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Abstract: Permanent magnet motors (PMMs) have emerged as key components in numerous indus-
trial applications due to their high efficiency, compact size, and robust performance characteristics.
However, to attain optimal performance in PMM drives, accurately predicting and mitigating core
losses is paramount. This paper aims to provide a comprehensive review of advancements and
methodologies for enhancing the performance of PMM drives by integrating equivalent circuit
models (ECMs) that account for core losses. Firstly, the significance of core losses in motor drives is
underscored, alongside a survey of research endeavors dedicated to core loss reduction. Notably,
emphasis is placed on mathematical models offering both swift computation and reasonable accuracy.
Subsequently, the paper delves into the development of ECMs, focusing on approaches adept at
capturing core loss effects across diverse operating conditions. Moreover, this paper explores the
utilization of these improved ECMs in the design and control of PMMs to achieve enhanced per-
formance. By integrating core loss considerations into design and control strategies, PMM drives
can optimize efficiency, torque production, and overall system performance. In summary, this paper
may consolidate the current state-of-the-art techniques for enhancing PMM performance through
the integration of core-loss-aware ECMs. It highlights key research directions and opportunities for
further advancements in this critical area, aiming to foster the development of more efficient and
reliable PMM-based systems for a wide range of industrial applications.

Keywords: permanent magnet motor; equivalent circuit model; power loss; core loss; performance
enhancement

1. Introduction

The escalating focus on transportation electrification stems from its pivotal role in
mitigating urban pollution concerns, where advanced electric motor systems play a central
role. In the realm of electrified transport, the design of electric motors and their associated
drive systems must prioritize high power density, efficiency, and reliability [1–8]. This
emphasis becomes critical due to the typically restricted volume and weight allowances in
electric vehicles (EVs). While increasing the motor’s operational speed and frequency is a
seemingly straightforward approach among various techniques, it may lead to significant
power loss, particularly via core loss, within the confined space. This could result in
heightened temperatures, performance degradation, and potential motor failure.

To tackle these challenges, numerous research endeavors have been undertaken. These
include the application of novel and advanced electromagnetic materials exhibiting lower
specific power loss and improved high-frequency characteristics [9–37], advanced modeling
of material properties that account for the actual operational conditions of electric mo-
tors [38–42], the implementation of application-oriented, system-level, multi-disciplinary,
multi-objective robust design and optimization considering various factors, manufacturing
uncertainties, and operational conditions [43–48], as well as the development of advanced
control methods to optimize operational performance [49–55].
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Certainly, various types of electric motors have been developed using cutting-edge
electromagnetic materials to achieve low power loss and high power density. Some ex-
amples of these materials are very thin electrical steel sheets [9–11], high silicon electrical
steel sheets [12–14], nanocrystalline and amorphous magnetic metals [15–21], soft magnetic
composites [22–31], and high-temperature superconductors [32–37]. Realizing the full
potential of these materials hinges upon a comprehensive understanding of their physical
properties and their accurate mathematical modeling. This becomes particularly crucial
given the relatively nascent nature of these materials, where their behaviors are not yet fully
known. Consequently, some researchers have delved into investigating these material prop-
erties under varied conditions, encompassing two-dimensional (2D) and three-dimensional
(3D) rotational magnetic flux densities of different magnitudes and frequencies, alongside
diverse operational temperatures and mechanical stress factors [38–42].

To achieve advanced design optimization and precise system-level performance con-
trol of the motor drive [43–55], there is a strong demand for efficient mathematical models
that offer swift computation without compromising accuracy. Typically, equivalent circuit
models (ECMs) are favored for these purposes. However, traditional ECMs designed for
permanent magnet (PM) motors (PMMs) often overlook core loss, potentially resulting in
inaccurate calculations and subpar motor design or operational performance. Hence, there
is a critical need for enhanced ECMs that account for core loss to enable effective design
optimization and control of electric motors and drives [56,57].

The main objective of this paper is to explore an efficient computational method that
balances accuracy and speed to enhance the performance of permanent magnet motor
drives by integrating core loss considerations into equivalent circuit models. Conventional
PMM ECMs often overlook core losses, resulting in inaccuracies when predicting motor
behavior, particularly at high speeds, frequencies, or under dynamic loading conditions. By
incorporating core loss effects into the equivalent circuit model, this paper strives to offer
a more precise depiction of motor performance, facilitating improved design and control
strategies to boost efficiency and overall motor performance. Through a combination of
theoretical analysis and experimental validation conducted by various researchers, this
paper endeavors to showcase the efficacy of the proposed models in accurately predicting
motor behavior and optimizing drive performance.

The rest of the paper is organized as follows. Section 2 reviews the development
of PMM ECMs including core loss components. In Section 3, performance enhancement
using the improved ECMs considering core loss in the motor design and optimization
is described. Section 4 presents the performance improvement of motor drives when
the control algorithms involve the improved ECMs. Section 5 contains the discussion
and conclusion.

2. Development of PMM Equivalent Circuit Models Considering Core Loss

The incorporation of core loss considerations into ECMs has not adhered to a standard
topology. Due to an incomplete understanding of the core loss mechanism, effectively
modeling it within ECMs remains an unresolved challenge. Over the past few decades,
diverse topologies have emerged to target specific functionalities. While integrating core
loss into ECMs is crucial, this aspect has garnered limited attention, with only a handful of
researchers delving into this matter.

The traditional approach to compute core loss (Pa) in scenarios involving alternating
sinusoidal magnetic flux densities of frequency (f ) and magnitude (BP) commonly depends
on the three-term model [58–60], as depicted in Equation (1). These three terms specifically
address the hysteresis loss element with coefficients Cha and h, the eddy current loss element
with coefficient Cea, and an anomalous loss component characterized by coefficient Caa.

Pa = Cha f Bh
P + Cea( f BP)

2 + Caa( f Bp)
1.5 (1)

This method is established under specific and standardized working conditions, such
as data being measured using an Epstein frame under one-dimensional (1D) alternating
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sinusoidal magnetization. However, certain areas within the electrical machine might
encounter a rotating magnetic field, e.g., that characterized by nearly circular magnetic
flux density patterns at the stator tooth root and elliptical patterns at the back of stator
slots. Recent research has delved into the properties of materials under rotational magne-
tization and has discovered distinct behaviors compared to materials under alternating
magnetization [61–71]. Despite these findings, there has not been a universally accepted
standard for measuring rotational properties. The prevalent practice continues to rely on
data obtained through 1D alternating sinusoidal magnetization. Consequently, this paper
focuses on addressing the challenges associated with alternating core loss estimation in
these varied magnetic field conditions.

In numerous scenarios, the third term, often referred to as the anomalous core loss
or excess core loss, tends to be significantly smaller in comparison to the other two terms,
making it possible to disregard it. The coefficient (h) associated with the hysteresis loss
term typically falls within the range of 1.6 to 1.9. Hence, a factor of 2 may be applied
for simplification, allowing the total core loss to be approximated using the square of
the flux density magnitude (BP) for a fixed frequency, such as when the PMM operates
at its synchronous speed. Given that the back electromotive force (emf ), Ei, is directly
proportional to the flux or flux density, the following formulae can be derived, where kc
represents a coefficient:

Pc ≈ kcE2
i (2)

An equivalent core loss resistance can then be integrated in parallel with the back emf
to predict the core loss, as reported in Figure 1 by Honsinger in 1980 [72], where r1 stands
for the phase resistance, X1 denotes the leakage reactance per phase, Ei represents the back
emf, and the power loss in rc signifies the core loss. The impedance Zi may encompass both
the synchronous inductance and the distributed capacitance.
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Figure 1. PMM ECM with equivalent core loss resistance.

A comparable ECM was documented by Cobly and Novotny in 1987 [73]. As depicted
in Figure 2, the leakage reactance X1 is integrated into the synchronous reactance X = ωLs,
where Ls signifies the synchronous inductance and ω represents the angular frequency
of the voltage or current. Additional parameters encompass the permanent magnet (PM)
flux linkage, λ, and the stator phase resistance, Rs. Due to the negligible magnitude of the
leakage reactance, Figure 2 closely mirrors the configuration presented in Figure 1.

At a specific speed or frequency, such as when the motor operates at its synchronous
speed, the equivalent core loss resistance can be represented as constant. Upon having
measured or calculated the rated back emf, E, and the no-load core loss, Pc, the core loss
resistance can be determined using (3), where m denotes the number of motor phases.

Rc ≈ m
E2

Pc
(3)

In the operation of EVs, the electric motor necessitates a wide range of speed variation.
To accommodate the fluctuating core loss corresponding to variable speeds, an adaptable
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equivalent core loss resistance may be required. In [74], Rc is modeled as a function of
motor speed.

Energies 2024, 17, x FOR PEER REVIEW 6 of 45 
 

 

  0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaci 

  GacaGaaeWabaWaaeaaeaqbaOqaaiaadcfadaWgaaWcbaGaam4yaaqa 

  baGccqGHijYUcaWGRbWaaSbaaSqaaiaadogaaeqaaOGaamyramaaDa 

  aaleaacaWGPbaabaGaaGOmaaaaaaa@4908@ 

  </annotation> 

 </semantics> 

</math> 

<!-- MathType@End@5@5@ --> 

 

An equivalent core loss resistance can then be integrated in parallel with the back emf 

to predict the core loss, as reported in Figure 1 by Honsinger in 1980 [72], where r1 stands 

for the phase resistance, X1 denotes the leakage reactance per phase, Ei represents the back 

emf, and the power loss in rc signifies the core loss. The impedance Zi may encompass both 

the synchronous inductance and the distributed capacitance. 

 

Figure 1. PMM ECM with equivalent core loss resistance. 

A comparable ECM was documented by Cobly and Novotny in 1987 [73]. As de-

picted in Figure 2, the leakage reactance X1 is integrated into the synchronous reactance X 

= ωLs, where Ls signifies the synchronous inductance and ω represents the angular fre-

quency of the voltage or current. Additional parameters encompass the permanent mag-

net (PM) flux linkage, λ, and the stator phase resistance, Rs. Due to the negligible magni-

tude of the leakage reactance, Figure 2 closely mirrors the configuration presented in Fig-

ure 1. 

 

Figure 2. Another PMM ECM with equivalent core loss resistance. 

At a specific speed or frequency, such as when the motor operates at its synchronous 

speed, the equivalent core loss resistance can be represented as constant. Upon having 

Figure 2. Another PMM ECM with equivalent core loss resistance.

In synchronous machine analysis, the d- and q-axis ECMs are frequently employed,
enabling the incorporation of the equivalent core loss resistance in parallel with the d- and
q-axis magnetizing branches, respectively. Figure 3 provides a representation of the d- and
q-axis ECMs for an interior PMM considering core loss [75,76].
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It is well known that motor loading affects core loss [77]. For instance, in a PM
transverse flux motor, the core loss at the rated current exceeds that at no load by 62% [78],
potentially caused by the distortion in the distribution of flux density. Moreover, other
studies have demonstrated substantial increases in core losses across various sections of
the machine stator core [79]. However, despite these observed variations, the previously
mentioned ECMs fail to consider the influence of motor loading. With fluctuations in
load current, the terminal voltage remains nearly constant, maintaining the back emf and
resulting in minimal changes to the core loss calculations due to the negligible voltage drop
across the stator winding resistance.
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To address the impact of load current on core loss, Consoli and Renna introduced an
ECM with two equivalent core loss resistances, RC1 and RC2, as depicted in Figure 4 [80].
The current flowing through the core loss resistance, RC1, directly relates to the load current,
and the power loss in RC1 accounts for the additional core loss attributed to the load.
The power loss in Rc2 represents the no-load core loss. In the case of an interior PMM,
the d-axis reactance (Xd) and q-axis reactance (Xq) differ, necessitating the use of two
parameters, R and X, to accommodate the motor saliency. Here, R = (Xd − Xq)sinαcosα
and X = (Xd − Xq)sin2α, where α represents the reaction angle. For the surface-mounted
PMM, rotor saliency is absent, resulting in Xd = Xq, which renders both R and X as zero.
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Consoli and Raciti introduced a comparable ECM, showcased in Figure 5, where the
power loss in Rcv represents the core loss at no load, and the power loss in Rci accounts
for the additional core loss due to the load current [81]. Given the very small voltage drop
across Rs, the voltage across Rci in Figure 5 approximately equals that across Rc1 in Figure 4.
Consequently, the ECMs depicted in Figures 4 and 5 are fundamentally the same.
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3. Performance Enhancement via Improved Design and Analysis Based on the
Core Loss ECM

In motor design and optimization, ECMs are commonly utilized to analyze and
compute various performance metrics such as the output torque versus speed curve, power
loss, and efficiency. However, to be able to employ the ECM, all the circuit parameters such
as resistance, inductances, back emf, and core loss resistances in the improved ECM must be
predetermined. Determining these circuit parameters can be achieved through analytical
formulae or numerical techniques. Analytical formulae offer quick computation but may
sacrifice accuracy to some extent. Conversely, numerical techniques such as magnetic field
finite element analysis provide highly accurate results but often require longer computation
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times. Therefore, in practice, a balance between computation time and accuracy needs to be
struck when selecting the method for determining circuit parameters. Analytical formulae
may suffice for initial estimations or rapid prototyping phases, while numerical techniques
are better suited for detailed analysis and fine-tuning of motor designs. Ultimately, the
choice of method depends on the specific requirements of the design task and the available
computational resources.

While the motor characteristics are typically derived from the ECMs, conventional
mathematical models of PMMs, such as differential equations or their corresponding
ECMs, do not incorporate core losses. Consequently, they fail to accurately represent the
motor’s behavior. This section elucidates how integrating a core loss ECM can enhance
the predictive accuracy of a transverse flux PMM’s performance. The transverse flux
PMM under consideration utilizes an SMC core, as outlined in [78]. The key parameters
encompass the rated power of 640 W at a rated speed of 1800 rpm, stator phase resistance
of 0.41 Ω, and inductance of 6.08 mH, operating with a back emf or current frequency of 300
Hz and outputting a torque of 3.4 Nm. The determination of no-load and load core losses
involved employing the three-term model that considers the impact of rotational magnetic
fluxes on hysteresis loss, utilizing the flux density locus under no-load or rated load at each
element as a basis [82]. The no-load core loss was computed with different frequencies or
speeds and it was found that the no-load loss increases almost linearly with the speed. The
reason might be due to the SMC material, which has mainly hysteresis loss with negligible
eddy current loss. The core losses resulting from different loads can be obtained.

The standard ECM, which does not account for core loss, was employed to derive the
major external characteristic—the relationship between shaft output speed and mechanical
torque. It is observed that the speed versus torque curve derived from this conventional
ECM significantly deviates from experimental measurements. To address the impact of
core loss, Figure 6 utilizes four equivalent core loss components. Here, Rh, Re, and Ran
represent hysteresis loss, eddy current loss, and anomalous loss at no load, respectively.
Additionally, Ri accounts for the extra core loss induced by the load current.
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Utilizing this ECM, the subsequent equations can be deduced.

Va = Ea + Rs Ia +
jXsRi

jXs + Ri
Ia = Ea + Rs Ia +

X2
s Ri

X2
s + R2

i
Ia +

jXsR2
i

X2
s + R2

i
Ia (4)

Ia = I1 + Ih + Ie + Ian (5)

I1 =
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Ea
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Ie =
Ea
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Ea
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In the context of these equations, Pem represents the electromagnetic power of the
motor and φ is the angle between the back electromotive force (Ea) and the armature
current (I1). The definitions of the remaining symbols can be discerned from the circuit
diagram. During operation under optimal brushless DC control, the armature current and
back electromotive force are in the same phase, denoted as φ = 0.

The values of Rh, Re, and Ran can be obtained through curve-fitting techniques applied
to the core losses across a range of motor speeds. To ascertain the equivalent core loss
resistances, one must compute the core losses under no-load conditions at different speeds,
as well as under various loads, either through theoretical calculations during the design
phase or through experimental measurements once the motor prototype is accessible. As
demonstrated in [82], calculations based on magnetic field finite element analysis exhibit
a high level of accuracy compared to experimental results; consequently, the calculation
results may be used in the design stage.

As an illustrative instance, the core loss resistances within the ECM for this transverse
flux PMM can be derived through a process of curve-fitting the measured core losses
across varying speeds. The intricate methodology delineating this determination process is
explicated in the subsequent parts.

Upon the availability of the motor prototype, a comprehensive set of tests can com-
mence. Initially, the prototype undergoes operation via a driver, with a torque transducer
capturing motor speed and input torque measurements. Concurrently, the corresponding
input power can be computed. Subtracting the copper loss in the windings, determined
using the measured currents and winding resistances, yields the remaining power loss,
encompassing both core loss and mechanical loss. To assess the mechanical loss, a “dummy
rotor,” such as a wooden rotor with comparable structure and dimensions, may be em-
ployed. By conducting the aforementioned test using a dummy rotor, the mechanical loss
is discerned as the discrepancy between the total input power and copper loss. Notably, as
the wooden rotor does not generate a magnetic field, core loss is nonexistent. Assuming
equivalence of mechanical loss at identical speeds for both real and dummy rotors, the core
loss of the motor can then be deduced. Figure 7 displays a photograph of the testing setup
of the transverse flux PMM prototype, and Table 1 presents the measured no-load core
losses at different speeds.
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Figure 7. Testing setup of the transverse flux PMM prototype.

When adjusting the motor speed, the VVVF (variable voltage variable frequency)
strategy is frequently employed to maintain nearly constant magnetic flux, preventing
ferromagnetic materials from either over-saturating or under-saturating. Consequently, the
core loss described in Equation (1) becomes solely dependent on motor frequency or speed.

Pc = Ph + Pe + Pan = khn + ken2 + kann1.5 (10)
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The coefficients can be determined by fitting a curve to the data provided in Table 1,
yielding values of kh = 0.01885, ke = 0.000010944, and kan = 0. By examining the ECM shown
in Figure 6, one obtains

Pc = 3E2
a(

1
Rh

+
1

Re
+

1
Ran

) = khn + ken2 + kann1.5 (11)

The PM flux is determined through finite element magnetic field analysis, yielding
Φm = 0.00028 Wb. Consequently, the back emf can be calculated as Ea = 4.44fNΦm = 0.0259n,
where f = pn/60 represents the frequency, with p = 10 being the number of pole pairs and
N = 125 indicating the number of turns in the phase winding. Subsequently, the no-load
core loss resistances can be worked out from Equation (11) and the results are Rh = 0.1068n,
Re = 183.9, and Ran = ∞.

Table 1. Measured core losses of the transverse flux PMM at no load.

Speed (rpm) Core Loss (W)

200 4.2

400 9.3

600 15.3

800 22.1

1000 29.8

1200 38.4

1400 47.9

1600 58.2

1800 69.4

To ascertain the load core loss resistance, one must compute or measure the core losses
under various load currents, encompassing the magnetic loss induced by the combined
magnetic field of PMs and the load current. When operating at the rated speed of 1800 rpm
and rated current of 5.5 A under optimal brushless DC control, where the armature current
is controlled to have the same phase angle as the back emf, the core loss of the transverse
flux PMM is calculated as 120.3 W, exhibiting an extra core loss PL = 50.9 W compared to
no-load operation. Assuming that the load core loss is proportional to the square of the
load current, the load core loss resistance can be determined as

Ri =
VXs2
(PL/3)

(12)

where VXs represents the voltage across the synchronous reactance Xs or the synchronous
inductance Ls, which can be expressed as VXs = XsI = (πpn/30)LsI. Consequently, Ri can be
derived as 0.00007228n2. Since the load core resistance value is substantially greater than
the synchronous reactance value, the current flowing through the reactance approximates
the armature current.

To analyze motor performance, the governing equations can be derived from Figure 6.
For instance, the external characteristics, depicting the relationship between shaft output
mechanical torque and shaft speed, are derived based on three scenarios: (i) disregarding
core loss, wherein no core loss resistances are considered in the ECM, akin to the traditional
ECM; (ii) accounting for no-load core losses exclusively, incorporating Rh, Re, and Ran but
excluding Ri; (iii) incorporating all core losses, including Rh, Re, Ran, and Ri in the ECM.
The findings reveal that mechanical characteristics analyzed using the ECM with all core
losses exhibit the highest accuracy when compared to experimental measurements [57].
This advantage holds significant value for the development of advanced electric motors
within the highly competitive global market or for specialized applications.
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To present a quantitative comparison, Figure 8 depicts the speed versus torque curves
of the transverse flux PMM, as measured on the prototype and calculated based on ECMs
under three scenarios: (1) ignoring core loss [82]; (2) considering only no-load core loss;
(3) considering all core losses. Notably, the first case (ignoring core loss) exhibits the
largest deviation between the calculated and measured curves, with an average error of
13.6%. With the inclusion of no-load core loss, the error diminishes to 7.2%, and further
decreases to 5.4% when both no-load loss and additional core loss induced by the load
current are considered.
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Figure 8. Speed versus torque curves of the transverse flux PMM measured on the prototype and
calculated based on ECMs.

4. Performance Enhancement via Improved Control Based on the Core Loss ECM

The core loss ECM proves to be highly beneficial for optimizing the performance of
electric motors, particularly in enhancing power efficiency [83]. Electric motors are the key
components in electric vehicles EVs, which operate under varying speeds, loads, and envi-
ronmental conditions. Consequently, sophisticated motor control strategies are essential,
such as field-oriented control, direct torque control, and model predictive control [84–89].
Among the key control objectives is the minimization of power loss during operation, which
can be achieved through the implementation of loss minimization control algorithms.

It is observed that these techniques have predominantly been developed for induction
motor drives, thus warranting initial discussions on them. Comparing these traditional
models with induction motor drives, where core losses are commonly considered although
not high accuracy, highlights the necessity of integrating such considerations into PMM
models to achieve heightened accuracy. Furthermore, aligning with induction motor drives
enables the utilization of insights and methodologies established in that field, offering
potential guidance for refining modeling and control strategies tailored to PMM drive.

Numerous research endeavors have explored loss minimization control strategies
for induction motor drives [90–93]. In 2008, Uddin and Nam [90] introduced a loss-
minimization control approach for induction motor drives, balancing accuracy with com-
plexity. Yu et al. [91] further advanced this field in 2015 by proposing a loss calculation
method based on the ECM within a synchronously rotating frame, incorporating core
loss resistance. Their method significantly enhanced accuracy compared to conventional
models, particularly benefiting EV efficiency. Eftekhari et al. [92], in 2020, developed a
robust loss model based on ECM for flux optimization within predictive torque and flux
control. This innovation addressed challenges associated with reduced model robustness
and accuracy stemming from core loss resistance current. In 2023, Xiao et al. [93] introduced
a loss minimization control approach based on time-harmonic ECM. Their method incorpo-
rates a cost function for loss minimization, further advancing the field’s sophistication and
practical applicability.
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Similarly, extensive research has delved into synchronous motors, including
PMMs [94–98]. In 1994, Morimoto et al. [94] introduced an efficiency enhancement ap-
proach for PMM drives by regulating electromagnetic loss, encompassing both copper and
core losses. Utilizing the ECM, they determined the optimal armature current vector by
minimizing electromagnetic loss, factoring in motor operational speed and load condi-
tions. In 2002, Mademlis and Margaris [95] presented a strategy for minimizing losses in
interior PMM drives through optimal vector control or field-oriented control techniques.
They derived a condition specifying the optimal d-axis current to minimize motor power
losses. In 2016, Xie et al. [96] introduced dynamic loss minimization techniques for PMMs
using finite control set-model predictive torque control. They computed core loss based
on d-axis and q-axis ECMs, incorporating equivalent resistances for core losses in both the
core and PMs. System efficiency optimization was achieved by controlling inverter losses
and motor losses through a cost function and stator flux reference. In 2023, Li et al. [97]
proposed efficiency improvements for flux-concentrating, field-modulated PMMs using
model predictive torque control with harmonic-analysis-based loss minimization. Their
approach integrated ECMs for the d-axis and q-axis, considering copper, core, and PM eddy
current losses. This method enables online loss evaluation and real-time loss minimization,
effectively enhancing motor efficiency across wide speed and torque ranges.

In 2024, Hou et al. [83] presented their study on enhancing the steady-state efficiency
of an interior PMM by incorporating an improved ECM that accounts for core loss. The
comparison was made through model predictive direct torque control, where the tradi-
tional ECM neglecting core loss was juxtaposed against the core loss-aware ECM [56].
Figures 9 and 10 depict the respective illustrations of these ECMs.
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Figure 9. Conventional ECMs of an interior PMM considering core loss: (a) d-axis ECM; (b) q-axis ECM.
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) × 𝑑𝑡
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Based on Figures 9 and 10, the following voltage and current equations can be derived:{
Vd = Rs Id − ωeLq Iq +

dId
dt Ld

Vq = Rs Iq + ωeLd Id + ωeλ f +
dIq
dt Lq

, (13)

 dId =
(

Vd−Rs Id+ωe Lq Iq
Ld

)
× dt

dIq =
(Vq−Rs Iq−ωe Ld Id−ωeλ f

Lq

)
× dt

. (14)

By discretizing Equation (14), the next-step currents can be predicted; Id(k + 1) = (Vd−Rs Id+ωe Lq Iq)×Ts
Ld

+ Id(k)

Iq(k + 1) = (Vq−Rs Iq−ωe Ld Id−ωeλ f )×Ts
Lq

+ Iq(k)
. (15)

The disparity lies in the prediction of currents. When employing the core loss ECMs,
the actual motor currents are predicted through{

Id = Icid + Imd
Iq = Iciq + Imiq = Ico + Imq

, (16)

{
Icid =

ωe Lq Iq
Rco

Ico =
ωeλ f
Rco

, (17)
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 Imd(k + 1) = (Vd−Rs Id+ωe Lq Iq)×Ts
Ld

+ Id(k)−
ωe Lq Iq

Rco

Imq(k + 1) = (Vq−Rs Iq−ωe Ld Id−ωeλ f )×Ts
Lq

+ Iq(k)−
ωeλ f
Rco

. (18)

To facilitate comparison, Equations (15) and (18) are individually employed within
the framework of the model predictive control (MPC) strategy designed for driving the
interior PMM [83]. These equations facilitate the determination of predictive values such as
Id(k + 1) and Iq(k + 1) within the conventional ECM, as well as Imd(k + 1) and Imq(k + 1) within
the enhanced ECM model that accounts for core losses. The calculated results from these
equations offer insights into the behavior of the motor under varying conditions. Notably,
these equations incorporate voltage components, denoted as Vd and Vq, which are con-
trolled by the IGBT gates, as outlined in Table 2. Diverse voltage vectors are systematically
applied to predict forthcoming currents, thereby eliciting anticipated motor performance
characteristics. These predicted characteristics serve as a basis for comparison against
predefined reference values, enabling a comprehensive assessment of motor behavior.

Table 2. Selections of Voltage Vectors for IGBT Control.

Sa Sb Sc Voltage Vector V

0 0 0 V0 = 0
1 0 0 V1 = 2

3 Vdc
1 1 0 V2 = 1

3 Vdc + j
√

3
3 Vdc

0 1 0 V3 = − 1
3 Vdc + j

√
3

3 Vdc
0 1 1 V4 = − 2

3 Vdc
0 0 1 V5 = − 1

3 Vdc − j
√

3
3 Vdc

1 0 1 V6 = 1
3 Vdc − j

√
3

3 Vdc
1 1 1 V7 = 0

The selection process involves identifying the voltage vector that minimizes the cost
function, thereby optimizing motor operation. This selected voltage vector is subsequently
modulated for application, effectuating precise control modulation tailored to the motor’s
requirements. For a comprehensive understanding of the intricacies involved, interested
readers are directed to refer to the detailed analysis presented in [83].

The comparison results revealed that employing model predictive direct torque control
based on Equation (18) yields enhanced motor performance compared to that based on
Equation (15). Utilizing the core loss ECM results in a notable enhancement in the average
efficiency across the speed range of 1000–6000 rpm, with an improvement of 12.7%. This
underscores the advantage of utilizing the improved ECM for controlling motor operation.

In 2000, Fernandez-Bernal et al. [98] introduced a comprehensive loss model aimed
at minimizing losses across a spectrum of electric motors, including DC motors, PMMs,
synchronous reluctance motors, and induction motors. They asserted that this generalized
model serves as a foundational framework from which specific loss models for various
motor types can be derived.

In summary, motor drive control algorithms typically rely on the governing equations of
the motor. Integrating core losses into the ECMs would undoubtedly enhance their accuracy
and, subsequently, improve motor performance, especially in terms of power efficiency.

5. Discussion and Conclusions

In this study, the enhancement of performance in PMM drives is explored through
the incorporation of equivalent circuit models that account for core losses. By integrating
core loss considerations into the modeling framework, a more accurate representation of
motor behavior is obtained, thereby facilitating improved control strategies and overall
performance.

Through the investigation, the significance of accounting for core losses in PMM drives
is highlighted. Core losses, consisting of hysteresis and eddy current losses, play a crucial
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role in determining motor efficiency and performance characteristics. Neglecting these
losses can lead to inaccuracies in modeling and control, ultimately limiting the effectiveness
of drive systems. The utilization of ECMs incorporating core loss components offers a more
comprehensive approach to motor modeling. By accurately capturing core loss effects,
these models enable more precise predictions of motor behavior under various operating
conditions. This enhanced modeling capability lays the foundation for the development of
advanced control algorithms aimed at optimizing motor performance.

Furthermore, the findings underscore the importance of considering core losses in the
design and optimization of PMM drive systems. By incorporating core loss considerations
early in the design process, engineers can make informed decisions to improve motor
efficiency and overall system performance. Additionally, the study highlights the potential
for utilizing advanced control strategies, such as predictive torque control, to further
enhance performance gains afforded by accurate modeling.

It is important to acknowledge that while the proposed method offers valuable insights
it also comes with constraints and limitations. Modeling core loss within ECMs proves
challenging due to the intricate interplay of various factors and the complex mechanisms
involved. While more sophisticated ECMs may offer higher accuracy in predicting core
losses, they can simultaneously compromise their effectiveness in motor drive analysis,
design, and control. Therefore, it is imperative to select an ECM that strikes a balance,
considering the specific constraints and limitations inherent in the motor’s design and
operation, such as speed range, load profile, and operational environments.

In conclusion, the investigation demonstrates the significant impact of incorporating
equivalent circuit models considering core losses on the performance of PMM drives.
By accurately accounting for core loss effects, these models enable more effective control
strategies and facilitate the optimization of motor performance. Moving forward, continued
research in this area holds promise for further advancements in PMM drive technology,
ultimately leading to more efficient and reliable motor systems.
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