO2 tube velocity (m/s) 0.75 0.75
Flue gas center velocity (m/s) 204.26 142.83

Pipe pressure drop (kPa) 7.93 17.41
Pipe volume (m3) 3.04 3.13

Heat transfer coefficient of CO2 (W/(m2·k)) 535.34 575.07
Heat transfer coefficient of flue gas (W/(m2·k)) 380.22 324.64

3.2. Off-Design Models of Heat Exchangers
3.2.1. Off-Design Models of PCHEs

Compared with traditional heat exchangers, micro-channel heat exchangers can signifi-
cantly reduce the volume and greatly enhance the heat transfer efficiency while maintaining
the same heat transfer capacity. In this way, they have been widely used in many impor-
tant fields. Among them, PCHE is widely used in the S-CO2 energy system due to its
advantages of high-temperature and high-pressure resistance, high compactness and high
reliability [22]. Therefore, the HTR and LTR of the S-CO2 cycle adopt counter current
S-shaped fin PCHEs. For the cooler, the S-CO2 fluid is cooled by water cooling. The density
of water at normal temperature and pressure is the same order of magnitude as that of
S-CO2, and the treated water has less corrosion on the PCHE micro-channels. Thus, the
cooler of the system uses the same PCHE as the recuperators. Taking into account periodic
boundary conditions, the PCHE model is simplified to a single channel. It consists of a hot
and a cold side channel. Furthermore, the heat transfer parameters of each channel unit in
a single layer are considered to be the same [23].

The single channel unit heat transfer rate Qch is:

Qch =
Q
a

(3)
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where Q is the total heat transfer rate, and a is the total number of channel units of cold or
hot fluid [24].

As shown in Figure 3, the inlet temperatures of the hot and cold fluids of the PCHE
are Th,in and Tc,in, respectively. A single channel unit is divided into n segments along the
flow direction, and each segment is regarded as a separate subunit. The heat transfer rate
of each subunit Qch,i is formulated as:

Qch,i =
Qch

n
(4)
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Based on the parameters of each heat exchange subunit, the heat exchange area Ach,i
can be calculated as

Ach,i =
Qch,i

ki · ∆Ti
(5)

where ∆Ti represents the arithmetic average temperature difference between the cold and
hot streams in section i, and k represents the local heat transfer coefficient, which can be
expressed by Equation (6).

k =
1

1
hh

+ Rw + 1
hc

(6)

where Rw denotes the thermal resistance of the channel wall, hh and hc represent the
convective heat transfer coefficients of hot and cold fluids, respectively.

The convective heat transfer coefficient h can be expressed in the following way:

h =
λ · Nu

dhy
(7)

where λ denotes the thermal conductivity of the fluid and dhy denotes the hydraulic
diameter of the channel.

The heat transfer correlations used for the PCHE models in the system are shown in
Table 6.

Table 6. Heat transfer correlations of PCHE models.

Category Heat Transfer Correlations References

The S-CO2 side of LTR,
HTR, and cooler Nu = 0.174Re0.593Pr0.43 [23,25]

The water side of cooler
Nu =

f
8 (Re−1000)Pr

1+12.7
√

f
8 (Pr2/3−1)

, 2300 ≤ Re ≤ 106,

0.6 ≤ Pr ≤ 105

f = (0.79 × ln(Re)−1.64)−2

[26]

Channel hydraulic diameter dhy can be represented by Equation (8).

dhy =
2 · wch · dch
wch + dch

(8)
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where wch is the channel width and dch is the channel height. Based on these two parameters,
the flow area Aflow of the channel can be calculated as

Aflow = wch · dch (9)

Channel wall thermal resistance Rw can be expressed as

Rw =
tp − dch

λw
(10)

where tp represents the thickness of the heat exchange plate, λw represents the thermal
conductivity of the wall of the channel.

The total heat transfer area Ach of a single channel is expressed as

Ach =
n

∑
i=1

Ach,i (11)

The actual heat exchanger area of the PCHE is determined under the design condition.
Under off-design conditions, a trial-and-error method is employed to determine the outlet
temperatures of the PCHE based on the calculated heat transfer area.

3.2.2. Off-Design Models of Shell-and-Tube Heat Exchangers

For the heaters, the heat source is high-temperature flue gas. The flue gas has a large
density gap with S-CO2, and contains acidic gas, which will corrode the micro-channel of
the heat exchanger, so PCHE is not suitable. Therefore, the shell-and-tube heat exchanger
with a baffle shell is selected for the heaters in this paper, and its heat exchange tubes are
arranged in a positive triangle mode, as shown in Figure 4.
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Figure 4. Schematic diagram of shell-and-tube heat exchanger.

The steady-state heat transfer equation of the hot fluid through a fixed wall surface is
given by

Q = K · A · ∆T (12)

where Q is the heat transfer rate, K is the total heat transfer coefficient, A is the heat transfer
area, and ∆T is the average heat transfer temperature difference.

The total heat transfer coefficient K can be calculated from Equation (13) without
considering the influence of fouling thermal resistance inside and outside the pipe.

K =
1

1
αo

+ 1
αi

(
Ao
Ai

)
+ δAo

λw Am

(13)

where αi and αo, respectively, represent the heat transfer coefficient inside and outside the
tube, λw is the thermal conductivity of the tube wall, δ represents the thickness of the tube



Energies 2024, 17, 1871 9 of 24

wall, Ai, Ao and Am are, respectively, the heat transfer area inside and outside the heat
transfer tube and the average heat transfer area.

For shell-and-tube heat exchangers, the tube heat transfer coefficient is related to the
flow state, which is usually expressed by Re. The heat transfer correlations are shown in
Table 7.

Table 7. Heat transfer correlations of shell-and-tube heat exchanger models.

Category Heat Transfer Correlations References

S-CO2 side

α = 0.023 λ
d Re0.8Prn, Re > 104, 0.7 < Pr < 120, L/d ≥ 60 [27]

α = 0.023(1 − 6×105

Re1.8 ) λ
d Re0.8Prn, 2300 < Re < 104 [28]

Nu = 1.86Re1/3Pr1/3
(

di
L

)1/3( µi
µw

)0.14
, Re < 2300 [29]

Flue gas side αo = 0.36 λ
de

(
deuoρ

µ

)0.55
Pr1/3

(
µ

µw

)0.14
, 2000 < Re < 106 [30]

For the n in Table 5, n is set to be 0.4 when the fluid is heated, while n is set to be 0.3
when the fluid is cooled.

de denotes the feature size, which can be calculated by the following formula:

de =
1.1Pt

2

do
− do (14)

where Pt denotes the center distance of the heat exchange tube and do denotes the outer
diameter of the heat exchange tube.

The maximum cross-sectional area between tubes As can be expressed as

As = lbDi

(
1 − do

Pt

)
(15)

where lb represents the baffle spacing and Di represents the inner diameter of the shell of
the heat exchanger.

nc represents the number of tubes across the centerline of the bundle, and for a
triangular arrangement, nc can be expressed as

nc = 1.1
√

Nt (16)

where Nt represents the number of heat exchange tubes.
Shell side flow area Af can be expressed as

Af = lb(Di − ncdo) (17)

The heat transfer area of shell-and-tube heat exchanger is calculated differently from
the PCHE, but the same trial-and-error method is used for off-design modeling.

4. Off-Design Models of the Power Machinery

In most current simulation studies, the isentropic efficiency of turbomachinery is
usually assumed to be constant. It is applicable solely for calculating steady-state design
conditions and is not suitable for analyzing off-design conditions. Under off-design con-
ditions, when the external conditions change, the isentropic efficiency of the turbine and
compressor in the S-CO2 cycle changes dramatically with the change in key parameters [31].
Therefore, in order to meet the requirements of off-design conditions, it is necessary to
modify the isentropic efficiency of turbomachinery. In this section, the mathematical mod-
els of compressor and turbine under off-design conditions are established. The isentropic
efficiency varies with the basic operating parameters such as temperature, mass flow rate,
pressure and speed [32,33].
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4.1. Modeling of Compressor

For compressors, the isentropic efficiency ηC under off-design conditions can be
expressed by

ηC

ηC,d
=

[
1 − c4 ×

(
1 −

.
N
)2
]( .

N
.

m

)
(2 −

.
N
.

m
) (18)

where ηC,d is the isentropic efficiency of the compressor under the design conditions, c4 is
the undetermined constant, which is generally set to be 0.3. Furthermore,

.
N is the relative

rotor speed of the compressor after correction, and
.

m is the relative mass flow rate of the
compressor after correction. They can be calculated by Equations (19) and (20), respectively.

.
N =

N
Nd

√
Tin,d

Tin
(19)

where N is the actual rotor speed, Nd is the design rotor speed, Tin,d is the design inlet
temperature of the compressor, and Tin is the actual inlet temperature of the compressor.

.
m =

m
md

Pin,d

Pin

√
Tin

Tin,d
(20)

where Pin,d is the designed inlet pressure of the compressor, and Pin is the actual inlet
pressure of the compressor, md is the designed mass flow rate and m is the actual mass flow
rate.

The relationship between the compression ratio of the compressor πC and the relative
mass flow rate

.
m can be expressed as follows

πC

πC,d
= c1

.
m2

+ c2
.

m + c3 (21)

where πC is the actual compression ratio of the compressor, and πC,d is the compression
ratio of the compressor under the design conditions. c1, c2 and c3 are related correction
coefficients obtained by fitting empirical equations, which can be calculated as follows

c1 =
.

N/[p(1 − q/
.

N) +
.

N(
.

N − q)
2
] (22)

c2 = (p − 2q
.

N
2
)/[p(1 − q/

.
N) +

.
N(

.
N − q)

2
] (23)

c3 = −(pq
.

N − q2
.

N
3
)/[p(1 − q/

.
N) +

.
N(

.
N − q)

2
] (24)

where p and q are experimental parameters, and p and q are set to be 0.36 and 1.06, respec-
tively, for large axial flow devices.

For compressors, the isentropic efficiency and compression ratio under off-design
conditions can be determined by the corrected mass flow rate and rotor speed. Based on the
above equations, the compressor model can be established to study the effects of relative
mass flow rate and relative rotor speed on compressor performances. With the change in
relative mass flow rate and relative rotor speed, the change curves of relative isentropic
efficiency and relative compression ratio of the compressor are shown in Figure 5. m/md is
in the range of 0.3 to 1.1, N/Nd is in the range of 0.6 to 1.0, ηC varies from 0 to 100%, and
πC is greater than 1.

When N/Nd of the compressor is 1 and m/md increases from 0.88 to 1.04, ηC/ηC,d of
the compressor first increases from 0.98 to 1.00 and then decreases to 0.998, and πC/πC,d
decreases from 1.8 to 0.37. As N/Nd of the compressor increases from 0.6 to 1.0, the relative
isentropic efficiency curves shown in Figure 5a tend to flatten out, and the peak value of
ηC/ηC,d and the corresponding m/md gradually increases. As shown in Figure 5b, as the
ratio N/Nd increases, the relative compression ratio curves exhibit a tendency to steepen.
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Simultaneously, there is a gradual decrease in πC/πC,d, with their peak values and the
corresponding m/md gradually increasing.
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Figure 5. Effects of m/md on compressor performances. (a) Effect of m/md on relative isentropic
efficiency; (b) effect of m/md on relative compression ratio.

As shown in Figure 6, the relative inlet temperature and relative rotor speed have
significant effects on compressor performances. The range of Tin/Tin,d is from 0.4 to 1.1,
N/Nd is from 0.6 to 1.0, and ηC is from 0 to 100%. Furthermore, πC/πC,d is in the range of
0–2 and πC is greater than 1. As can be seen from the figure where N/Nd is constant, with the
increase in Tin/Tin,d, the ηC/ηC,d of the compressor increases rapidly at first, and then tends
to be flat, while πC/πC,d decreases significantly. When the N/Nd of the compressor increases
from 0.6 to 1.0, the relative isentropic efficiency curves tend to be flat. However, the decline
trend of the relative compression ratio curves become steep with the increase in N/Nd.
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4.2. Modeling of Turbine

The isentropic efficiency ηT of the turbine under off-design conditions can be
expressed by

ηT

ηT,d
=

[
1 − 0.3

(
1 −

.
N
)2
]( .

N
.

m

)
(2 −

.
N
.

m
) (25)

where ηT,d is the isentropic efficiency of the turbine under the design conditions,
.

N is
the relative rotor speed of the turbine after correction,

.
m is the relative mass flow rate

of the turbine after correction, and their calculation methods are the same as those of
the compressor.

Furthermore, the mass flow rate m, rotor speed N, inlet temperature Tin and expan-
sion ratio πT of the turbine are mutually constrained, and the corresponding coupling
relationship can be expressed as follows:

m
md

=

√
1.4 − 0.4

N
Nd

√
Tin

Tin,d

√
(πT

2 − 1)
(πT,d

2 − 1)
(26)

where πT is the actual expansion ratio of the turbine, and πT,d is the expansion ratio of the
turbine under the design conditions.

Based on the above control equations, the effects of relative mass flow rate and relative
rotor speed on turbine performances are studied. The effects of m/md on the turbine
relating to relative isentropic efficiency and the relative expansion ratio of the turbine are
shown in Figure 7. The range of m/md is from 0.0 to 2.0, N/Nd is from 0.5 to 1.5, ηT is from
0 to 100%, and πT is greater than 1. It can be seen that when N/Nd is 1 and m/md increases
from 0.51 to 2.0, ηT/ηT,d increases rapidly from 0.077 to 1, and then slowly decreases to 0.75,
while πT/πT,d increases from 0.576 to 1.926. When the N/Nd of the turbine increases from
0.5 to 1.5, the peak value of ηT/ηT,d gradually increases from 0.925 to the maximum value
1 initially and then decreases to 0.925, while its corresponding m/md gradually increases,
and the relative expansion ratio curves become steep. Furthermore, when the m/md of
the turbine is 1 and N/Nd increases from 0.5 to 1.5, ηT/ηT,d is symmetric with respect
to N/Nd = 1, increasing from 0.694 to 1.00 and then decreasing to 0.694, while πT/πT,d
increases from 0.922 to 1.107.
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As shown in Figure 8, relative inlet temperature and relative rotor speed have signifi-
cant effects on the isentropic efficiency and expansion ratio of the turbine. The range of
Tin/Tin,d is from 0.0 to 2.0, and the ranges of N/Nd, ηT and πT are the same as those in
Figure 7. When the N/Nd of the turbine is constant, with the increase in Tin/Tin,d, ηT/ηT,d
increases rapidly and then decreases slowly, while πT/πT,d increases steadily. When N/Nd
increases from 0.5 to 1.5, the peak value of ηT/ηT,d remains basically unchanged, which
increases from 0.975 to 1 and then decreases to 0.986, while the relative expansion ratio
curves increase slowly.
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5. Off-Design Performance Calculation of S-CO2 Cycle

Based on the above solution methods of the system components, the off-design work-
ing condition models of the compressor, turbine and heat exchangers are programmed
on the Matlab platform. In addition, the physical properties of CO2, flue gas and water
can be calculated by the REFPROP 9.0 software, based on known parameters. The corre-
sponding calculation flow of the S-CO2 power cycle under off-design working conditions
is established, as shown in Figure 9. Firstly, the parameters, such as cold and heat source
conditions, compressor inlet temperature and pressure, the mass flow rates of the working
fluids and split ratio, are input. Then the models of the cooler, compressors, recuperators,
turbines and heaters are calculated successively. Finally, the parameters of each state point
are output, and the cycle performance parameters such as the net output work and cycle
efficiency can be obtained.
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6. Effects of Key System Parameters

During industrial production, cold and heat source parameters often fluctuate, which
can impact the output parameters of system components and the performance of the cycle.
In order to evaluate the system performances under off-design conditions, we analyze the
cycle performances by controlling key variables such as cooling water inlet temperature,
cooling water mass flow rate, flue gas inlet temperature and flue gas mass flow rate.

6.1. Effects of Cold Source Parameters

For the S-CO2 power cycle that recovers flue gas waste heat, the cooling method is
generally water cooling. In the actual production, the temperature of the cooling water is
easily affected by the ambient temperature. Therefore, it is of practical significance to study
the effects of cooling water parameters on the off-design characteristics of the system [34].

Under off-design conditions, the effects of cooling water inlet temperature on the
system performances are analyzed when the other parameters are constant. As shown in
Figure 10, the inlet temperature of the cooling water under the design working conditions
is 25 ◦C, and the variation range of the inlet temperature is set at 23–27 ◦C. As the inlet
temperature of the cooling water increases, the outlet temperature of the cooling water
increases, and the inlet temperature T4 and outlet temperature T5 of the CO2 side of the
cooler gradually increase. As can be seen from Figure 6, the variation in the compressor inlet
temperature has a weak effect on the isentropic efficiency, while it has a drastic effect on
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the compression ratio. Thus, the compression ratio gradually decreases as the compressor
inlet temperature increases. With the increase in T5 and the decrease in compressor outlet
pressure, the compressor outlet temperature T6 and T9 increase correspondingly, and the
compression work decreases first and then increases.
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As the CO2 inlet temperature T9 of Heater2 gradually increases, there is an initial
decrease followed by an increase in outlet temperature T10. The heat absorption in Heater2
also follows a similar trend, with the heat absorption first decreasing and then increasing
as the inlet temperature slowly changes. When the CO2 inlet temperature T8 of Heater1 de-
creases first and then increases, the flue gas outlet temperature and CO2 outlet temperature
T1 decreases first and then increases, while the flue gas inlet temperature remains constant.
Consequently, the heat absorption in Heater1 initially increases but subsequently decreases.

From Figure 8a, it can be seen that the isentropic efficiency decreases as the turbine inlet
temperature deviates from the design value at constant rotor speed. As shown in Figure 8b,
due to the gradual decrease in the inlet pressure of the turbine, the rotor speed of the
turbine is gradually reduced in order to maintain a stable low outlet pressure, resulting in a
corresponding decrease in isentropic efficiency. Due to the effects of inlet temperature and
rotor speed, both the outlet temperatures T2 and T3 of the turbines initially decrease and
then increase, while total expansion work first increases and then decreases. Consequently,
the net output work of the system increases from 2324.41 kW to 2781.11 kW and then
decreases to 2102.63 kW. The total heat absorbed from the flue gas heat source follows the
trend of initially increasing and subsequently decreasing, leading to an improvement in
thermal efficiency from 23.85% to 28.43%, followed by a decline to 22.69%.

The impacts of the cooling water mass flow rate on the system’s performance charac-
teristics under off-design conditions are illustrated in Figure 11. The cooling water mass
flow rate varies within the range of 0.8–1.2 times the design value. Within this investigated
range, the CO2 inlet and outlet temperatures T4 and T5 of the cooler gradually decrease as
the cooling water mass flow rate increases. Simultaneously, there is a gradual decrease in
compressor outlet temperatures T6 and T9, an increase in compressor outlet pressure, and
a non-linear trend observed for total compression work with an initial decrease followed
by an increase. Furthermore, the CO2 outlet temperature T10 of the Heater2 exhibits a
similar trend of first decreasing and then increasing. Compared to T9, the variation in T10
is much greater, resulting in a fluctuating heat absorption for Heater2, characterized by
an initial decrease followed by an increase. For Heater1, the flue gas outlet temperature
Tg,mid initially decreases and then increases while maintaining a constant flue gas inlet
temperature. Therefore, the heat absorption first increases and then decreases.
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As the medium and high pressures at the turbine inlet gradually increase, the turbine
rotor speed gradually increases in order to keep the low pressure constant. Meanwhile, the
isentropic efficiency and the total expansion work first increase and then decrease. Thus,
the net output work of the system rises from 2179.45 kW to 2770.51 kW and then declines
to 2494.5 kW. The total heat absorbed from the flue gas heat source experiences a slow
increase followed by a decrease. As a result, the thermal efficiency increases from 23.46%
to 28.43% and then decreases to 25.53%.

6.2. Effects of Heat Source Parameters

The impacts of the flue gas inlet temperature on the system performances under
off-design conditions can be observed in Figure 12. With the flue gas inlet temperature
Tg,in increasing, both the flue gas outlet temperature Tg,mid of Heater1 and Tg,out of Heater2
gradually rise. As Tg,mid increases faster than Tg,in and Tg,out, the heat absorption in Heater1
gradually decreases while the heat absorption in Heater2 gradually increases.
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The HPT inlet temperature T1 rises with the flue gas inlet temperature, resulting in a
corresponding gradual increase in expansion work. Similarly, the LPT inlet temperature
T10 increases with the flue gas outlet temperature of Heater1, leading to an increase in the
turbine outlet temperature T3, and consequently the expansion work initially increases
before decreasing.

Due to the small variations in compressor inlet and outlet temperatures, the compres-
sion work is less affected by the flue gas inlet temperature. Therefore, the net output work
of the system increases from 2484.67 kW to 2814.88 kW, and then decreases to 2805.83 kW.
The total heat absorbed from the flue gas heat source gradually increases, resulting in a rise
in thermal efficiency from 26.59% to 28.56%, followed by a decrease to 28.1%.

The effects of the flue gas mass flow rate on the system performances under off-design
conditions are depicted in Figure 13, with other input parameters held constant. The flue
gas mass flow rate varies within the range of 0.85–1.15 times the design value. As the
flue gas mass flow rate increases, the flue gas outlet temperatures of Heater1 and Heater2
gradually increase. However, as the flue gas inlet temperature remains constant, the overall
heat absorption of Heater1 shows a decreasing trend. Furthermore, considering that the
flue gas inlet temperature of Heater2 increases more rapidly than the outlet temperature,
the heat absorption of Heater2 gradually increases.
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The inlet temperature T1 of the HPT rises with the increase in flue gas mass flow
rate, leading to an increase and then a decrease in expansion work. Similarly, the inlet
temperature T10 of the LPT increases with the increase in the flue gas outlet temperature of
Heater1, resulting in an initial increase followed by a decrease in expansion work.

Given the slight changes in the compressor inlet and outlet temperatures, the compres-
sion work is less affected by the flue gas mass flow rate. Therefore, the net output work
of the system increases from 1719.01 kW to 2855.09 kW and then decreases to 2634.58 kW.
Furthermore, the total heat absorbed gradually increases, leading to an increase in thermal
efficiency from 20.1% to 28.75%, followed by a decrease to 25.83%.

7. Control Strategy of the Cooling Process

Based on the above analysis, it can be seen that the inlet temperature and mass flow rate
of cooling water have great effects on the system performance. When the inlet temperature
of the cooling water increases from 23 ◦C to 27 ◦C, compared with the optimal value, the
net output work of the cycle decreases by up to 24.4% and the cycle thermal efficiency
decreases by up to 20.19%. In actual production, the cooling water inlet temperature is
easily affected by natural environmental conditions, and the compressor performance is
significantly affected by the cooling water inlet temperature, thus affecting the overall
performances of the system. Therefore, when the inlet temperature of the cooling water
fluctuates, in order to ensure the efficient and stable operation of the system, it is necessary
to develop the corresponding control strategy.

Compared with regulating the flue gas inlet temperature and flue gas mass flow rate,
it is more convenient to adjust the cooling water mass flow rate to reduce the effect of
the cooling water inlet temperature on the system. Meanwhile, it has less effect on other
parameters of the system, and it is easy to operate in actual production. Therefore, the
effect of the cooling water inlet temperature is controlled by regulating the cooling water
mass flow rate.

By changing the cooling water mass flow rate, the temperature changes on the CO2
side of the cooler can be attenuated. In this paper, the CO2 outlet temperature T5 of the
cooler is set to the design value, and the range of the cooling water mass flow rate is set
based on the design value. The optimal value can be found by the exhaustive method to
make T4 closer to the design value. Based on the cooling water mass flow rate control
strategy, the parameter changes in the cooler are shown in Figure 14. In order to make
the parameters on the CO2 side closer to the design values, when the inlet temperature
of cooling water increases from 23 ◦C to 27 ◦C, the mass flow rate of the cooling water
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will increase from 82.3% to 132.7% of the design value, and the outlet temperature of the
cooling water will decrease from 41.23 ◦C to 38.3 ◦C.
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8. Conclusions

In this paper, the thermal performance and control strategy of an innovative S-CO2
power cycle driven by flue gas waste heat are investigated under off-design conditions.
According to the design parameters of the S-CO2 cycle, the off-design models of sys-
tem components including the turbine, compressor, printed circuit heat exchangers and
shell-and-tube heat exchangers are first established. Then, under off-design conditions,
performance characteristics of the system are analyzed and discussed. Finally, aiming at
the S-CO2 cooling process, the control strategy of the cooling water flow is proposed to
match the inlet temperature variation in cooling water. The main conclusions can be drawn
as follows:

(1) When the inlet temperature and mass flow rate of the cooling water change, the
cycle efficiency can reach the maximum value of 28.43% at the design point. When the
flue gas inlet temperature changes, the maximum cycle efficiency 28.56% is obtained at
530 ◦C. For the variation of the flue gas mass flow rate, at the mass flow ratio 1.05, the cycle
efficiency reaches the peak of 28.75%.

(2) To ensure the efficient and stable operation of the S-CO2 power cycle, a control
strategy of the cold end is proposed for the inlet temperature variation in the cooling water.
When the cooling water inlet temperature increases from 23 ◦C to 27 ◦C, the cooling water
mass flow rate should increase from 82.3% to 132.7% of the design value.

Based on the research in this paper, more control strategies will be studied in the future
so as to deal with different changes in working conditions, such as flue gas parameter
variations and rotational speed variations. In addition, the dynamic characteristics of the
S-CO2 cycle will be further investigated to reveal the parameter variations in the system
under full operating conditions. On this basis, relevant control methods will be proposed
to guide the operation of a practical engineering system.
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Nomenclature

Symbols
S-CO2 Supercritical carbon dioxide
PCHE Printed circuit heat exchanger
ORC Organic rankine cycle
SRC Simple recuperative cycle
PC Precompression cycle
RC Recompression cycle
PCC Partial cooling cycle
ICC Intermediate cooling cycle
T-CO2 Transcritical carbon dioxide
LTR Low-temperature recuperator
HTR High-temperature recuperator
HPT High-pressure turbine
LPT Low-pressure turbine
PPTD Pinch point temperature difference (◦C)
Wnet Net output work (kW)
T Temperature (◦C)
P Pressure (MPa)
s Specific entropy (kJ/(kg·K))
m Mass flow rate (kg/s)
h Specific enthalpy (kJ/kg) or convective heat transfer coefficients (kW/(m2·K))
Q Heat transfer rate (kW)
a Number of channels
n Number of single channel unit elements
A Heat exchange area (m2)
k Local heat transfer coefficient (kW/(m2·K))
Rw Conductive thermal resistance of the channel wall ((m2·K)/kW)
dhy Hydraulic diameter (mm)
Nu Nusselt number
Re Reynold number
Pr Prandtl number

uo
The flow velocity passing through the maximum cross-sectional area between
pipes (m/s)

wch Channel width (mm)
dch Channel height (mm)
tp Plate thickness (mm)
wf Fin width (mm)
Aflow Flow area of the channel (m2)
K Total heat transfer coefficient (kW/(m2·K))
Ai Inside heat transfer area of heat transfer tube (m2)
Ao Outside heat transfer area of heat transfer tube (m2)
Am Average heat transfer area of heat transfer tube (m2)
d Diameter (m)
de Feature size (m)
Pt Center distance of the tubes (m)
As Maximum cross-sectional area between tubes (m2)
lb Baffle spacing (m)
Di Inner diameter of the shell (m)
nc Number of tubes across the centerline of the bundle
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Nt Number of the tubes
Af Shell side flow area (m2)
N Rotor speed (r/min)
SR Split ratio
Greek symbols
ηth Thermal efficiency (%)
λ Thermal conductivity of the fluid (kW/(m·K))
λw Thermal conductivity of the channel wall or tube wall, (kW/(m·K))
αi Heat transfer coefficient inside the tube (kW/(m2·K))
αo Heat transfer coefficient outside the tube (kW/(m2·K))
δ Thickness of the tube wall (m)
ρ Density (kg/m3)
µ Dynamic viscosity (kg/(m·s))
πC Compression ratio
πT Expansion ratio
Subscripts
c Critical or cold fluid
ch Channel
h Hot fuid or high pressure
i Inside
o Outside
in Inlet
w Wall or water
out Outlet
L Low pressure
m Medium pressure
g Flue gas
mid Flue gas outlet of Heater1
C Compressor
d Design condition
T Turbine
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