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Abstract: This article presents an analytical solution for the evaluation of the thermal performance
of packed bed sensible heat storage. The numerical model developed was tested for four different
solid storage mediums. The thermal energy equation is solved numerically by deploying the finite
difference method. The presented analytical solution is based on a novel mathematical approach. The
numerical model was validated using the computer simulation package Comsol Multiphysics v5.3.
Our numerical model results are in good agreement with the published experimental data, with an
overall difference of ~10%. Hence, the numerical model is an efficient way of evaluating the thermal
performance of packed bed thermal energy storage systems compared to other numerical strategies
or computer simulation techniques. This proves that the novel analytical model has shown to be a
reliable and broadly accurate approach to acquire the thermal performance of sensible heat storage.

Keywords: analytical solution; numerical model; thermal storage

1. Introduction

The use of thermal energy storage as a means of balancing the worldwide consumption
and demand is on the rise. Thermal energy storage (TES) presents a solution to issues
which green energies and renewables present, mostly their intermittent nature. Types
of TES include sensible heat, latent heat and thermochemical heat, where the approach
consists of charging and discharging a storage medium via heating or cooling. A number
of mathematical and numerical tools can be employed to model TES systems with varying
degrees of complexity, accuracy and computational cost. In this paper, we present a
mathematical model of a sensibly heated single-phase packed bed as a quick and effective
tool for the evaluation of heat absorption dynamics in TES systems.

Sensible heat packed bed storage remains prevalent due to its cost-effectiveness and
relative simplicity [1]. A single-tank selection offers economic benefits over a two-tank
model [2]. Lou et al. [3] state that single-tank TES can be significantly (~35%) less costly
compared to a conventional two-tank TES systems. Cascetta et al. [4] corroborate that two-
tank TES is typically used for concentrating solar power (CSP) plants, while single-tank
thermocline TES systems with higher energy storage density remain popular, especially
when solid medium is employed. For high storage temperatures and air heating applica-
tions, rock-type storage materials are used, which is the focus of our study. Solid storage
materials typically have high melting temperatures, desirable thermal conductivities and
low cost. As such, solid TES systems have been the focus of scientific research with a
number of successful developments operating worldwide.

Al-Azawii et al. [5] reported experimental results for a carbon steel vessel packed with
alumina as the storage material and air as the heat transfer fluid. The full charge/discharge
cycle was recorded for two mass flow rates through a three-layered bed, where air was
injected at a temperature of 150 ◦C. The results showed an increase in exergy efficiency as
the number of layers increased and for higher mass flow rates. Brosseau et al. [6] evaluated
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the performance of quartzite rock and silica sand throughout various tests at 450 ◦C and
500 ◦C for parabolic trough power plants.

Mawire et al. [7] analysed fused silica, alumina and stainless steel as sensible heat
pebble materials for an indirect solar cooking application using oil as the heat transfer fluid
for a single-tank packed bed. This 1D numerical analysis was based on Schumann’s model.
They concluded that fused silica possessed the best thermal stratification performance,
stainless steel achieved the highest total energy stored and alumina had the fastest energy
storage rate and best exergy-to-energy ratio variation during the charging process. Con-
testabile et al. [8] compared 1D packed bed thermal energy storage with thermocline to a
full 2D CFD model, focused on the thermodynamic behaviour system of the wall. They
used a new quasi-1D approach, claiming the computational time saved was significant, yet
the results were not compromised due to only a small decrease in accuracy.

Yang et al. [9] compared a thermocline packed bed using both sensible heat and
phase change materials in a single tank for solar thermal applications. The materials were
categorized in terms of temperature difference, outlet temperature profile, total energy
storage and charging time. They concluded that the density and conductivity of the storage
material and the inlet velocity of the fluid considerably affected the temperature difference.
Adine et al. [10] presented a numerical study of a latent heat storage unit consisting
of a shell-and-tube heat exchanger that uses water as the heat transfer fluid (HTF) and
two different phase change materials (PCMs): P116 and n-octadecane. Different inlet
temperatures, mass flow rates and proportions of phase change materials were analysed.
High thermal storage efficiencies were achieved using low mass flow rates.

Lamberg et al. [11] used a simplified 1D analytical model based on the Neumann
solution for identifying liquid–solid fraction locations and temperature distribution of the
fin in the solidification process with a constant end-wall temperature in finned 2D PCM
storage. The geometry of the computational domain was one of the most important factors
for good performance of the model. Hilton et al. [12] used a Discrete Element Method
(DEM) approach to model gas flow through a granular particle packed bed. They used the
coarse grain method, with the aim of evaluating its effectiveness to increase the effective
number of particles, saving heavy computational costs and time. The authors concluded
further testing was needed in order for it to be applied in industrial systems due to the
assumptions used. Burlayenko et al. [13] used a reliable and efficient numerical tool in order
to understand the behaviour of functionally graded materials (FGMs) in high-temperature
environments. The finite element method was combined with the software ABAQUS and
user-defined subroutines. In order to verify the validity of the method, several case studies
were carried out and their results compared to those in the literature. In the technical note,
Bhattacharya [14] presented a new explicit finite equation for heat conduction, tested by
calculating the temperature response of a slab to transient excitation to which an analytical
solution is available. The equation yielded more accurate results than the previously
established finite difference forms.

Accurately capturing the complex heat transfer process between the solid particles
in a packed bed and the heat transfer fluid, in this context, gas, has been a challenge for
decades. In order to manage the computational cost, a number of numerical and modelling
approaches have been designed to simplify the phenomenon. For instance, Schumman’s
model, amongst other simplifications, assumes that conductive heat transfer in the solid and
heat transfer fluid themselves can be neglected. However, the conduction effect between
two particles can be significantly influenced by the shape and size of the particles [15].
Gerstle et al. [16] support the simplification of neglecting both conduction and radiation
in practical applications below 600 ◦C. They conclude that with some amendments to
Schumann’s model, and based on the parameters and modelling approaches reported in
the literature, their simulation work is in reasonable agreement with the experimental data.

In this paper, we present a simplified mathematical model as an alternative to compu-
tational modelling of TES. Whilst an approximate solution, our model yields fairly accurate
and valid output results.
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2. Materials and Methods
2.1. Base Model

In this study, the TES model was based on the sensible heat storage mediums con-
sidered by Elouali et al. [1]. A packed bed (similar to that presented in [2]) with a
1.2 m height and 0.148 m diameter with a single inlet and single outlet was modelled.
The HTF employed in the packed bed was dry air entering the tank at 550 ◦C with a mass
flow rate of 0.112 kg/s. Table 1 shows the relevant thermo-physical properties of the solid
storage mediums. These materials were selected due to their prevalence in the literature.
All storage mediums possessed a substantial thermal conductivity ratio when contrasted
against dry air [15]. The capsule diameter sizing was determined by taking the smallest
diameter practically achievable for each medium. The thermal and transport properties of
the HTF were taken from REFPROP v5.2.

Table 1. Thermophysical properties of considered storage mediums.

Storage Medium Melting
Temperature (◦C)

Density
(kg/m3)

Thermal
Conductivity

(W/mK)

Specific Heat
Capacity
(J/kg◦C)

Capsule
Diameter (m)

Thermal
Conductivity Ratio

with HTF (-)

Salt (NaCl) 802 2160 7.0 850 0.0002 160.66
Cordierite 1435 2300 2.5 900 0.02 57.38

Aluminum Oxide 1 2072 3550 17.5 902 0.008 401.65
Magnetite 1538 5175 1.0 874.2 0.02 22.95

1 Al2O3 89.5%.

2.2. Numerical Approach

The analytical model was validated using Comsol Multiphysics. It was modelled as a
2D rectangle, using two physics interfaces: ‘Heat transfer in porous media’ and ‘Brinkman
equations’. These were then coupled with the multiphysics ‘Nonisothermal flow’ [17].

The system used a set of the following equations to solve the temperature problem:

dz
(
ρCp

)
e f f

∂T
∂t

+ dzρCpu·∇T +∇·q = dzQ + q0 + dzQvd

q = −dzke f f∇T

And the following were used to solve the fluid flow problem:

ρ
∂u
∂t

= ∇·[−p2l + K]−
(

µκ−1 +

(
(βF

u )

+

)
Qm

∈2
p

)
u + F

ρ∇·(u) = Qm

K = µ
1
ϵp

(
∇u + (∇u)T

)
− 2

3
µ

1
ϵp

(∇·u)l

Furthermore, the following parameters were defined as part of the solution:

• Porosity (ε): 0.4.
• Permeability (η): 2.596 × 10−5.

The mesh had over 9200 mesh elements, mostly triangular prisms. The Comsol model
was initially validated based on the results of Elouali et al. for pebble bed [1], which were
compared with the original experimental data from [18]. Figure 1 shows that the Comsol
data (solid lines) are in excellent agreement with experimentally reported values, especially
at shorter time-scales. The simulation results slightly overestimated the temperatures
reached across the pebble bed, but modestly so, no more than 15 ◦C (5%). It is worth noting
that Elouali et al.’s [1] single-phase model also reported values somewhat higher than the
experimental results in Meier et al. [18]. Hence, it can be concluded that our Comsol model
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accurately captures the heat transfer phenomenon, and is in excellent agreement with the
results reported in the literature.
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2.3. Mathematical Model

In a packed bed with significant volumetric heat transfer (between the HTF and solid
particles) and/or charged with solid materials of high conductivity, the thermal resistance
between the solid particles and the HTF becomes negligible. Hence, the energy equation
based on the homogeneous temperature Tm is sufficient to describe the thermal behaviour:

(
ρcp
)

m
∂Tm

∂t
+ Gcp, f

∂Tm

∂x
=

∂

∂x

(
km

∂Tm

∂x

)
(1)

The heat capacity of the packed bed is(
ρcp
)

m = ερ f cp, f + (1 − ε)ρscp,s (2)

where ρ and cp are the density and the specific heat, respectively; G is the mass velocity of
the HTF, km is the effective thermal conductivity of the bed and ε is the porosity of the tank.

The effective thermal conductivity is calculated as

km = ks

1 −
ε
(

ks − k∗f
)

k∗f + ε1/3
(

ks − k∗f
)
 (3)

where ks is the thermal conductivity of the solid material and k∗f is the effective thermal
conductivity of the HTF:

k∗f
k f

= ε

(
1 + c1

(
RepPr f

)c2
)

(4)
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where 0.115 ≤ c1 ≤ 0.167 and 1 ≤ c2 ≤ 1.25. The Reynold’s and the Prandtl numbers for
the fluid are calculated with

Rep =
ρ f ud

µ f
Pr f =

c f µ f

k f
(5)

where u is the mean heat-transfer fluid flow velocity and µf is the dynamic viscosity of
the HTF.

Following the separation of variables and integration, with boundary conditions

x = 0, ∂T
∂x = 0

x = L, ∂T
∂x = 0

(6)

and the initial conditions

T(x, 0) = 20 ◦C, T(0, t) = 550 ◦C (7)

a non-trivial solution is found as

T(x, t) =
∞

∑
n=0

[
En cos

(nπ

L
x
)
+ Dn sin

(nπ

L
x
)]

· e[
B

2C x− 1
4AC (B2+ 4n2π2C2

L2 )t] (8)

where

Dn = 40
L

[
e
−B
2C L( nπ

L cos(nπ))+ nπ
L

B2
4C2 +

n2π2
L2

]

En = 40
L

[
e
−B
2C L(−B

2C cos(nπ))+ B
2C

B2
4C2 +

n2π2
L2

] (9)

and coefficients
A =

(
ρcp
)

m B = Gcp, f C = km (10)

The complete mathematical apparatus is given in the Appendix A. Our numerical
model was employed to develop thermal profiles across the tank for the considered storage
mediums for several charging times.

3. Results

The numerical solutions of four solid TES mediums were compared to the ones
acquired from Comsol, shown in Figures 2–5. The Comsol simulation data are generally
in good agreement with the numerical model results. Discrepancies are minimal at lower
charging times (i.e., 1 h and 1.5 h). However, it is worth noting that the Comsol simulations
always slightly over-evaluate the temperature trends within an acceptable range. The
difference in values, among other reasons, could potentially be due to inaccuracies in the
base experimental data used for comparison by both Elouali et al. [1] and Comsol in their
validation. Also, the experimental data are rather old (the experiment was carried out in
1991) and do not claim to be the perfect representation of the thermos-physical properties of
the TES setup. Nevertheless, the experimental data generated by [18] have been extensively
used in the literature as a benchmark, perhaps due to the nature and limitations present for
such experimentation.
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The results for the TES medium Magnetite using the numerical model and Comsol
simulations are compared in Figure 2. The temperature profiles along the storage tank
height are generally in good agreement. Differences among the two methods are found at
higher and lower temperature values for all the charging times considered; at moderate
temperatures, the difference is minimal. The largest difference detected was at 2.5 h, with
~11% discrepancy. Magnetite, with a large capsule diameter, a relatively low thermal
conductivity ratio with the HTF and a high density, offers the lowest performance for TES.
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In the case of Aluminum Oxide as the TES medium, presented in Figure 3, the overall
agreement between Comsol and the numerical model is satisfactory, even though the
Comsol values are consistently marginally higher than the storage temperatures obtained
through the mathematical model. Somewhat higher differences in values are observed at
the exit point of TES and with higher charging times. The maximum difference recorded
is ~9%, occurring at a 1.2 m height and a charging time of 2.5 h.

For the higher-performing TES materials, Cordierite and NaCl, the numerical model
results are in excellent agreement with Comsol. In particular, for charging times in the range
of 3 h, the maximum difference in values is recorded to be less than ~3% (Figures 4 and 5).
The maximum difference occurs at a charging time of 2 h for Cordierite that amounts to
~24%. Interestingly, the greatest difference for NaCl as a storage material also occurs at 2 h a
t1.2 m, but it is more modest at 12.5%. Generally, there is a very good agreement between the
Comsol and the numerical model results for NaCl, while for Cordierite difference in values
are slightly higher, especially for lower and intermediate charging times.

Furthermore, the temperature trends for different charging times for the solid storage
material depend on the thermal properties of the material, namely the density of the solid,
the thermal conductivity and the capsule diameter. The influence of the thermophysical
properties of solid materials on temperature trends is fairly well understood. However, the
varying discrepancies in the results predicted by the numerical model could potentially
be due to the change in thermal resistance for a given point in time, recalling that the TES
is assumed to be a single homogenous medium where the thermal resistance between
the solid and the HTF is trivial. However, the effect of using less accurate, often constant,
material properties in modelling and simulations has a relatively small effect on the overall
result, with an estimated error <5% [19].

The results demonstrate that our numerical model is a powerful analytical tool for
quick evaluation of pebble tank solid TES systems. The analytical model produced satis-
factory results for a range of tested materials and their respective thermal properties. The
difference between an elaborate Comsol model with our simplified mathematical approach
is broadly acceptable in the 10–15% range.

Thermal energy storage is deemed a highly promising solution as it offers a number
of advantages, including capacity, lifetime and cost [20]. A wide range of suitable storage
media is readily available, and the amount of energy storage and the required heat grade
(temperature) can be varied to suit a wide range of industrial and commercial applications,
including the management of electric peak leads [21]. Latent heat TES systems are generally
considered to have a higher volumetric energy density and low weight, especially when
phase-change materials are employed [22].

However, sensible TES systems are a conventional and mature option. The technology
is widely used, with an attractive low cost and simple operation features. Due to the
well-understood potential of TES systems to alleviate some of the energy supply-and-
demand issues, significant scientific attention has been focused on the design, modelling
and performance evaluation of different TES systems.

There are already a number of established mathematical and numerical models pro-
ducing results with acceptable accuracy. However, such numerical approaches have a
significant computational cost [19]. More recently, simple models with good accuracy and
improved execution times are gaining popularity [23]. The use of analytical solutions in
solid TES modelling is deemed to be rather valuable due to their computational efficiency.
Often, such models are easy to implement and present an effective technique for the assess-
ment of commercial TES systems. Our model adds to the breadth of tools readily available
for the cost-effective estimation of the temperature profiles across a sensible TES system.

4. Conclusions

It can be concluded that despite its relative simplicity with the assumption of a single
homogeneous medium, i.e., thermal resistance is negligible for high thermal conductivity
rendering, the single-phase model provided accurate predictions of heat transfer efficiency.
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This is specific to when one is assessing storage mediums with a relatively high thermal
conductivity and thermal capacity compared to the heat transfer fluid. The difference
between the numerical model results and the Comsol simulations varied from 3% to 24%.
These percentages fall within the acceptable range as observed in the literature. Our
numerical model is a very useful tool for the evaluation of a sensible TES system with solid
storage medium, achieving reasonably accurate results at a low computational cost.
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Nomenclature

ρ density (kg/m3)
cp specific heat capacity (kJ/kgK)
µ viscosity (Pa·s)
ε porosity (void fraction)
η permeability
ks thermal conductivity of the solid material (kW/mK)
k∗f effective thermal conductivity of the HTF (kW/mK)
km effective thermal conductivity of the packed bed (kW/mK)
s solid medium
f heat transfer fluid
m packed bed

Appendix A

The Single-Phase Model Solution

(
ρCp

)
m

∂Tm

∂t
+ G.Cp, f

∂Tm

∂x
=

∂

∂x

(
km

∂Tm

∂x

)
This can be better written as A ∂T

∂t + B ∂T
∂x = C ∂2T

∂x2 , with the following boundary condi-
tions:

∂T
∂x

(0, t) = 0,
∂T
∂x

(L, t) = 0

and the following initial conditions:

T(x, 0) = 20 ◦C, T(0, t) = 550 ◦C

In accordance with the separation of variables method, let T = XU be a solution to
the equation.

Applying this to the PDE, we have AX dU
dt + BU dX

dx = CU d2X
dx2 .

Dividing both sides by XU, we have A
U

dU
dt = 1

X

(
C d2X

dx2 − B dX
dx

)
.

Recognising that both sides are equal and therefore must be equal to the same constant,
we have

A
U

dU
dt

= −λ =
1
X

(
C

d2X
dx2 − B

dX
dx

)
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Now, assessing these terms individually, we have

dU
dt

=
−λ

A
U

C
d2X
dx2 − B

dX
dx

+ λx = 0

We have now separated the original PDE into two separate ODEs.
The time derivative can now be solved at this stage with relative ease:

dU
dt = −λ

A U
∴ 1

U dU = −λ
A dt⇒

∫ 1
U dU = −λ

A
∫

dt ⇒ lnU = −λ
A t + c1 ⇒ U = e

−λ
A t+c1 ⇒ U = e

−λ
A t ·ec1

Recognising that ec1 is merely a constant, U = G·e−λ
A t , where G is the integrating

constant.
Now, we can solve displacement from

C
d2X
dx2 − B

dX
dx

+ λx = 0

To solve Eigenvalues, X = emx ⇒
(
Cm2 − Bm + λ

)
emx = 0

To obtain a non-trivial solution, Cm2 − Bm + λ = 0

m =
−b ±

√
b2 − 4ac

2a
=

B ±
√

B2 − 4λC
2C

Again, to force non-trivial solutions, B2 − 4λC < 0 ∴ λ > B2

4C

Then, m = B±i
√

4λC−B2

2C
These will be complex roots and so

X = eαx[c2cos(βx) + c3sin(βx)]

X = e(
B

2C )x[c2cos(

√
4λC − B2

2C
x) + c3sin(

√
4λC − B2

2C
x)]

The complete solution is therefore now

T = XU = e[(
B

2C )x− λ
A t][Gc2cos(

√
4λC−B2

2C x) + Gc3sin(
√

4λC−B2

2C x)]
= e[(

B
2C )x− λ

A t][Ecos(
√

4λC−B2

2C x) + Dsin(
√

4λC−B2

2C x)]
(A1)

Now, applying boundary conditions,

dT
dx = e[(

B
2C )x− λ

A t][−E
√

4λC−B2

2C sin(
√

4λC−B2

2C x) + D
√

4λC−B2

2C cos(
√

4λC−B2

2C x)]
+e[(

B
2C )x− λ

A t] B
2C [Ecos(

√
4λC−B2

2C x) + Dsin(
√

4λC−B2

2C x)]

At x = 0, ∂T
∂x = 0:

0 = e
λ
A t(D

√
4λC−B2

2C + BE
2C )

∴ BE = D
√

4λC − B2
(A2)

At x = L, ∂T
∂x = 0:

e[(
B

2C )L− λ
A t][−E

2C

√
4λC − B2sin(

√
4λC−B2

2C L) + BE
2C cos(

√
4λC−B2

2C L) + D
√

4λC−B2

2C cos(
√

4λC−B2

2C L)
+ BD

2C sin(
√

4λC−B2

2C L)] = 0
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Now, applying Equation (A2),

(
−E
2C

+
BD
2C

)sin(

√
4λC − B2

2C
L) = 0

Noting from Equation (A2) that BD ̸= E,

sin(

√
4λC − B2

2C
L) = 0

Recognising that sin(mπ) = 0,
√

4λC − B2

2C
L = mπ where m = 0,±1,±2, . . .

λ =
1

4C

[
B2 +

4m2π2C2

L2

]
where m = 0,±1,±2, . . .

This can now be applied to Equation (A1):

T =
∞

∑
m=0

[Emcos(
mπ

L
x) + Dmsin(

mπ

L
x)]e[

B
2C x− 1

4AC (B2+ 4m2π2C2

L2 )t]

where Dm and Em are related by Equation (A2).
Now, applying initial conditions, T(x, 0) = 20 ◦C

∴ 20 =
∞
∑

m=0
[Emcos(mπ

L x) + Dmsin(mπ
L x)]e

B
2C x

∴ 20e
−B
2C x =

∞
∑

m=0
[Emcos(mπ

L x) + Dmsin(mπ
L x)]

(A3)

Now, multiplying by cos
( nπ

L x
)

and integrating for 0 to L,

∞
∑

m=0
[Em
∫ L

0 cos(mπ
L x)cos( nπ

L x)dx + Dm
∫ L

0 sin(mπ
L x)cos( nπ

L x)dx = 20
∫ L

0 e
−B
2C xcos( nπ

L x)dx

∴ En
L
2 + 0 = 20[ e

−B
2C x

B2

4C2 +
n2π2

L2

(−B
2C cos( nπ

L x) + nπ
L sin( nπ

L x)]
L

0

∴ En = 40
L [

e
−B
2C L( −B

2C cos(nπ))+ B
2C

B2

4C2 +
n2π2

L2

]

(A4)

Again, take Equation (A3), this time multiplying by sin
( nπ

L x
)

and integrating for 0 to L:

∞
∑

m=0
[Em
∫ L

0 cos(mπ
L x)sin( nπ

L x)dx + Dm
∫ L

0 sin(mπ
L x)sin( nπ

L x)dx = 20
∫ L

0 e
−B
2C xsin( nπ

L x)dx

∴ Dn
L
2 + 0 = 20[ e

−B
2C x

B2

4C2 +
n2π2

L2

( B
2C sin( nπ

L x) + nπ
L cos( nπ

L x)]
L

0

∴ Dn = 40
L [

e
−B
2C L( nπ

L cos(nπ))+ nπ
L

B2

4C2 +
n2π2

L2

]

(A5)

Therefore, the final solution is

T(x, t) = ∑∞
n=0 [Encos(

nπ

L
x) + Dnsin(

nπ

L
x)]e[

B
2C x− 1

4AC (B2+ 4n2π2C2

L2 )t]

where En and Dn can be found from Equations (A4) and (A5), respectively.
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