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Abstract: This study proposes a novel double closed-loop robust control strategy based on a power
switching affine model of three-phase voltage source converters (VSCs). The aim is to overcome
the challenges posed by inaccurate mathematical models, complex controller configurations, indi-
rect switching control, and performance degradation under circuit parameters uncertainty or load
variation in conventional methods. These conventional methods rely on linearization models, duty
ratio regulation, and pulse width modulation (PWM) technologies. The contributions of work are
the following: (1) A two-dimensional (2D) power switching affine model is constructed without
any approximation or averaging. (2) The proposed approach achieves direct switching control of
three-phase VSCs, eliminating the need for complex rotation coordinate transformation, PWM, and
phase locking loop (PLL), which are utilized in traditional control methods. (3) The rigor of the system
stability analysis is enhanced based on the 2D power switching model compared to the existing
three-dimensional (3D) current switching model. (4) A simple control structure with only two control
parameters is employed to address circuit parameter uncertainties. The effectiveness and superiority
of the proposed method is validated through simulation and experimental comparison results.

Keywords: three-phase VSCs; circuit parameters uncertainty; load variation; switching system;
sliding mode observer

1. Introduction

Three-phase voltage source converters (VSCs) are extensively used in renewable
energy systems, electric mobility, and decentralized power generation, among other appli-
cations [1-3]. The operation of these converters depends on the discrete switching states of
power switches, making three-phase VSCs inherently nonlinear systems. The conventional
linearized modeling methods of converters, such as the commonly employed small signal
modeling techniques [4,5], are derived by disregarding high-frequency components of
system states and averaging them over a switching period. Therefore, they fail to accurately
depict the operational procedures of three-phase VSCs [6], thereby impeding the design of
high-performance controllers.

The conventional control approaches for three-phase VSCs, such as the traditional
voltage-oriented control (VOC) methods [7] and direct power control (DPC) methods [8],
rely heavily on linearized models. However, these methods suffer from the drawbacks of
intricate controller design and challenges in tuning control parameters. On one hand, the
rotation coordinate transformations are commonly employed within traditional controller
design frameworks to convert the three-phase AC states into two-phase DC states, i.e., the
direct- and quadrature-axis components [7,8]. To regulate the direct- and quadrature-axis
components effectively, it is necessary to employ multiple control loops and decoupled
control technology. However, uncertainties in circuit parameters inevitably lead to perfor-
mance degradation within this control framework [9-14]. Sliding mode control (SMC) [9],
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adaptive control [10], and fuzzy control [11] are integrated with traditional VOC or DPC
methods to enhance system robustness against uncertainties in circuit parameters or vari-
ations in load. Yet, these approaches introduce new challenges, such as the controller
output chattering in SMC [12], difficulty in selecting appropriate parameters for adaptive
control [13], and real-time control issues in fuzzy control [14]. On the other hand, duty ratio
regulation is commonly employed for three-phase VSCs due to the reliance of traditional
controller design on linearization models. This necessitates the utilization of complex pulse
width modulation (PWM) technology [15,16]. However, the range within which system
states can be regulated may be limited due to constraints on modulation ratio variation
in PWM [16].

The model predictive control (MPC) methods have recently gained significant at-
tention due to their ability to address the aforementioned issues in VOC and DPC. By
minimizing the cost function based on predictive errors of system states, MPC methods
allow for the regulation of multiple system states within a single control loop and facilitate
direct selection of switching states for three-phase VSCs in the next control cycle [17,18].
However, uncertainties in circuit parameters can cause inaccuracies in the predictive values.
Therefore, it is necessary to employ extended observers or compensators to enhance the
control performance of MPC when dealing with circuit parameter uncertainties [19,20].
This necessitates addressing complexities associated with observer design and additional
parameter tuning issues. Moreover, the selection of multi-objective weights and conducting
stability analysis for MPC pose ongoing challenges [21].

The theory of switching systems offers a novel solution for addressing the issues
encountered in traditional converter modeling and control methods. The three-phase VSCs,
operating at different switching states, can be considered as distinct subsystems. In [22,23],
the discrete-time switching linear model is constructed for three-phase active power filter
(APF). Then, a quadratic linear optimal controller and an Hoo controller are designed to
regulate the AC current. The switching models presented in [22,23] accurately capture
the switching characteristics of the three-phase APF. However, it should be noted that
the linearized process of the model in [22,23] still falls within the scope of duty radio
control and therefore cannot be expected to facilitate system analysis. The switching affine
models in [24-26] are constructed for the three-phase AC-DC converter. In contrast to
traditional linearization models, these switching affine models in [24-26] are built without
linearization. Thus, they achieve an accurate description of the working process of the
converter. Moreover, by designing a stability-based switching rule in [24-26], the converter
achieves regulation of its AC current directly through subsystem switching. The need for
complex rotation coordinate transformations and PWM processes in conventional control
methods is avoided. In [27], a switching model is developed for unbalanced grid based on
the positive- and negative-sequence current components of the three-phase PWM converter.
It is emphasized in [27] that this switching rule possesses the important characteristic of
being insensitive to circuit parameters. Therefore, compared to traditional VOC, DPC,
and MPC methods, the utilization of the switching control method [27] enables achieving
strong system robustness without requiring additional observers or compensation blocks.
However, despite the research accomplishments presented in [24-27], there are still two
areas that require further improvement.

Firstly, existing methods based on switching system theory in [22-27] for three-phase
VSCs primarily focus on the states of three-phase AC current. These methods typically
involve formulating three-dimensional (3D) current switching affine models [26,27]. Due to
the different equilibrium points of various subsystems in a switching affine model, system
stability analysis and switching controller design commonly rely on the ‘average’ model and
common Lyapunov function (CLF) [28,29]. In other words, an ‘average’ model of system
under a specific switching sequence is established by addressing a convex combination of
multiple subsystems. Subsequently, the asymptotic or quadratic stability of this ‘average’
system with an equilibrium at the origin is analyzed based on CLF. However, the traditional
3D current switching affine model in [26,27] faces a problem of solving four equations
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to find three convex combination variables when considering the combinations of three
subsystems. A unique solution becomes unattainable. For this problem, in [26,27], one
among the three current states has to be disregarded to reduce formula dimensionality.
Although the authors of [26,27] argue for the formula’s reasonableness under three-phase
balanced conditions, issues of inaccurate representation persist. Additionally, achieving
strict grid balance conditions is challenging in real-world applications; hence, traditional
stability analysis based on current switching models is not rigorous enough.

Secondly, the dynamic behavior of the overall control system is limited by that of
the outer control loop in the commonly used double closed-loop controller for three-
phase VSCs, where the reference for the inner loop controller is derived from the output
of the outer loop controller. Therefore, although it has been demonstrated in [27] that
the switching control in inner loop exhibits insensitivity to circuit parameters, further
enhancements are still required to improve the robustness of the outer loop controller
against load variations.

To address the aforementioned issues in traditional control methods and existing
switching control methods based on the 3D current switching model, this paper proposes a
robust control strategy for three-phase VSCs. The strategy is based on a two-dimensional
(2D) power switching affine model to handle uncertainties in AC-side inductance and circuit
equivalent resistance, as well as load variations. The proposed control system comprises an
inner loop power switching controller and an outer loop feedback linearization controller
with sliding mode observer (SMO). The proposed method offers several key advantages:
(1) A controller configuration with only two control parameters is employed, which is
characterized by its simplicity. (2) It achieves high-performance control of the system, even
in the presence of uncertainties in circuit parameters and variations in load.

2. Power Switching Affine Model

The circuit diagram of three-phase VSCs is illustrated in Figure 1. ug, uy, uc, i, i,
and i. represent the three-phase AC voltages and currents, respectively. The AC-side filter
inductance is L; = L, = L, = L. R signifies the circuit equivalent resistance. S,,; i=1, ..., 6)
are the switching devices. The DC-side filter capacitor is C and load is R;. Uy, indicates the

DC voltage.
sshE 5ol

c

s‘fjt]} S\fﬂﬁjﬁ s‘jjt]}

Figure 1. Three-phase VSCs circuit.

N

According to the instantaneous power theory in [30], the instantaneous active and
reactive power P(t) and Q(t) of three-phase VSCs are defined as

{ P(t) = 5 (ua(t)ia(t) +up(t)ip(t))
Q(t)

(up(t)ia(t) — ua(t)ip(t)) ’
where () = Qua(t) — up(t) — uc(£))/3, ug(t) = (up(t) — uc(t))/V/3, ia(t) = 2ialt) — ip(t) —
ic(t))/3,ig(t) = (ip(t) —ic(t)) /+/3 denote the AC voltage and current components under
two-phase static («8) coordinate frames, respectively.

NGl

(1)
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The primary control objectives for three-phase VSCs in Figure 1 encompass regulating
the DC voltage Uy, and synchronizing the three-phase AC voltages and currents [7]. These
control objectives can be equivalent to the instantaneous power control of P(t) and Q(t) [8].
Defining system power references are P, and Q,; then, we have system state error vector
X(t) = [P(t) Q(t)]T € R2, where P(t) = P(t) — P, and Q(t) = Q(t) — Q,. By calculating
the derivative of (1) by substituting the traditional current differential equations of three-
phase VSCs in [7], we can express a power switching affine error model as

. R _ P 3(1[%-{-14,23) RPy 3UgcFa
X(t) = { L _120] {P(t)} +| T T | = AR() + by, )
w T wP, — =k

r 2L

where w = 27f is angle frequency of AC voltages; f is AC voltage frequency; A is state
matrix; by is switching affine item, where ¢ : [0,00) — M = {1,...,m} is switching signal;
m is the number of subsystems; F, and F p are discrete switching functions, defined as
Fy = uaSya + uﬁswﬁ
, @3)
FIS = uﬁSwa — Maswﬁ

where Sy = (2Swa — Swp — Swe) /3 and Sy = (Sep — Swe)/\/3 are discrete switching
components under af coordinate frames, respectively; Sy; (j =4, b, ¢) is discrete switching
states of j bridge lags in Figure 1, where S;,; = 1 presents the upper switch of j-leg in Figure 1
is turned ON and the bottom switch is turned OFF; S;; = 0 has contrary situation. It is
evident that the three-phase VSCs consist of m = 8 subsystems, as per S, = [Fx F /3] =[Swa
Swb Swel (0 € {1, ..., m}), as shown in Table 1.

Table 1. The subsystems definitions.

Subsystem F, Fg [Swa Swb Swel
Sul 0 0 [000]
Suz S, ey 001]
Su3 iy Vs —F Vi [010]
Sus — 2 — 2 [011]

Sus 3 2 [100]
Suz g 4 V3 b _ ou, [110]
Sug 0 0 [111]

The power switching affine model, denoted as model (2), stands out from the tradi-
tional linearization models in [4-7] by simultaneously describing the continuous dynamics
of subsystems’ instantaneous power and the discrete switching process of the converter.
This model accurately captures the operational dynamics of three-phase VSCs. In contrast
to the conventional 3D current switching models in [24-27], the power switching model
(2) adopts a 2D representation. This characteristic offers significant advantages in terms of
system stability analysis and design of switching rules, which will be further discussed.

3. Proposed Controllers Design
3.1. Inner Loop Switching Controller

Under the switching theory frameworks, the switching rule is designed to select
the switching signal o, where the system asymptotic or quadratic stability should be
guaranteed. The following Theorem 1, which considers the stability and switching rule
simultaneously, is proposed.

If a convex combination vector A, which satisfies the following condition, exists
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Theorem 1. For the switching affine model (2) of three-phase VSCs with N subsystems (N < m). If
there exists a convex combination vector A = [A1,...,An]" € (0,1) that satisfies the following
condition
N
Z )\n - ].
n=1 N . (4)
by =} Auby, =0
n=1

Then, x = 0 is asymptotical stable equilibrium point under the switching rule

57|
7= 25,7 |

). 5)
Sn

Proof of Theorem 1. The following ‘average’ model of switching system (2) is considered
based on the convex combination of subsystems [27-29].

X(t) = A\X(t) + by, (6)

where A = Z AnA, by = Z Auby and Z An = 1. Itis clear that the equilibrium points
=1
of system (6) depend on the affme item b A Deﬁmng a CLF, expressed as

V(x) =X DX, (7)

where D = diag{d d} is a positive definite symmetric matrix and thus V(x) > 0. By
calculating the derivative of (7), we have

. .T .
V(X) =X DX+X DX=(A\X+b)) Dx+X D(A\X+b,) ®)
=x"(ATD + DA,)X +2xX" Db,

N
Dueto } A, =1and A, = A is Hurwitz, we have

n=1

ATD+DA_—¥I<O 9)

Thus, according to Theorem 1, if a convex combination vector A = [Aq, ..., /\N]T €
(0,1) exists and satisfies b, = 0 for (8), then V(i) < 0 is satisfied, i.e., the asymptotical
stable of (6) to original point is guaranteed. For the switching system (2), the behavior of
the ‘average’ model can be mimicked by means of fast switching between the different
subsystems with correct proportion of time A, (0 =1, ..., N) on each constant time inter-
val. According to [24-29], the state-dependent switching rule, where the subsystem has
minimum V (X) is selected for the next cycle, is defined by

= V(X 1
o= argné%lrlb) (x). (10)

From Equations (2), (8), and (10), the subsystem leads to minimum V(i) is equal to
the subsystem has minimum value of item X Db, in (8), which is

(11)

3 u2+u2
NTDba—dxl( 2 lfpr] - Sdudcz{ F }

wP, 2L Fg
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The first term on the right side of Equation (11) is identical for all subsystems. There-
fore, the relative value of each subsystem is determined by the second term on the right
side of Equation (11). As a result, the switching rule can be simplified as (5). [

Remark 1. The necessary stability condition for switching system (2) with multiple equilibria,
as stated in Theorem 1, is the existence of an ‘average’ model with an equilibrium at the origin.
Therefore, it is crucial to confirm the number of subsystems N mentioned in Theorem 1. Since the
proposed power switching model involves 2 state variables, it is required that the number of convex
combination variables N should be 3 to ensure solvability of Equation (4). Similar to [25-27], we
employ sector division and minimum switching principle to obtain a subset of switching signals for
constructing an ‘average’ model. In this paper, we divide an AC voltage period into 12 sectors, as
illustrated in Figure 2. In each sector, only the switching stability between 3 out of 8 subsystems
needs to be considered. Using sector 2 for instance, because uy, < 0 and its absolute value is bigger
than voltage u, and u, the bottom switch of b leg in Figure 1 should be turned ON according the
working principle of three-phase VSCs, i.e., Sy = 0. Thus, only the subset of subsystems Sy1, Sy2,
Sus, and Sy in Table 1 are feasible in sector 2. Furthermore, in accordance with the principle of
minimum switching, it is imperative to minimize the interchanging of bridge legs in converter as
a means to mitigate switching losses. The switching between subsystems Sy» = [Swa Swp Swel =
[001]and Sy5 = [Swa Swp Swel = [1 0 0] should be avoided in sector 2. Consequently, in sector 2, a
subset of subsystems (S,1, S,2, Sue) and a subset of subsystems (S,1, S5, Sue) should be considered
according to Theorem 1. The stability for subset of subsystems (Sy1, Sys5, Sue) and (S,1, Su2, Sus)
are analyzed separately according to Theorem 1.

400

300
200]
100+

0

-100 1

Ua, Ub, Uc/V

-200 1

. oA
300 ~-im= : T : : : : : ]
Sector:Sector; Sector-Sector: Sector; Sector;Sector: Sector; Sector-Sector: Sector; Sector|
1 1 2 1 3 . 4 5 ¢ 6 i 7 g o9 19 11 12
0.005 0.01 0.015 0.02
t/s

-400
0

Figure 2. Twelve-sector division of the three-phase VSCs.

For the subset of subsystems (S,1, Sus, Su¢), if subsystems S,1, S5, or Sy are activated,
respectively, we have

u§+u2) 3(u§+u%) R U, Uy 3(14%44{2) R U c
Al —ﬁPr],b5: T_Lgru_dT , b = Tﬁ—flfr—ﬁ(”“_\/g”ﬁ) (12)
wP, wP, — —-E WPy — 54 (\/3uq + up)

According to Theorem 1, if there exist A, € (0,1) (n =1, 2, 3) satisfying the following
equations, then the switching stability of three-phase VSCs in sector 2 can be guaranteed.

M+Ar+A3=1
3(u3+u’ —
(ui+up) %Pr A Udiuw s Uy (110 —V/311p)

5T A 5T =0 . (13)
(UP}, . )Lz Udiuﬁ o /\3 Udc(uﬁ;z 3140() _ 0
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By solving (13), we obtain

A = (313 +3u3 —2RPr) (V3 —11p) +2LwPy (1o +V/3utp)
1= 23U (1 +143)

A — (3u§,+3u%—2RP,)(uﬁ+\/gua)—ZLwP,(ua—\/guﬁ) (14)
2= 2\/§Udc(u§+ufs)

e — _Suﬁ(uﬁ-&-ué)-&-ZP,(wLua-&-Rul;)
3T VU (1B+43)

Due to uy > 0 > ug in sector 2, A1 to A3 in (14) satisfy the stability conditions of
Theorem 1. Thus, the switching between subsystems S;1, Sy5, and S4 is feasible in sector 2.
In contrary, for the subset of subsystems (S,1, Si2, and S,¢), we have

2P (wLug+Rug)—3ug (uﬁJru%)

M=1- \/§Udc(u§+u§)
= — (3u§+3u%72RP,)(uﬁ+\/§ua)f2LwP,(ua7\/gttﬁ) 15
2 23Uy (1 +143) ' (15)
Ae — (3u3+3uf —2RP,) (V/3ua —up) +2LP, (us++/3up)
3= Zﬁudc(u§+u%)

The infeasibility of switching between subsystems S,1, S,2, and Sy¢ in sector 2 is
attributed to the negative value of A5, as indicated by Equation (15). As a result, an offline
system stability analysis can be conducted for all 12 sectors depicted in Figure 2, followed
by the construction of an offline switching Table 2. For each sampling period, the switching
states of three-phase VSCs for the next control cycle can be directly selected from the offline
switching table, shown in Table 2, based on the switching rule (5).

Table 2. Offline switching table.

Sectors Subsystems Sectors Subsystems Sectors Subsystems
Sector 1 Su1 Sector 5 Su1 Sector 9 Su1
ue > uy >0>u, Suz Uy >0 > uy > 1 Sus up > e >0>u, Su3
5u6 Su7 Su4
Sector 2 Su1 Sector 6 Su1 Sector 10 Su1
Uy >ue > 0> uy Sus up >y > 0> uc Su3 ue >up > 0>u, Su2
5u6 Su7 Su4
Sector 3 Sus Sector 7 Sus Sector 11 Sun
Uy >0>ue > uy Sus up > 0> 1, > U Su7 ue>0>up > u, Su7
Sus Sus Sug
Sector 4 Sue Sector 8 Sus Sector 12 Sun
Uy >0 > up > u Su7 up>0> ue >y Sus ue >0 > u; >uy Sus
Su8 SuS Su8

Remark 2. The sector division approach adopted in this work is similar to the methods utilized
in [25-27]. However, due to the utilization of a 2D power switching model, the stability analysis
becomes more rigorous. When analyzing system stability for N = 3 subsystems across different
sectors in the traditional 3D current switching model discussed in [26,27], four equations need to
be solved to determine three convex combination variables. It is not possible to obtain a unique
solution. In [26,27], one of the three current variables in the traditional current switching model
is disregarded to reduce formula dimensions. The authors of [26,27] argue that this practice is
reasonable under balanced grid conditions. However, it is inappropriate both in terms of formula
expression and actual system operating conditions. If one of the three current variables is ignored
in these traditional models, it becomes difficult to claim that an accurate ‘average’ model of the
switching system has been obtained. Additionally, it is challenging to achieve strict balance in
converter grids in real-world applications. Therefore, the stability conditions may not be rigorous



Energies 2024, 17, 1832

8 of 18

for three-phase VSCs based on traditional 3D current switching models. In contrast, the proposed
2D power switching model for system stability analysis overcomes these limitations.

Remark 3. Compared to the traditional control method of three-phase VSCs, the proposed inner
loop switching control method offers a simpler control system configuration without any control
parameters. Additionally, the proposed switching rule (5) demonstrates robustness against circuit
parameter uncertainty due to its insensitivity towards the circuit parameters L and R in model (2).
Furthermore, in comparison to the traditional switching rule (10) and the switching rule utilized
in [25-27] based on the conventional current switching model, the proposed power-based switching
rule (5) is further simplified, rendering it more suitable for digital programming.

3.2. Outer Loop Feedback Linearization Controller with Sliding Mode Observer

To ensure the constant DC voltage control objectives of three-phase VSCs, the outer
loop controller should be robust to load variations in accordance with changing working
conditions. In other words, since the active power reference P, in inner control loop is
determined by the outer loop controller, it is essential for the outer loop control to be robust
against load variations and calculate the power reference P, based on the real-time load of
the converter. In this subsection, we extend our previous work [31] by combining an outer
loop feedback linearization controller with SMO with the inner loop switching controller.

The voltage equation of three-phase VSCs under two-phase (dg) rotation coordinate
frame is given by [7,31]

au 3 . . .
C dtdc = Eswdldr — L = Upde — 1L, (16)

where u,;. = %Swdidr is manipulating variable; S, is active-axis component of switching
states Sy (j =4, b, ¢); iz, is the current reference of active-axis current iy; iy, is load current.
Assuming the DC voltage reference is Uy, and the DC voltage state error is ¢, = Uy, — Uy,
the conventional feedback linearization control law in [32] can be used, given by

Uyge = ip + CUye — Ckyey = i — Ckyey, (17)

where k; > 0 is the control gain. However, the load may vary according to the working
conditions, i.e., the DC current i = U, /Ry is the variation. Therefore, the active power
reference P, = i; Uy, may inaccurate under load variations. A SMO is used for the current
estimation of load, as expressed in Theorem 2.

Theorem 2. For three-phase VSCs voltage Equation (17), if the following feedback linearization
control law with the SMO are used for outer control loop

Oyge = ir — Ckyey, (18)
dA A 2
{ Cogt = e — i+ (19)
=10

where i, is the improved manipulated variable; ip is an estimated load current; Uy, is esti-
mation value of DC voltage; 0 = —|ey|sat(ey) is the sliding mode item and vy is the observer
gain; e, = Uy, — Uy, is the estimate error of DC voltage. Then, the DC voltage tracking control can
be achieved. Meanuwhile, the observing error e, of DC voltage and observing error ey = iy — iy of
load current approach to zero exponentially.
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Proof of Theorem 2. Due to the minimal DC voltage fluctuation in three-phase VSCs at
high switching frequencies, it can be assumed that there is no load current fluctuation, i.e.,
dip /dt = 0. Therefore, the output DC voltage and current states are expressed as

du, ‘
CYde =y . —ip,
{ o e (20)

Using (20) minus (19), we have

dey dep,
CE =90, = 6. (21)

Defining the Lyapunov function
V =Ce/2> 0. (22)
Then, the derivative of (22) is
V = Cepey = e,0 = —eplen|sat(ey) = —|ez,|2 <0. (23)

The observing error of DC voltage e, and the estimate error of load current e; converge
exponentially to zero. Then, if the feedback linearization control law (18) is used for (19),
we have C % + Ckye, = 0. It is obvious that, as long as control gain k;, > 0, the asymptotical
stable of system is guaranteed. [J

To this end, the active power reference P, = iy Uy,, is obtained, which is time-changing
according to the load variation.

It is notable that the control law with SMO in Theorem 2 is derived based on the volt-
age Equation (16) under a two-phase rotating coordinate frame. However, the computation
of control law (18) and SMO (19) does not require complex coordinate transformations at all.
In conjunction with the inner loop controller, the complete control system of the proposed
method can be designed within a two-phase static (xf3) coordinate frame. This approach
eliminates the need for complex phase-locked loops (PLL) [33], coordinate transforma-
tions, and PWM processes commonly encountered in conventional control methods [7-13].
Moreover, only two positive control parameters (7, k;) need adjustment in the proposed
controller, which is very easy to choose based on control theory and simulation testing. To
sum up, the block diagram of proposed methodology for three-phase VSCs is illustrated
in Figure 3.

—— Inner Control Loop
——= OQuter Control Loop D—IEES o—“J}
- L R St Sy3 Ss
U,
@ " A AAN g O
Us U
I - ) POV AAA b TR é j dc
_@ s fQ VL AN A c
L | . . o
3112 iy Sy
] Ugey +¥ -
{ f il AL
| abc/aff | Sq Sp S¢ N €y
. I | -
Uq Ug « Ip Power i)- P ¥ | |Feedback Control
Calculation o éﬁ(—L With Sliding
Zl Eq.()) 5 5 Switching Rules Mode Observer
R Eqs. (18) (19)
> Sector ) Table 2 | Three Aviable “’a“gé‘?ﬂf" —F, || le—o
5| Selection Subsystems St o,=0

Figure 3. The block diagram of proposed control method.
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4. Simulation and Experimental Results
4.1. Simulation Results

The simulation model is built in Matlab 2018a using the nominal parameters given in
Table 3.

Table 3. Nominal parameters.

Parameters Value Parameters Value
AC Voltage RMS U;, =220V Filter Inductance Filter L=20mH
Equivalent Resistance R=30 Filter Capacitance C =1500 uF
Load Ry, =300 Q) Sampling Frequency fs=40kHz
Observer Gain v =50 Feedback Control Gain ky =60
Active Power Reference P, =1200 W Reactive Power Reference Q=0 Var

The simulation results of the proposed method for three-phase VSCs under nominal
circuit parameters condition are illustrated in Figure 4. Specifically, Figure 4a displays the
output DC voltage waveform, while Figure 4b presents the waveforms of three-phase volt-
age and current. Additionally, Figure 4c presents the active and reactive power waveforms
and Figure 4d exhibits the switching states under switching control framework. From
Figure 4a,c, the regulation of active power P leads to the control of DC voltage, where both
of them reach the expected values. In Figure 4b,c, the regulation of reactive power Q to its
expected value, Q, = 0, ensures that the input current is sinusoidal and synchronized with
the input voltage, achieving high power factor control (PF = 0.9985). Moreover, according to
distinct sector-based switching rules, the subsystem is selected directly using the proposed
method for the next control cycle. Thus, during each control instant, one of the three bridge
legs remains fixed for three-phase VSCs in Figure 4d, distinguishing it from conventional
SPWM and SVPWM methods.

—Ua== Ub~Uc—la--Ib~1lc

la, 1b, tc /A

Ua, Ub, Uc/V

0.1

s 03 0 05 045 0.46 047 048 0.49 05
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L
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(d)

VJOS

Figure 4. Simulation results using proposed method with nominal parameters in Table 3: (a) output
DC voltage waveform; (b) three-phase voltage and current waveforms; (c) the active and reactive
power waveforms; (d) the three-phase bridge legs switching states.



Energies 2024, 17, 1832

11 0f 18

The uncertainties of circuit parameters L and R, where the estimated values [. = 20 mH
and R =1 Q are utilized in inner loop controller and the actual circuit parameters remain
the nominal values in Table 3, have been taken into consideration. The comparison results
of A-phase current simulation among the traditional VOC with PI controller in [7], the
table-based DPC in [8], the FCS-MPC in [18], and the proposed switching control are
illustrated in Figure 5. From Figure 5, we learn that the performance of the traditional VOC
method in [7] is inevitably degraded due to its inaccurate decoupled item in controller
under circuit parameters uncertainty. The A-phase voltage and current waveforms in
Figure 5 exhibit a phase lag when using the traditional VOC method in [7], resulting in a
low PF = 0.975 and low total harmonic distortion (THD) 9.15%. For the traditional DPC
method in [8], because the switching states of three-phase VSCs are derived according to
the positive and negative relation of power error and the predefined switching table, the
conventional DPC method in [8] exhibits remarkable robustness against uncertainties in
circuit parameters. The synchronism of A-phase voltage and current waveforms using
the traditional DPC method in [8] is satisfied, with a PF of 0.9983 and a THD of 5.63%, as
shown in Figure 5. However, because the hysteresis comparators are used to generate the
switching states in traditional DPC method in [8], the current fluctuation of the converter
is big, as seen in Figure 5. The FCS-MPC method in [18] generates the switching states
directly by minimizing the cost function, where the cost function is derived by calculating
the error between the references and the system state predictive values. Thus, it realizes the
satisfied control performance with a simple control structure. However, the robustness of
the traditional FCS-MPC method in [18] is unsatisfactory due to the inherent inaccuracies
associated with uncertain parameters used in the predictive model. The phase lag between
the A-phase voltage and the corresponding current waveforms exists using the traditional
FCS-MPC method in Figure 5 (the PF is 0.9913 and THD is 7.57%). Compared with the
aforementioned control strategies, the proposed method generates switching states of
system directly according to the switching Table 2 and switching rule. It not only avoids
the complicated PWM process in the traditional method but is also insensitive to the circuit
parameters. Thus, the strong robustness and better control performance are achieved
simultaneously using proposed method in Figure 5, where PF is 0.9984 and THD is 5.41%.
The detailed feature comparison between the traditional VOC method [7], the traditional
DPC method [8], the traditional FCS-MPC method [18], and the proposed method are
shown in Table 4.

400 10
300
200 15
100
O ~
~ N
0 10 2
S / 3
=100 psie o SN
—Ua )
-200 —Ia, using the proposed switching control method -
- - -la, using the traditional VOC method
-300 Ia, using the traditional DPC method
""""" Ia, using the traditional FC S-MPC method
Il Il Il Il Il

-400 0
0.75 0.752 0.754 0.756 0.758 0.76 0.762 0.764 0.766 0.768 0.77
t/s

Figure 5. The A-phase voltage and current simulation waveforms of three-phase VSCs using the
proposed method, the VOC method in [7], the DPC method in [8] and the FCS-MPC method in [18]
under circuit parameters of L and R uncertainty.
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Table 4. Detailed comparison of different inner loop control methods.
Strategy The VOC in [7] The DPC in [8] The FCS-MPCin [18]  The Proposed Method
Mathematical Current state equation Instantaneous power Current predictive Power Switching
Model in dq frame model in dq frame model in «f3 frame model in abc frame
Number of Control >4 >2 0 0
Parameters
Sampling Frequency 10 kHz 10 kHz 40 kHz 40 kHz
Switching Frequency 10 kHz 10 kHz 10 kHz 10 kHz
Computation Very High High High Low
Burden (221 times SOP) (171 times SOP) (159 times SOP) (96 times SOP)
Robustness Very Weak Strong Weak Very Strong

For the robustness of outer loop controller, the load variations are considered, where
the load Ry, suddenly changes from 300 () to 450 () at 0.8 s. Figure 6 illustrates the simulation
comparison results among the traditional PI control method in [7], the traditional feedback
linearization method in [32], and the proposed feedback linearization method with SMO
under this load variation condition. In Figure 6, the upper panel shows the DC voltage
waveforms and the bottom panel shows the A-phase current waveforms. The results in
Figure 6 indicate that the traditional PI controller [7] experiences significant fluctuations in
DC voltage (9.1 V) and a slow recovery speed (0.38 s) under load variation. In Figure 6, using
the traditional feedback linearization method in [8], a steady-state voltage error between
the DC voltage and its reference occurs due to discrepancies between the estimated value
and actual load in the controller. However, by incorporating SMO, our proposed voltage
loop feedback linearization control method achieves smaller fluctuations in DC voltage
(5 V) and faster recovery speed (0.22 s). Therefore, it is evident that our proposed voltage
loop control method outperforms others.

610
——Using the PI control method
- - -Using the feedback linearization control method
N 605 N Using the proposed method
\- .,
=~
= 600
5()5 | | | 1 |
0.7 0.8 0.9 1 1.1 1.2 1.3
4 T T T T T
2 4
~
~ 0OF 4
5
-2k
74 L L L 1 L
0.7 0.8 0.9 1 1.1 1.2 1.3
t/s

Figure 6. DC voltage and A-phase current transient state simulation waveforms using the PI control
method in [7], the feedback linearization control method in [32] and the proposed method under
load variation.

4.2. Experimental Results

A 1.2 kW three-phase VSC prototype is utilized to validate the efficacy of the control
strategies, as shown in Figure 7. The digital controller TMS320F28335 is programmed
with control algorithms in the experimental setup, while power quality measurements are
conducted using HIOKI 3197 power quality analyzer.
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Figure 7. A photograph of the experimental setup.

For the practical experimental setup, accurate measurement of actual circuit parame-
ters of three-phase VSCs, such as inductance L, circuit equivalent resistance R, and load
Ry, is challenging due to their inherent uncertainty and potential variation. In light of this
uncertainty in the actual circuit parameters, Figure 8 presents the experimental results of
the proposed method for three-phase VSCs. Figure 8a depicts the A- and B-phases voltage
and current waveforms, while Figure 8b presents the measured active and reactive power
waveforms obtained from D/A channels. Additionally, Figure 8c shows the AC voltage
waveform for the A-phase along with the switching states of the three-phase bridge legs. In
Figure 8a,b, the proposed method enables the instantaneous regulation of active and reac-
tive power, facilitating the synchronization of three-phase AC voltage and a corresponding
current. In Figure 8c, it can be observed that the system achieves direct switching control,
wherein one of the three-phase bridge legs maintains a constant switching state within
each sector. The experimental results shown in Figure 8 align with the simulation results
depicted in Figure 4.

Meanwhile, the unity PF and low THD control for three-phase VSCs is achieved using
the proposed method, where the average PF is 0.995 and the average THD is 4.7%, as
shown in Figure 8c.

Figure 9a—d display the experimental comparison results of A-phase voltage and
current waveforms, as well as the results obtained from HIOKI 3197 power quality analyzer.
These comparisons are made between the traditional VOC method in [7], the traditional
DPC method in [8], the traditional FCS-MPC method in [18], and the proposed switching
control method. It is important to note that these comparisons were conducted while using
the nominal values listed in Table 3 for the inner loop controller design of three-phase
VSCs. In all subplots on the left side of Figure 9, the upper panel displays the A-phase
voltage and current waveforms, while the bottom panel presents enlarged waveforms near
the zero-crossing point. The yellow lines represent the voltage curves of phase A, and the
red lines represent the current curves of phase A in both panels in Figure 9. In Figure 9a,
by using the traditional VOC method in [7], the A-phase current is synchronous to the
AC voltage of converter. However, due to the utilization of a decoupled control structure
in VOC in [7] and the design of a PI controller based on nominal circuit parameters, the
performance of the traditional VOC method described in [7] inevitably deteriorates. There
is a phase lag between the A-phase voltage and its corresponding current waveforms in
Figure 9a using VOC in [7], resulting in a PF of 0.988 and THD of 4.3%. The traditional
DPC method in [8] realizes the active and reactive power control of three-phase VSCs,
respectively. It has strong robustness for the circuit parameters uncertainty in Figure 8b,
where the PF is 0.994 and THD is 3.76%. However, the parameter tuning of the hysteresis
comparators in the traditional DPC method in [8] is difficult. The FCS-MPC method in [18]
faces control performance issues under circuit parameter uncertainty due to the inaccuracy
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parameters used in the predictive model. There is a small phase lag between the A-phase
voltage and the corresponding current waveforms in Figure 9c using the MPC method
in [18], where PF is 0.991 and THD is 4.23%. Meanwhile, the MPC method in [18] still
faces the control parameters tuning difficulty of weights in cost function. The switching
rule calculation of the proposed method is unaffected by circuit parameters, in contrast
to traditional control methods mentioned above. As a result, Figure 9d demonstrates
improved control performance using the proposed method, with a higher PF (0.995) and
lower THD (3.7%). The experimental results in Figure 8 align with the simulation results
depicted in Figure 5.

1500
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Figure 8. The experimental results using the proposed method for practical parameters uncertainty:
(a) the two-phase voltage and corresponding current waveforms; (b) the active and reactive power
waveforms; (c) the A-phase voltage and three-phase switching states waveforms.

The experimental comparison results of the transient load variation (300 () to 450 (3)
among different outer loop control methods are presented in Figure 10, where the proposed
power switching control method is employed for the inner controller. In all subplots of
Figure 10, the upper panel in all subplots displays the DC voltage waveforms represented
by the blue line, while the lower panel illustrates the A-phase current waveforms indicated
by the cyan line. From Figure 10, it can be observed that the traditional PI control method
described in [7] fails to achieve optimal performance during transient load variation, as
evidenced by high voltage perturbation (19.5 V) and slow recovery time (0.32 s), as shown in
Figure 10a. Similarly, the traditional feedback linearization control discussed in [32] exhibits
a steady-state error (13.5 V) in DC voltage under load variation depicted in Figure 10b. In
comparison with these methods, our proposed outer loop controller demonstrates smaller
voltage fluctuation (14.3 V) and faster recovery speed (0.23 s), as illustrated in Figure 10c,
thereby indicating its superior performance.
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Figure 9. A-phase voltage and current experiment results of different inner loop control strategies:
(a) using the traditional VOC method in [7]; (b) using the traditional DPC method in [8]; (c) using the
traditional FCS-MPC method in [18]; (d) using the proposed switching control method.
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Figure 10. Experiment comparison results between the different outer voltage loop control methods
under transient load variations: (a) using the traditional PI control in [7]; (b) using the traditional
feedback linearization control in [32]; (¢) using the proposed feedback linearization control with SMO.

5. Conclusions

The paper presents a 2D power switching affine model for three-phase VSCs. Mean-
while, a combined inner loop switching controller and outer loop feedback linearization
controller with SMO are proposed to address circuit parameter uncertainty and load vari-
ations. Compared to traditional linearized modeling and control methods, the proposed
approach achieves superior performance with simpler control structure and fewer con-
trol parameters, resulting in improved static and transient performance related to PF
and voltage fluctuation. Despite the challenge of the unfixed switching frequency inher-
ent in the proposed method, it still presents considerable improvements over traditional
control strategies.
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