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Abstract: This paper presents a topology optimization (TopO) method for conjugate heat transfer
(CHT), with turbulent flows. Topological changes are controlled by an artificial material distribution
field (design variables), defined at the cells of a background grid and used to distinguish a fluid
from a solid material. To effectively solve the CHT problem, it is crucial to impose exact boundary
conditions at the computed fluid–solid interface (FSI); this is the purpose of introducing the cut-cell
method. On the grid, including also cut cells, the incompressible Navier–Stokes equations, coupled
with the Spalart–Allmaras turbulence model with wall functions, and the temperature equation are
solved. The continuous adjoint method computes the derivatives of the objective function(s) and
constraints with respect to the material distribution field, starting from the computation of derivatives
with respect to the positions of nodes on the FSI and then applying the chain rule of differentiation.
In this work, the continuous adjoint PDEs are discretized using schemes that are consistent with
the primal discretization, and this will be referred to as the “Think Discrete–Do Continuous” (TDDC)
adjoint. The accuracy of the gradient computed by the TDDC adjoint is verified and the proposed
method is assessed in the optimization of two 2D cases, both in turbulent flow conditions. The
performance of the TopO designs is investigated in terms of the number of required refinement
steps per optimization cycle, the Reynolds number of the flow, and the maximum allowed power
dissipation. To illustrate the benefits of the proposed method, the first case is also optimized using
a density-based TopO that imposes Brinkman penalization terms in solid areas, and comparisons
are made.

Keywords: topology optimization; turbulent flow; conjugate heat transfer; cut-cell method; continuous
adjoint; primal–adjoint consistency

1. Introduction

Since its introduction in [1] for use in solid mechanics and structures, TopO has been
widely adopted in a variety of scientific fields, targeting the optimal material layout that
minimizes the given objective function under certain design constraints. TopO formu-
lations for fluid mechanics include phase-field approaches [2], level set methods [3–6],
porosity/density-based methods [7,8], etc., with applications to a wide range of problems,
including Stokes flows [7], laminar [8] and turbulent flows [9–11], unsteady flows [12,13],
reactive flows [14], natural convection problems [15,16], etc. The use of TopO for fluid prob-
lems with CHT first appeared in [17,18] and still remains an active area of research [19–22],
including also the design of bi-fluid heat exchangers [23–25]. An overview of the state-
of-the-art TopO methods for fluid flow problems, including heat transfer, was recently
published [26].

Irrespective of the approach used to compute the optimal material distribution, the
latter is usually introduced into the flow equations through the so-called Brinkman penal-
ization terms, which attempt to drive the flow solution to zero in the solidified parts of
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the domain. This leads to the imposition of the wall boundary conditions only in a weak
sense, which, among other outcomes, may allow some flow leakage into the solidified
domain, making TopO prone to inaccuracies and potentially leading to sub-optimal so-
lutions. Converting the TopO solution to a body-fitted grid and successively performing
shape optimization can mitigate this effect [27], without being able, however, to make
topological changes in this second stage. Attempts to impose boundary conditions in a
stronger sense in TopO, using the finite element/volume methods (FEM/FVM), have been
made. Regarding the former, the XFEM approach was introduced in [28] to perform TopO
based on the level-set approach for 2D laminar flow problems. Recently, it has been utilized
to increase the accuracy of TopO solvers in laminar [29] and turbulent flows [20], including
heat transfer. In FVM methods for TopO, [30] utilized a ghost-cell immersed boundary
method to apply wall boundary conditions for turbulent flow problems, without having to
modify the background mesh. In [31], dealing with laminar flow TopO problems, a cut-cell
approach was used to introduce new boundary faces at the FSI, allowing the solution of
the flow equations on a body-fitted grid and the imposition of boundary conditions in the
strong sense. The present paper utilizes a similar methodology and extends it to tackle
TopO problems under turbulent flow conditions, including CHT. The flow solver utilizes
also adaptive mesh refinement (AMR) to better resolve the flow and thermal boundary lay-
ers around the FSI. AMR has been used recently to enhance the accuracy of TopO using the
density [21] and the level-set approach [22], but not in the context of TopO with immersed
boundary methods, as in this work. The imposition of exact boundary conditions and the
AMR affect not only the accuracy of the flow solver but also the optimized geometries
designed by it; see Section 4.

The majority of works on TopO rely on gradient-based optimization methods, sup-
ported by continuous [10,32] or discrete [11,33] adjoints, to compute the sensitivity deriva-
tives of the objective and constraint functions with respect to the design variables. In a
continuous adjoint, the adjoint PDEs must be discretized and numerically solved; devising
appropriate discretization schemes is a challenge affecting the accuracy of the computed
sensitivity derivatives [34]. In a continuous adjoint, it is important to mention the ease of
implementation, the physical insight into the adjoint terms/equations, and the lower com-
putational cost and memory footprint of the adjoint code. On the other hand, the discrete
adjoint equations are always consistent with the discretized flow equations [33] and may
also retain the convergence characteristics of the flow solver [35]; however, the discrete
adjoint is known for its larger memory requirements and/or computational costs [36,37].
Recently, the present group of authors developed an adjoint methodology named the “Think
Discrete–Do Continuous” (TDDC) adjoint, leading to discretization schemes for continuous
adjoint equations that are consistent with those of the primal solver, drawing inspiration
from the discrete adjoint. Practically, the new TDDC adjoint bridges the gap between
the two adjoint approaches, combining the best of both worlds. Thus, using the TDDC
adjoint, one enjoys the low cost and memory requirements of the continuous adjoint and
the consistency of the discrete adjoint. The TDDC approach was briefly introduced in [38]
in shape optimization and is further elaborated upon herein, constituting the second main
focus of this article.

This article is structured as follows. Section 2 describes the developed cut-cell ap-
proach for CHT TopO problems, including the utilized AMR approach and the primal and
TDDC adjoint equations. Section 3 presents the methodological differences between the
developed cut-cell TopO approach and a density-based one, with Section 4 showcasing
these differences in CHT TopO examples. Here, the importance of applying proper bound-
ary conditions and using AMR in TopO becomes clear. Finally, Section 5 summarizes the
findings of this article.

The methods described in this article are implemented in the in-house variant of the
adjointOptimisation library of OpenFOAM, developed and made public by the present group
of authors. Using the proposed method, the objective function values recorded during
(and, of course, at the end) of the TopO loop are accurate, thus eliminating the need to
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re-evaluate the optimized geometry on a body-fitted grid. In addition, the TDDC adjoint
ensures that consistent gradients are computed throughout the optimization.

2. The Cut-Cell TopO Method

The solution of the TopO problem starts with the generation of a background grid
for the analysis domain, Ωd. In most cases, a typical Cartesian grid suffices. An artificial
“density” field, α, stored at the cell centers of the background grid, corresponds to the
design variables to be updated in each optimization cycle. The α field is transformed
into an auxiliary material distribution field, β (see Section 2.1), indicating the spatial
distribution of a fluid or solid. Areas with β ≈ 1 correspond to solids and those with β ≈ 0
to fluids. Cells with intermediate values appear close to the FSI. These cells are refined
(h-refinement; see Section 2.2) to effectively model the flow phenomena close to the wall.
Then, the βw = 0.5 iso-surface, acting as the interface of a fluid and solid, is computed.
Its intersections with the background grid cells give rise to cut cells separating the initial
grid into fluid, ΩF, and solid, ΩS, domains. The governing flow equations, without the
Brinkman terms usually met in TopO, are solved only in ΩF by applying proper boundary
conditions along its wall boundaries, as if a body-fitted grid was used. The solution of the
temperature equation takes place over both ΩF and ΩS. The continuous adjoint problem
is, then, formulated for the objective function J to be minimized and each flow-related
constraint gi to compute their derivatives with respect to the coordinates of grid nodes
that lie at the FSI. By applying the chain rule of differentiation, these are transformed into
derivatives with respect to the design variables α to be used to update the latter using
the Method of Moving Asymptotes (MMA) [39]. The MMA creates and solves a convex
optimization sub-problem in each TopO cycle, by creating convex approximations to the
objective and constraint functions based on their computed gradients. The various steps of
the TopO algorithm are presented schematically in Figure 1 and are further analyzed below.

Figure 1. Flowchart of the cut-cell-based TopO algorithm.

2.1. Filtering of the Design Variables

To avoid grid-dependent solutions and eliminate the well-known checkerboard patholo-
gies [40], a filtering scheme for the α field is utilized. This computes an auxiliary smoothed
density field, β, by solving a Helmoltz-type filter PDE [41],

RF(β, α)=−
(

r
2
√

3

)2 ∂2β

∂x2
j
+ β − α=0 (1)
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where RF(β, α) denotes the filtering operation and r is the radius, usually defined as 5
to 10 times the average edge length in the background grid. In addition, the usage of
filtering “broadens” the effect of the design variables on the computed FSI and accelerates
the convergence of the TopO.

2.2. Grid Refinement

In each optimization cycle, the grid close to the FSI is adequately refined in order to
accurately simulate the flow and thermal boundary layers. Cells in the vicinity of the FSI
are refined using an h-adaptivity approach. In what follows, the cells of the coarse grid
to be refined are referred to as “parent” cells, whereas those resulting from the splitting
of the “parent” cells are the “offspring”. Note that this work exclusively makes use of
block-structured grids consisting purely of hexahedral cells (square elements of the same
size/area in 2D).

In the beginning of this step, all background grid cells are set to have a uniform
refinement level (L0). Then, cells with β values in the user-defined [βmin, βmax] range are
selected for refinement. This range defines the bandwidths of cells close to the FSI to
be refined, even though the β field is not a distance field. βmin = 0.3 and βmax = 0.7 are
used in the examples presented here in order to refine the cells in a broad band across
the FSI. Then, cells are added to or subtracted from the previously selected set in order
to meet the grid regularity requirements. In particular, cells are marked or unmarked for
refinement in such a way that keeps the level difference of adjacent cells equal to 1, at most;
this is imposed for stability reasons. The cells to be refined are split into 4 (in 2D) or 8
(in 3D) offspring cells, each having a refinement level of LP + 1, where LP is the level of
their parent cell. An octree (in 3D) or quadtree (in 2D) data structure is used to store the
information regarding parent and offspring cells. The cell selection and refinement process
described above is repeated several times in each optimization cycle, until a user-defined
maximum refinement level Lmax is reached. At the end of each refinement step, the β field
is interpolated to the offspring cells, and the selection criterion for new refinement cells is
applied again. In this work, a trilinear polynomial of the following form

β(x, y, z)= p⃗T · c⃗=[1, x, y, z, xy, xz, yz, xyz] · [c0, c1, c2, c3, c4, c5, c6, c7]
T (2)

is constructed for each refined parent cell in terms of the coordinates (x, y, z) in the local
coordinate system and is used to compute the β values at the offspring cell centers. At
each vertex i of the parent cell, β̂i = p⃗T

i · c⃗ should hold. Here, β̂i denotes the interpolated β
value from adjacent cells to vertex i. In a grid with hexahedra, this leads to the formation

of an 8 × 8 linear system of equations of the form A · c⃗=⃗̂β. By inverting A, the unknown
coefficients can be expressed as a linear combination of β̂i, i.e., ci =αij β̂ j, and Equation (2)
can be written as

β(x, y, z)= p⃗T · A−1 · ⃗̂β (3)

Equation (3) requires the β̂ values at grid vertices prior to the refinement. These are
computed by interpolating β from cells to vertices, according to

β̂p =
∑C∈Cells(p) ωpCβC

∑C∈Cells(p) ωpC
(4)

where Cells(p) is the set of cells sharing vertex p and ωpC = 1
∥xp

i −xC
i ∥

are inverse-distance

interpolation weights. Differentiating Equation (4) with respect to β at any cell Q yields

δβ̂p

δβQ
=

ωpQ

∑C∈Cells(p) ωpC
(5)
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if Q belongs on the list of cells sharing p as a vertex, or 0 otherwise. This will later be used

as part of the chain rule to compute
δJ
δα

.

2.3. Generation of Cut Cells

The β field, interpolated at the refined grid vertices though Equation (4), is used to
compute the FSI and create body-fitted grids at each optimization cycle. The FSI reflects the
intersection of grid edges by the βw =0.5 iso-surface (or isoline in 2D). An edge connecting
nodes A and B with values β̂A < βw < β̂B is intersected at

xS
i = xA

i +
βw − β̂A

β̂B − β̂A

(
xB

i − xA
i

)
(6)

Based on Equation (6), the derivative of xS
i with respect to β̂ at any node M is computed as

δxS
i

δβ̂M
=

xB
i − xA

i

β̂B − β̂A

(
βw−β̂B

β̂B − β̂A
δM

A +
β̂A − βw

β̂B − β̂A
δM

B

)
(7)

where δ is the Kronecker delta. Equation (7) is also part of the chain rule computing
δJ
δα

.
Cut cells are created by connecting the computed nodes along the edges intersected

by the iso-surface to define new internal grid faces. The node connectivity is computed as
in [42,43]. The new internal faces split the initial cells into sub-cells belonging to ΩF and ΩS.
This is shown schematically in Figure 2, where the introduced internal faces correspond
to the dark-gray edges. In practice, a cell might be intersected more than once by the βw
iso-surface; see Figure 2c. Surface areas, centers, and normals for the newly added faces are
computed using the xS

i coordinates. The same quantities are re-computed for intersected
faces belonging to ΩF or ΩS using the defined xS

i nodes on these faces and the nodes of the
background face with β̂ < βw or β̂ > βw, respectively. Finally, the cell centers and volumes
of the so-formed cut cells are computed.

In practice, cut cells of small size can be generated. Their presence next to cells of
much larger size might cause numerical instabilities during the flow solution, leading to
convergence issues. To deal with this, each small cell is merged with a neighboring larger
cell if its volume is less than 1% of that of the latter [44], as shown in Figure 3. More than
one small cell can be merged with the same neighboring cell, by also updating the grid
connectivity information. Further discussion of this matter is beyond the scope of this work
and can be found in many papers on conventional cut-cell methods [45–47].

(a) (b) (c)
Figure 2. The two-step generation of cut cells. (a) (Step 1): β is interpolated at each vertex q using the
β values at the neighboring cells Q. (b,c) (Step 2): The xS

i positions where grid edges are cut by the
βw =0.5 iso-surface are computed. Cut cells are generated by connecting these nodes to create new
internal faces that split the initial cell into fluid (blue) and solid (red) parts.
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Compared to level-set-based methods [48], the approach proposed here to track the
FSI is simpler, since it avoids the re-initialization of the signed distance field in each
optimization cycle by solving, for instance, the Hamilton Jacobi equation. Since the solution
of the flow (see Section 2.4) and adjoint (see Section 2.6) equations takes place only in ΩF,
by discarding all cells belonging to ΩS, the computational burden is reduced compared to
that in standard density-based TopO. In other words, the systems of equations emerging
from the discretization of the governing PDEs have as many cells as those in ΩF, with the
exception of the temperature equation, which is solved simultaneously in both ΩF and ΩS,
i.e., over the entire domain Ωd.

Figure 3. Merging a small-volume cut cell belonging in ΩF with a neighboring one.

2.4. Governing Equations

The governing equations for the flow and CHT problem are presented; their boundary
conditions are summarized in Appendix A along with those of the adjoint problem. The
flow solver (and its adjoint) is implemented in the in-house adjointOptimisation library [49]
of OpenFOAM; the latter utilizes a finite-volume discretization and a cell-centered storage
strategy. Details regarding the numerical solution of the governing PDEs follow.

2.4.1. Flow Equations

The flow is governed by the Navier–Stokes equations for incompressible fluids, which,
in residual form, are written as

Rp =
∂vj

∂xj
=0 (8)

Rv
i =vj

∂vi
∂xj

+
∂p
∂xi

−
∂τij

∂xj
=0 , i = 1, 2 (9)

where p is the pressure divided by the constant fluid density and vi is the velocity.

τij = (ν + νt)
(

∂vi
∂xj

+
∂vj
∂xi

)
is the stress tensor, where ν is the bulk and νt the eddy viscos-

ity. The later is modeled by the Spalart–Allmaras turbulence model [50] equation

Rν̃ =vj
∂ν̃

∂xj
− ∂

∂xj

(
(ν + ν̃)

σ

∂ν̃

∂xj

)
− cb2

σ

(
∂ν̃

∂xj

)2

+ ν̃(D(ν̃, y)− P(ν̃, y))=0 (10)
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solved to compute ν̃. In Equation (10), P(ν̃, y)= cb1S̃ and D(ν̃, y)= cw1 fw
ν̃
y2 are the produc-

tion and dissipation terms of the model, respectively. The turbulence model functions are
given by

χ=
ν̃

ν
, fv1=

χ3

χ3+c3
v1

, fv2=1− χ

1 + χ fv1
, S̃=S+

fv2ν̃

κ2y2 , S=
√

2
∥∥∥1

2

(
∂vj

∂xi
− ∂vi

∂xj

)∥∥∥
fw = g

[
1 + c6

w3

g6+c6
w3

] 1
6

, g= r+cw2

(
r6 − r

)
, r=

ν̃

S̃κ2y2

and its constants are cb1 =0.1355, cb2 =0.622, σ=2/3, κ=0.41, cw1 =
cb1
κ2 +

1+cb2
σ , cw2 =0.3,

cw3=2, and cv1=7.1. Finally, the eddy viscosity is computed as νt = fv1ν̃. To avoid extreme
grid stretching close to the wall, the wall function technique, as in Spalding’s formula [51],
is used.

The distances y from the nearest wall, including the FSI, are computed via the solution
of the Hamilton–Jacobi equation [52], reading

Ry =
∂

∂xj

(
∂y
∂xj

y

)
− (1+ϵ)y

∂2y
∂x2

j
−1=0 (11)

in which the diffusion term has been multiplied by (1+ϵ), with ϵ=0.1, for stability reasons.
Equations (8)–(10) are solved in a segregated manner based on the Semi-Implicit

Method for Pressure-Linked Equations (SIMPLE) [53], to handle the pressure–velocity
coupling. Second-order upwind schemes are used to discretize the convection terms.
Second-order central schemes are used for Laplace terms, using an explicit correction
term to take into account the grid’s non-orthogonality. Finally, gradients are computed
by applying Gauss’ theorem over control volumes; linear interpolation from cell to face
centers is used to evaluate the field’s values at their boundaries.

2.4.2. Temperature Equation

The temperature field in ΩF is modeled by the advection–diffusion equation,

RT
F =ρFcF

pvj
∂T
∂xj

− ∂

∂xj

(
ke f f

∂T
∂xj

)
− Q=0 (12)

Here, ρF is the fluid density, and cF
p is the fluid-specific heat capacity. ke f f = kF + kt is the

effective thermal conductivity, which includes a laminar kF and a turbulent kt =
ρFcF

pνt

Prt
part,

where Prt is the turbulent Prandtl number. The assumption that the fluid’s thermophysical
properties do not depend on the temperature is made. In Equation (12), Q is a volumetric
heat source term that can be either constant or given in the form of h

(
Tre f − T

)
, where h is

a constant heat transfer coefficient and Tre f a reference temperature. This difference in the
form of Q (and the corresponding physics) is the main distinction between the two cases
presented in Section 4.

In ΩS, heat conduction (RT
S =0) is modeled by the same equation, by replacing ke f f

with kS (solid thermal conductivity), while considering zero velocity, guaranteed by the
exact boundary conditions over the FSI, due to the use of cut cells.

The discretization of Equation (12) using finite volumes assumes integration over the
boundaries of each cell, which requires k f

e f f ( f = f ace) to be available at the grid faces. For
the internal faces of ΩF and ΩS, the linear interpolation of ke f f from cells to faces is used.
However, special treatment is required at the FSI to accurately compute the diffusive fluxes
q f . There, the heat flux conservation property implies that q f =−q f

F=q f
S, where q f

F, q f
S are

the outgoing heat fluxes from the fluid and solid parts. In discrete form,
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q f =−
(

kF+k f
t

)T f − TF

∆F f︸ ︷︷ ︸
q f

F

= kS
T f − TS

∆S f︸ ︷︷ ︸
q f

S

(13)

where T f is the temperature at the FSI; TF, TS denote the temperature values at the adjacent
fluid and solid cell centers, respectively; and ∆F f , ∆S f are the distances of the cell centers
in ΩF and ΩS, adjacent to the FSI, from the latter. By solving Equation (13) for T f and
substituting it back to either q f

F or q f
S, the heat flux at the interface can be written in terms

of TF and TS as

q f =

(
kF+k f

t

)
ks∆FS(

kF+k f
t

)
∆S f +ks∆F f︸ ︷︷ ︸

k̂ f
e f f

TS − TF

∆FS (14)

Equation (14) is consistent with the way in which the boundary conditions are imposed
at the interface between adjacent domains in CHT simulations based on a partitioned
approach [54].

2.5. Objective Functions and Constraints

In this work, TopO is applied to improve the performance of cooling devices. In the
presented examples (see Section 4), a volumetric heat source term Q is applied over ΩS
and this causes the T over the solid to increase. Due to the high thermal conductivity of
the solid material, the applied heat is then transferred to the fluid/coolant and is removed
through the domain outlet. Depending on the way in which heat is provided to the system,
the TopO aims either to minimize the average temperature

JT =

∫
ΩS

TdΩ∫
ΩS

dΩ
(15)

over ΩS or to maximize the amount of heat transferred from the solid to the fluid. The
latter is the difference in the convecting energy fluxes evaluated at the inlet (SI) and the
outlet (SO), i.e.,

JH =
∫

SI

ρFcF
pvjnjTdS+

∫
SO

ρFcF
pvjnjTdS (16)

Note that, due to the way in which the normal vectors are defined, the two integrals on the
right-hand side of Equation (16) have opposite signs.

An increase in cooling performance usually comes at the expense of higher power
consumption in order to maintain the flow. The energy loss due to friction forces at the
solid walls is given by the volume flowrate–weighted total pressure (pt = p+ 1

2 v2
k) drop

between the inlet and outlet,

PL =−
∫

SI

vjnj ptdS−
∫

SO

vjnj ptdS (17)

which should not exceed a threshold value. This constraint is expressed as

gPL =
PL

P0
L
− πPL ≤ 0 (18)

where P0
L is the power dissipation computed for the starting geometry of the TopO and

πPL is the percentage value of the threshold. A second inequality constraint is imposed on
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the fluid volume so as not to exceed a target percentage (πV) of the analysis domain (Ωd)
volume, as follows:

gV =

∫
ΩF

dΩ∫
Ωd

dΩ
−πV ≤ 0 (19)

2.6. Continuous Adjoint Method for Sensitivity Analysis

To update the design variables α in each optimization cycle, the derivatives of the
objective and the constraint functions with respect to α are computed using the continuous
adjoint [10]. The formulation of the adjoint problem for a general objective function or
constraint, F , starts by augmenting it with the field integrals of the governing equations
multiplied by the adjoint variables to form the Lagrangian, Ł(≡ F ), i.e.,

Ł=F+
∫

ΩF

(
qRp+uiRv

i +ν̃aRν̃+yαRy
)

dΩ+
∫

Ωd

TαRT
F,SdΩ (20)

where q is the adjoint pressure, ui is the adjoint velocity, ν̃a is the adjoint turbulence variable,
yα is the adjoint distance, and Tα is the adjoint temperature.

To compute the total variation in F due to changes in the shape of the interface, Ł is
differentiated with respect to the coordinates xs

m of the points on the FSI, with δŁ
δxs

m
= δF

δxs
m

.
Following the terminology used in shape optimization, these derivatives practically stand
for the sensitivity map of F [55] on the FSI computed by the cut-cell method. Since the
coordinates xs

m depend on the cell center β(α) values, the chain rule of differentiation is
applied to compute the derivatives of F with respect to α.

To derive the adjoint equations and their boundary conditions, δŁ
δxs

m
is expanded using

Gauss’ theorem and the identity δ
δxs

m

(
∂Φ
∂xj

)
= ∂

∂xj

(
δΦ
δxs

m

)
− ∂Φ

∂xk
∂

∂xj

(
δxk
δxs

m

)
[56], relating spatial

derivatives to total derivatives with respect to xs
m and holds for any quantity Φ. This

mathematical development for CHT problems (governed by Equations (8)–(12)) can be
found in [57] (therein, however, for shape optimization) and is not repeated here in the
interest of brevity. δŁ

δxs
m

is written as

δŁ
δxs

m
=

δF
δxs

m
+
∫

ΩF

(
Ru

i
δvi
δxs

m
+ Rq δp

δxs
m
+ Rν̃a

δν̃

δxs
m
+ Ryα

δy
δxs

m

)
dΩ+

∫
Ωd

RTα

F,S
δT

δxs
m

dΩ

+
∫

∂ΩF

(
BCu

i
δvi
δxs

m
+ BCq δp

δxs
m
+ BCν̃a

δν̃

δxs
m
+ BCyα

δy
δxs

m
+ BCTα

F
δT

δxs
m

)
dS−

∫
∂ΩF

uinj
δτij

δbn
dS

−
∫

∂ΩF

ν+ν̃

σ
ν̃a

δ

δbn

(
∂ν̃

∂xj
nj

)
dS+

∫
∂ΩF

ν+ν̃

σ
ν̃a

∂ν̃

∂xj

δnj

δbn
dS−

∫
∂ΩF

Tα
δqF
δxs

m
dS−

∫
∂ΩS

Tα
δqS
δxs

m
dS

+
∫

∂ΩS

BCTα

S
δT

δxs
m

dS+
∫

∂ΩF

Tα(kF+kt)
∂T
∂xj

δnj

δxs
m

dS+
∫

∂ΩS

TαkS
∂T
∂xj

δnj

δxs
m

dS

−
∫

∂ΩF

ΘF
jknj

δxk
δxs

m
dS+

∫
ΩF

∂ΘF
jk

∂xj

δxk
δxs

m
dΩ−

∫
∂ΩS

ΘS
jknj

δxk
δxs

m
dS+

∫
ΩS

∂ΘS
jk

∂xj

δxk
δxs

m
dΩ (21)

The undefined terms in Equation (21) will become clear as the analysis proceeds.
To avoid the computation of δvi

δxs
m

, δp
δxs

m
, δν̃

δxs
m

, δy
δxs

m
, δT

δxs
m

in the fluid and solid domains,
field integrals including them in Equation (21) are eliminated by setting their multipliers to
zero, giving rise to the field adjoint equations

Rq =
∂ui
∂xi

=0 (22)

Ru
i =−

∂(vjui)

∂xj
+ uj

∂vj

∂xi
+

∂q
∂xi

−
∂τα

ij

∂xj
+

∂

∂xj

(
CS̃
S

ν̃aν̃

(
∂vi
∂xj

−
∂vj

∂xi

))

+ρFcF
p Tα

∂T
∂xi

+
∂F
∂vi

=0 , i = 1, 2 (23)
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Rν̃a =−
∂
(
vjν̃a

)
∂xj

− ∂

∂xj

(
ν+ν̃

σ

∂ν̃

∂xj

)
+

1
σ

∂ν̃

∂xj

∂ν̃a

∂xj
+2

cb2
σ

∂

∂xj

(
ν̃a

∂ν̃

∂xj

)

+ν̃a(D(ν̃, y)− P(ν̃, y))+Cν̃ν̃ν̃a+
∂ui
∂xj

(
∂vi
∂xj

+
∂vj

∂xi

)
δνt

δν̃
+

ρ f cF
p

Prt

∂Tα

∂xj

∂T
∂xj

δνt

δν̃
+

∂F
∂ν̃

=0 (24)

Ryα =−2
∂

∂xj

(
∂y
∂xj

yα

)
−ϵyα

∂2y
∂x2

j
−ϵ

∂

∂xj

(
y

∂yα

∂xj

)
+Cyν̃ν̃a =0 (25)

RTα
F =−ρFcF

p
∂
(
vjTα

)
∂xj

− ∂

∂xj

(
ke f f

∂Tα

∂xj

)
−Qα+

∂F
∂T

=0 (26)

where τα
ij =(ν + νt)

(
∂ui
∂xj

+
∂uj
∂xi

)
is the adjoint stress tensor and Qα is the adjoint heat source

term. Terms CS̃, Cν̃, and Cy emerge from the differentiation of the production and dissipa-
tion terms in Equation (10) with respect to S̃, ν̃, and y and can be found in [58]. Eliminating
the same derivatives along the boundaries of ΩF and ΩS gives rise to the adjoint boundary
conditions, summarized in Appendix A.

The solution of the adjoint problem (Equations (22)–(26)) starts by first solving the ad-
joint temperature equation (Equation (26)) over the entire Ωd to compute Tα. Equation (14)
is used to evaluate the adjoint thermal diffusive flux at the FSI, by replacing T with Tα.
Then, the adjoint mean flow (Equations (22) and (23)) and turbulence model (Equation (24))
PDEs are solved in a segregated manner. In this work, the discretization of the adjoint
equations, described in Section 2.7, is consistent with the one used for the primal problem
(as in the discrete adjoint), leading to the computation of accurate sensitivity derivatives.

After satisfying the field adjoint equations and their boundary conditions, the remain-
ing terms in Equation (21) are the shape sensitivity derivatives along the FSI,

δF
δxs

m
=−

∫
∂ΩF

ΘF
jknj

δxk
δxs

m
dS+

∫
ΩF

∂ΘF
jk

∂xj

δxk
δxs

m
dΩ−

∫
∂ΩS

ΘS
jknj

δxk
δxs

m
dS+

∫
ΩS

∂ΘS
jk

∂xj

δxk
δxs

m
dΩ

+
∫

∂ΩF

u⟨n⟩τij

δ
(

ninj

)
δxs

m
dS+

∫
∂ΩF

(kF+kt)Tα
∂T
∂xj

δnj

δxs
m

dS+
∫

∂ΩS

kSTα
∂T
∂xj

δnj

δxs
m

dS (27)

where

ΘF
jk =q

∂vj

∂xk
−vjui

∂vi
∂xk

−uj
∂p
∂xk

+ui
∂τij

∂xk
−τα

ij
∂vi
∂xk

−ν̃a

(
vj

∂ν̃

∂xk
− ∂

∂xk

(
ν+ν̃

σ

∂ν̃

∂xj

)
−2

cb2
σ

∂ν̃

∂xj

∂ν̃

∂xk
−

CS̃
S

ν̃

(
∂vi
∂xj

+
∂vj

∂xi

)
∂vi
∂xk

)
− ν+ν̃

σ

∂ν̃a

∂xj

∂ν̃

∂xk

−2yα
∂y
∂xj

∂y
∂xk

−Tα

(
ρFcF

pvj
∂T
∂xk

− ∂

∂xk

(
(kF+kt)

∂T
∂xj

))
− (kF+kt)

∂Tα

∂xj

∂T
∂xk

(28)

ΘS
jk = kSTα

∂2T
∂xk∂xj

− kS
∂Tα

∂xj

∂T
∂xk

(29)

Note that Equation (27) requires the grid sensitivities δxk
δxs

m
obtained by differentiating the

coordinates of face centers along the FSI and the cut-cell centers with respect to xs
m; the

latter are given by closed-form expressions that can be found in [43].

Having computed
δF
δxs

m
, the chain rule of differentiation helps in computing

δF
δβ

at cell

P as
δF
δβP

=
N
∑
n=1

NP

∑
Q=1

δF
δxsn

m

δxsn
m

δβ̂Q

δβ̂Q

δβP
(30)
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where the first summation is over the N nodes along the FSI, whereas the second is over

all NP nodes at the edges cut by the FSI. The derivatives
δxsn

m

δβ̂Q
,

δβ̂Q

δβP
are obtained through

Equations (5) and (7), respectively. Using the proposed method, non-zero derivatives with
respect to β are computed only at cells close to the FSI. From this point of view, the proposed
TopO method resembles level-set -based rather than the standard density-based TopO. As
a final step, the filtering operation RF

(
Ψβ, δF

δβ

)
(see Section 2.1) is applied to δF

δβ to yield

the derivatives with respect to α at each cell P of the background mesh, viz. δF
δαP

=Ψβ
PΩP,

where ΩP is the cell volume.

2.7. “Think Discrete–Do Continuous” Adjoint Discretization

To compute the gradient of the discretized objective with respect to the design variables
as accurately as in the discrete adjoint, the continuous adjoint PDEs (Equations (22)–(26))
should be discretized in a manner consistent with the primal equations. In this work, this
is achieved by the “Think Discrete–Do Continuous” (TDDC) adjoint, firstly introduced by
the present group of authors in [38] for use in aerodynamic shape optimization. It is now
extended to TopO with CHT. The derivation of the TDDC adjoint starts from the derivation
of a (hand-differentiated) discrete adjoint.

The method is exemplified through the derivation of the consistent discretization of
the convection term in the adjoint temperature equation (Equation (26)), which emerges
from the differentiation of term ρFcF

pvj
∂T
∂xj

(Equation (12)). Integrating the convection term
of Equation (12) over the finite volume ΩP, using the Gauss divergence theorem and a
second-order upwind interpolation, yields

RT
F,P = ∑

f∈F(P)
ρFcF

pvPN
⟨n⟩

(
wPN

U TP+w̃PN
U TN

)
∆S f︸ ︷︷ ︸

ΦT,PN
FO

+ ∑
f∈F(P)

ρFcF
pvPN

⟨n⟩

(
wPN

U
∂T
∂xj

∣∣∣
P

dP f
j +w̃PN

U
∂T
∂xj

∣∣∣
N

dN f
j

)
∆S f

︸ ︷︷ ︸
ΦT,PN

SO

(31)

where vPN
⟨n⟩ is the normal to the face f convecting velocity computed by the Rhie–Chow

interpolation [59], ∆S f are the face areas, and wPN
U , w̃PN

U =1 − wPN
U are the upwind inter-

polation weights computed based on vPN
⟨n⟩ . Moreover, dP f

j is the vector connecting the cell
centroid to the face center. In Equation (31), summation is performed over the faces F(P)
of the finite volume. The spatial gradients of T are computed based on Gauss’ theorem and
linear interpolation from cells to face centers, i.e.,

∂T
∂xj

∣∣∣∣∣
P

=
1

ΩP
∑

f∈F(P)

(
wPN

L TP+w̃PN
L TN

)
nPN

j ∆S f (32)

where wPN
L =

|dN f
j |

|dPN
j | are linear interpolation weights, computed using geometric distances.

Here, ΦT,PN
FO , ΦT,PN

SO denote the first- and second-order convecting fluxes at the faces.

The discrete form of the adjoint convection term −ρFcF
p

∂(vjTα)

∂xj
integrated over a control

volume is

RTα
F,P =−

∫
ΩP

ρFcF
p

∂(vjTα)

∂xj
dΩ =− ∑

f∈F(P)

(
ΦTα ,PN

FO +ΦTα ,PN
SO

)
(33)

where FO and SO have the same meaning as before. According to the proposed TDDC
adjoint, the adjoint fluxes in Equation (33) should be computed as follows

ΦTα ,PN
FO =ρFcF

pv f
⟨n⟩

(
w̃PN

U TαP+wPN
U TαN

)
∆S f , ΦTα ,PN

SO =ρFcF
p

(
w̃PN

L
∂Tα

∂xj

∣∣∣
P
+wPN

L
∂Tα

∂xj

∣∣∣
N

)
nPN

j ∆S f (34)
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for the discrete form of Equation (33) to be consistent with its primal counterpart
(Equation (31)). The first-order adjoint flux in Equation (34) is similar to the corresponding
first-order primal one, ΦTiPN

FO , the only difference being that the upwind interpolation
weights, wPN

U , w̃PN
U , have switched places. This suggests that a downwind scheme should

be employed for the interpolation of Tα at the faces in conformity with the upwind prop-
agating information in the adjoint problem. Additional differences can be seen in the
second-order fluxes, in which the adjoint gradients are multiplied by the linear interpola-
tion weights and are projected onto the face normal vectors, rather than the face-to-cell
distance ones.

The spatial gradients in Equation (34) are discretized as follows

∂Tα

∂xj

∣∣∣∣∣
P

ΩP =− ∑
f∈F(P)

vPN
⟨n⟩

(
w̃PN

U TαP+wPN
U TαN

)
dP f

j ∆S f +TαP ∑
f∈F(P)

vPN
⟨n⟩dP f

j ∆S f (35)

where the fluxes in both terms are computed in a non-conservative manner (i.e., fluxes
computed on the same face are different when seen from the two cells adjacent to that
face, due to the presence of dP f

j ). Despite this, the consistent second-order adjoint flux
(Equation (34)) is conservative; this is in line with the fact that the adjoint energy equation
(Equation (26)) is conservative too.

The full derivation of Equations (34) and (35) is given in Appendix B.

3. Comparison with Density-Based TopO (denTopO)

A sharp distinction between the proposed TopO workflow and that of the density-based
approach (denTopO) is the ability of the former to apply proper boundary conditions along
the FSI and generate (and adapt/refine) body-fitted grids. On the other hand, denTopO
utilizes Brinkman penalization terms to simulate the effect that solidified areas have on
the flow. These terms, expressed in terms of the material distribution field β, are added
to Equations (9)–(11) (and their adjoints) and effectively treat solid walls as regions of
high impermeability. For a flow variable ϕ, the corresponding Brinkman term is given by
BSϕ =βmax I(β)ϕ, where βmax stands for the impermeability value of the solid material and
takes high enough values to ensure that ϕ ≈ 0 inside ΩS. Its value is selected based on the
non-dimensional Darcy number (set here to Da=10−5) expressing the ratio of viscous to
porous forces as follows

βmax =
ν

Da · L2 (36)

where L is a characteristic length. I(β) = β
1+bI(1−β)

is a convex function [7] and bI a
steepening parameter, which penalizes intermediate density values, driving them closer
to 0. In the examples of Section 4, whenever denTopO is utilized, bI = 10. The main
disadvantage of this approach is that, in practice, the imposed penalization terms are
not sufficient to impose exact zero values of the corresponding flow field inside ΩS. For
instance, for ϕ=vi in BSϕ, spurious unwanted flow leakage inside the solid areas, hindering
the accuracy of the flow solution, usually occurs. Moreover, it does not support the use
of the wall function technique in turbulent flows. To solve the CHT problem, the thermal
conductivity k at the cell centers is interpolated between kF and kS, using the β field, as
k(β)= kF+βp(kS − kF), with p=3. The interpolation scheme used for k allows intermediate
values to appear. Then, Equation (12) computes T over Ωd using ke f f = k(β)+(1−β)kt as
the effective thermal conductivity. Note that denTopO is unable to accurately interpolate
ke f f at the FSI (Equation (14)), which is crucial in simulating heat transfer phenomena.

The second difference between cut-cell TopO and denTopO is related to the compu-
tation of the adjoint sensitivities with respect to α. The cut-cell TopO is driven by shape
sensitivities, which are, then, transformed into derivatives with respect to α. These are used
to update the design variables and, subsequently, the FSI’s position. Depending on the r
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value used in Equation (1), δJ
δα in cut-cell-based TopO takes on non-zero values at cells in

the vicinity of the FSI. In denTopO, the derivative of J with respect to α at cell P is given by

δJ
δαP

=
∫

Ωd

βmax(uivi+ν̃a ν̃+yαy)
∂I(β)

∂β

∂β

∂αP
dΩ+

∫
Ωd

∂T
∂xj

∂Tα

∂xj

[
(kS − kF)pβp−1−kt

] ∂β

∂αP
dΩ (37)

These take on non-zero values everywhere in Ωd, allowing thus more drastic topological
changes between optimization cycles.

4. Application in CHT Problems

The proposed method is demonstrated in two different CHT TopO problems. The two
topologies, having a single (CHT-A) and a split (CHT-B) outlet, can be found in Figure 4,
with dimensions given in terms of the inlet height H = 0.1 m. CHT-A was first defined
in [19]. The design variables α take on a zero value inside the inlet and outlet channels
(Figure 4) and are allowed to vary only in the central part of the geometry (shown in
blue color in Figure 4; this stands for the design domain ΩD), where a solid material (in
gray color) can be added or subtracted. For both cases, a Cartesian background grid is
generated, with 21.6 K square cells of edge length equal to h= H

20 . Even if both cases are
symmetric with respect to the top horizontal line, the entire domain is shown in most
figures presenting results.

The working fluid is air, with a constant density ρF = 1.18 kg/m3, specific heat
capacity cF

p =1004.9 J/kg·K, thermal conductivity kF =0.0254 W/m·K, and bulk viscosity
ν=1.5 × 10−5 m2/s. Moreover, Prt =1. The solid material corresponds to aluminum with
kS = 237 W/m·K. The fluid enters the domain at the temperature of Tin = 273 K; the exit
pressure is set to zero. The case Reynolds number is defined as Re= vin H

ν , in terms of the
inlet velocity magnitude vin. Unless specified otherwise, the inlet velocity is vin =0.375 m/s,
or Re=2500.

In CHT-A, the sought solid domain is heated by a constant volumetric heat source
Q=1 kW/m2. TopO seeks to minimize the average temperature over ΩS (JT, Equation (15)).
In CHT-B, the volumetric heat source term applied over ΩS is given by
Q=h

(
Tre f − T

)
, where h=10 W/m2K and Tre f =373 K. Since Q is not fixed, the goal is to

maximize the heat transferred to the coolant by maximizing JH (Equation (16)). In both
cases, the fluid volume (area in 2D) inside ΩD should be less than 45% of ΩD (πV ≈0.49
in Equation (19)). Power dissipation for CHT-A is controlled by setting πPL = 0.33 in
Equation (18), whereas three different πPL values (0.25, 0.33, and 0.5) are used in CHT-B to
investigate its effect on the cooling performance (see Section 4.4).

(a) CHT–A (b) CHT–B
Figure 4. A single-outlet (a) and a split-outlet (b) 2D topology [19]. The geometry and boundary
conditions imposed at the inlet and outlet. The external walls are adiabatic. The available design
space, ΩD, where TopO can add or subtract solid material, is the central rectangular area shown in
blue. H=0.1 m.

Regarding the MMA settings used in both cases, the adaptation parameters controlling
the amount of the asymptote decrease or increase in each optimization cycle are set to
0.5 and 1.05, respectively, instead of the recommended (in [39]) values of 0.7 and 1.2. In
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addition, ρ=5 × 10−5 (as opposed to the default value of 1 × 10−5) is used to increase the
convexity of the approximated J , gPL , and gV .

4.1. CHT-A Results Using denTopO

For the purpose of comparison, CHT-A is firstly optimized using the “standard”
denTopO approach with Brinkman terms in the flow equations (see Section 2.4). Using the
inlet height H as the characteristic length in Equation (36), βmax =150. As denTopO cannot
trace the FSI, there is no clear boundary separating ΩF and ΩS. Thus, JT (Equation (15))
and gV (Equation (19)) are recast as follows

JT =

∫
Ωd

βTdΩ∫
Ωd

βdΩ
, gV =

∫
Ωd

(1 − β)dΩ∫
Ωd

dΩ
− πV ≤ 0 (38)

where integrations over Ωd (instead of ΩF and ΩS) are performed by considering the β
field. In addition, in Equation (12), the imposed heat source term Q is multiplied by β to
activate the term in the solidified part only. Note that, in this problem, as the solid volume
changes during the optimization, the total amount of heat given to the solid,

∫
Ωd

βQdΩ, is
not fixed. The volume constraint ensures that a minimum amount of heat is given to the
system and avoids trivial all-fluid solutions.

Figure 5 shows the convergence of the normalized JT value and the imposed con-
straints. At the beginning of denTopO, both gV and gPL are violated. The first ∼20 cycles are
spent to meet the inequality constraints; then, the MMA goes on to reduce JT to 335.4 K.
The optimized distribution of β is shown in the bottom half of Figure 6a. Even though the
computed β field in the optimized solution is almost binary, thin gray areas between the
fluid and solid appear. The top half of Figure 6a corresponds to the optimized geometry, for
which the FSI has been computed by post-processing the β field to generate cut cells. On
the background grid that is adapted to the FSI, the optimized solution is re-evaluated using
the cut-cell code. This re-evaluation gives JT =447.6 K, with gPL =−0.14. This means that,
when re-evaluated with the cut-cell primal solver, the denTopO solution still has a lot of
room before approaching the PL threshold, justifying the poor thermal performance. In
terms of execution time, the cut-cell flow and adjoint solvers are ∼38% and ∼30% faster than
the corresponding Brinkman solvers, for the same amount of SIMPLE iterations, without
the usage of AMR, and on the same hardware. This reduction in computational cost is
expected, considering that ΩS occupies ∼51% of Ωd. Isolines for the non-dimensional
velocity magnitude ∥vi∥

vin
, the intermediate Spalart–Allmaras model variable χ = ν̃

ν , and
the temperature T using the Brinkman and the cut-cell-based flow solvers are shown in
Figure 6b–d, respectively. As indicated by the iso-velocity contours of Figure 6b, the re-
evaluation on the cut-cell grid results in a different distribution of the incoming flow within
the various channels. Due also to the inability of the denTopO flow solver to impose accurate
boundary conditions on the FSI, significant discrepancies in the computed temperature
fields between the two flow solvers can be seen, as in Figure 6d. This study highlights
the importance of performing TopO based on solvers able to accurately compute physics.
As shown in Section 4.3, a better-performing (in terms of cooling) design can be obtained
using the proposed methodology.
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Figure 5. denTopO of a single-outlet heat exchanger (CHT-A): convergence of the normalized objective
function JT

J 0
T

and the constraints.

(a) Topology seen using the β field (b) Non-dimensional velocity magnitude ∥vi∥/vin isolines

(c) Spalart–Allmaras model variable χ= ν̃
ν isolines (d) Temperature T isolines

Figure 6. CHT-A results using denTopO. The bottom half of each domain is the outcome of denTopO.
The top half is the same (optimized using denTopO) solution that has been post-processed to generate
cut cells and re-evaluated by imposing accurate FSI conditions.
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4.2. Verification of Computed Sensitivities Using TDDC Adjoint

In this subsection, the computed sensitivity derivatives using the proposed TDDC
adjoint of Section 2.7 are validated against finite differences (FDs) for CHT-A. To reduce the
cost of the FDs, which depends directly on the number of design variables, a volumetric
NURBS-based parameterization is used. In particular, a 2D lattice of NX × NY nodes
controls the α values in cells lying within its boundaries; the latter coincide with the
boundaries of ΩD (Figure 7). The αCP values at the control points are the design variables
of the problem, instead of the α values of the background grid cells. Since NX = 25,
NY=13, this leads to 325 design variables in total. A set of parametric coordinates (u, v)
is assigned to each cell P, the center coordinates (xP, yP) of which lie within the control
lattice; the parametric coordinates at P are computed as uP =

xP−xmin
xmax−xmin

, vP =
yP−ymin

ymax−ymin
and

the α value as

aP =
NX−1

∑
i=0

NY−1

∑
j=0

Ui(uP)Vj(vP)α
ij
CP (39)

where Ui, Vj are the second-degree NURBS basis functions. Taking the derivative of
Equation (39) with respect to αlm

CP yields, δαP
δαlm

CP
=Ul(uP)Vm(vP).

The control lattice is shown in Figure 7a, whereas the resulting geometry after trans-
forming the α field into cut cells is presented in Figure 7b; the velocity field is shown
inside ΩF, whereas ΩS is in gray. The derivatives of JT with respect to the α cell values
are computed by the adjoint method, as described in Section 2.6. The chain rule of differ-
entiation transforms δJT

δαP
into δJT

δαlm
CP

. The so-computed derivatives for the first 100 design

variables are plotted in Figure 7c and are in perfect agreement with those computed by the
FDs. This verifies the accuracy of the sensitivity derivatives of J when the TDDC adjoint
discretization schemes are used. The same level of accuracy is obtained for the derivatives
with respect to the remaining design variables, which are not shown here. It should be
noted that the lattice shown in Figure 7 is used only in this comparison, to keep the cost of
the FDs as low as possible, and not in any other study that follows.

(a) (b) (c)

Figure 7. CHT-A: verification of the TDDC adjoint sensitivity derivatives of JT against FDs for the
cut-cell TopO solver. (a) The 25 × 13 lattice controlling the α field. The control points are colored
by their αCP values, which take on user-defined values close to 0/1. (b) The channel geometry (ΩF)
created by transforming αCP into cut cells and iso-velocities. (c) Sensitivity derivatives of JT with
respect to αCP computed by the TDDC adjoint method and FDs.

4.3. CHT-A Results Using Cut-Cell-Based TopO

Having verified the accuracy of the computed derivatives using the TDDC adjoint,
the latter is used by the cut-cell-based TopO to optimize the cooling in CHT-A. To initialize
the case, ΩD has been seeded with multiple square solid structures of size H

2 ; see Figure 8a.
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(a)

(b)

Figure 8. CHT-A (a) and CHT-B (b) initializations.

First, the importance of using the grid refinement strategy of Section 2.2 is demon-
strated by solving the TopO problem with 0, 1, and 2 refinement steps. The three solutions
will be referred to as R0, R1, and R2, respectively; see Figure 9. Small but significant
differences exist among the three optimized geometries. Since the design variables of TopO
are defined on the background grid, the unknown optimization variables are the same
in all three cases; therefore, the differences in the optimized geometries can be attributed
only to differences in the flow solution’s accuracy due to the grid refinement. At the end
of the refinement process (if applied), the grid used to solve the flow consists of 21.6 K,
∼62 K, and ∼140 K cells for R0, R1, and R2, respectively; a close-up view of the refined
grid close to the FSI walls in the central area of the three optimized geometries is given
in Figure 9. The maximum y+ values computed at the cell centers adjacent to the FSI are
also reported; as expected, lower values are computed as the grid resolution close to the
FSI increases. According to the JT values listed in Figure 9, each computed using the grid
utilized during TopO, the three optimized designs perform equally well in terms of cooling.
For a fair comparison, solutions R0 and R1 are re-evaluated after refining the background
grid twice using the already optimized β field. The computed JT and ∆pt values are listed
in Table 1. The power dissipation values of (the re-evaluated) R0 and R1 solutions exceed
the maximum allowed value, which means that the gPL constraint is not met. Irrespective
of the violation or not of this constraint, solution R2 outperforms R0 and R1 in terms of JT .
The current study confirms the need to refine the grid during TopO.

Table 1. CHT-A: performance of solutions R0, R1 (both re-evaluated using two grid refinement steps),
and R2. The power dissipation threshold value is ∆pthresh

t =ρFπPL ∆p0
t =9.8 × 10−2 Pa.

Solution R0 R1 R2

JT [K] 387.6 380.4 378.6
∆pt

[
×10−2 Pa

]
11.17 10.50 9.8

The Reynolds number’s effect on the optimized solution is also investigated. The opti-
mization problem is solved for three different inlet velocity values, namely vin =0.15 m/s,
0.375 m/s, and 0.75 m/s, corresponding to Re=1000, 2500, and 5000, respectively. Based
on the previous study, the grid is refined twice in each cycle of TopO and this leads to the
maximum y+ values at cells adjacent to the FSI equal to 3, 5, and 8, respectively.

The optimized solutions for the three Re are presented in Figure 10. The average
temperature values in ΩS are also given. Note that the solution presented in the middle
column of Figure 10 is identical to R2, as in Figure 9. The power dissipation value P0

L of
the initial design (Figure 8) increases as Re increases and so does the maximum allowed
power dissipation, according to Equation (18). In all optimized designs, a number of solid
bodies, forming a network of flow channels inside the design domain for improved cooling,
can be observed. For Re=1000, larger solid structures, aligned with the flow, are created.
By increasing Re, more solid structures of smaller sizes, and thus more and narrower
flow channels, are formed. Thus, the heat dissipation is enhanced and this is reflected
in the average temperature values being equal to JT = 547.25 K, 378 K, and 340.4 K for
Re= 1000, 2500, and 5000, respectively. These observations are in agreement with those
in [19,20]. Figure 11 shows the convergence of the normalized JT value and of the imposed
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constraints for the three optimizations of Figure 10. In the beginning of the TopO, the
fluid volume is more than 45% of ΩD and, thus, gV is violated. As the solid material is
added to meet gV , more heat is given to the system and this leads to higher JT values.
Once gV has been satisfied, an almost constant amount of heat, Q = 275 W, is imposed
in all remaining cycles. After satisfying both gV and gPL , the MMA tries to minimize the
value of JT ; see Figure 11. Since a further decrease in the fluid’s volume and ∆pt would be
counterproductive with respect to the cooling of CHT-A, both gV and gPL are practically
satisfied as equality constraints (gV , gPL ≈ 0).

Max y+=10 Max y+=6.5 Max y+=5

JT =378K JT =378.4K JT =378.6K

Figure 9. CHT-A results using the cut-cell-based TopO: optimized designs at Re = 2500 using no
grid refinement (left), one (center), and two grid refinement steps (right). Rows from top to bottom
correspond to optimized geometries, grid density over a selected area, and ∥vi∥

vin
and T isolines.
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Re=1000 Re=2500 Re=5000

JT =619.7K JT =378.6K JT =340.4K

Figure 10. CHT-A results using the cut-cell-based TopO: optimized designs for three different
Reynolds numbers. Rows from top to bottom correspond to ∥vi∥

vin
and T isolines.

Figure 11. CHT-A: convergence of the normalized objective function JT
J 0

T
and the constraints for three

Reynolds numbers.

4.4. CHT-B Results Using Cut-Cell-Based TopO

The ability of the proposed method to generate optimal topologies is demonstrated in
a second configuration, in which the outlet duct has been re-located to the bottom right
of ΩD; see Figure 4b. Compared to CHT-A, the solid material is heated up according to
the following volumetric heat source term: Q=h

(
Tre f − T

)
. TopO seeks to maximize the

heat transferred to the fluid. The latter is expressed by JH (Equation (16)), which, after
taking into consideration the energy conservation, is equivalent to

∫
ΩS

h
(

Tre f − T
)

dΩ. As
in CHT-A, the initial design has been seeded with multiple square solid structures; see
Figure 8b.
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The influence of the maximum allowed power dissipation inside the heat exchanger is
investigated by performing the optimization for three different πPL values (Equation (18)),
namely πPL = 0.25, πPL = 0.33, and πPL = 0.5. The background grid is refined twice in
each TopO cycle. The optimized solutions are presented in Figure 12. Increasing πPL ,
and thus the allowed power dissipation, leads to the formation of more flow channels for
enhanced heat transfer. The average temperature inside ΩS for the three designs shown in
Figure 12 is JT =327.9K, 323.4K, and 318.6K. As expected, lower values of JT are obtained
by increasing πPL as this allows more heat to be exchanged.

πPL =0.25 πPL =0.33 πPL =0.5

JH =124W JH =138.4W JH =159.5W

Figure 12. CHT-B results using the cut-cell-based TopO: optimized designs for three different ∆pt

threshold values. Rows from top to bottom correspond to ∥vi∥
vin

and T isolines.

5. Conclusions

A TopO framework that combines a material distribution field (design variables) and
the cut-cell method to tackle laminar and turbulent flow problems with CHT is proposed.
Here, the design variables are defined at the cell centers of a background grid and their
post-processing yields an auxiliary field β that helps to identify fluid and solid areas, as
well as the FSI as the βw =0.5 iso-surface. The FSI’s intersections with the background grid
generate cut cells, giving rise to a body-fitted grid on which the flow equations are solved
by applying proper boundary conditions, including wall functions. As cells belonging to
ΩS are discarded, the solution cost of the flow and adjoint equations is reduced (by up
to ∼38% in the examined cases). Additionally, the proposed workflow is able to locally
refine the grid close to the FSI to capture the flow physics. The proposed method replaces
the Brinkman penalization terms in the flow equations, frequently met in TopO, with the
imposition of exact boundary conditions on the FSI and, thus, avoids spurious flow leakage
inside ΩS.

To facilitate TopO, the continuous adjoint method is derived for the CHT problem
and computes the sensitivity map of J on the FSI. The chain rule is applied on the com-
puted shape sensitivities, yielding the derivatives with respect to the material field. This
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is the mechanism that allows topological changes to be made. This work also focuses
on the derivation of consistent discretization schemes for the adjoint PDEs. This deriva-
tion, guided by a hand-differentiated discrete adjoint, under the name “Think Discrete–Do
Continuous” or the TDDC adjoint, enables the computation of consistent gradients for the
discretized objective function (as in the discrete adjoint) and provides physical meaning to
the underlying adjoint PDEs and a low memory footprint (as in the continuous adjoint).

The cut-cell TopO workflow was demonstrated in two 2D cases having a single (CHT-
A) and a split (CHT-B) outlet, both operating in turbulent flow conditions. CHT-A was first
optimized using the density approach for TopO, relying on the usage of Brinkman penaliza-
tion terms and interpolation schemes for the thermal conductivity. The re-evaluation of the
optimized geometry using the developed cut-cell flow solver showed large discrepancies in
the objective and constraint values. In the same case, the accuracy of the proposed TDDC
adjoint solver in computing the gradient of J with respect to α was verified against FDs.
The use of the cut-cell-based TopO method highlighted the importance of grid refinement
to accurately compute the performance during TopO and obtain solutions that truly meet
the imposed constraints. CHT-A and CHT-B were optimized for different Re numbers and
with different threshold values for the allowed power dissipation, respectively, reaffirming
that higher values of both lead to the creation of more flow channels and, eventually, better
cooling performance.

The proposed method was demonstrated in 2D cases of academic interest drawn from
the literature, to allow for several parametric studies at a low computational cost. The
corresponding s/w for 3D flow/optimization problems has already been implemented and
its application will be the focus of subsequent research.
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Appendix A. Primal and Adjoint Boundary Conditions

The boundary of Ωd generally comprises inlets (SI), outlets (SO), solid walls (SW),
and symmetry planes (Ssym). The boundary conditions imposed on the primal and adjoint
fields of Sections 2.4 and 2.6 are summarized in Table A1. The BC terms as in Equation (21)
are given by

BCq =uini+
∂F
∂p

(A1)

BCu
i =−qni+vjnjui+τα

ij nj−
CS̃
S

ν̃aν̃

(
∂vi
∂xj

−
∂vj

∂xi

)
nj+

∂F
∂vi

(A2)

BCν̃a =vjnjν̃a+

(
ν+ν̃

σ

)
∂ν̃a

∂xj
nj+

∂F
∂ν̃

(A3)

BCyα =2yα
∂y
∂xj

nj (A4)

BCTα =ρFcF
pvjnjTα+(k+kt)

∂Tα

∂xj
nj+

∂F
∂T

(A5)

and are set to zero in order to derive the adjoint boundary conditions.

Table A1. Boundary conditions for the primal and adjoint fields.

Inlet (SI) Outlet (SO) Solid Walls (SW ) Symmetry Plane (Ssym)

p ∂p
∂xj

nj =0 p=0 ∂p
∂xj

nj =0
∂p
∂xj

nj =0

vi vi =−vinni
∂vi
∂xj

nj =0 vi =0 vini =0, ∂vt
i

∂xj
nj =0

ν̃ ν̃=10ν ∂ν̃
∂xj

nj =0 ν̃=0 ∂ν̃
∂xj

nj =0

y ∂y
∂xj

nj =0 ∂y
∂xj

nj =0 y=0 ∂y
∂xj

nj =0

T T=Tin
∂T
∂xj

nj =0 ∂T
∂xj

nj =0 ∂T
∂xj

nj =0

q ∂q
∂xj

nj =0 BCu
i ni =0 ∂q

∂xj
nj =0

∂q
∂xj

nj =0

ui BCp =0, uiti =0 BCu
i ti =0, ∂(uini)

∂xj
nj =0 BCp =0, uiti =0 ∂(uiti)

∂xj
nj =0, uini =0

yα yα =0 yα =0 ∂yα

∂xj
nj =0

∂yα

∂xj
nj =0

ν̃a ν̃a =0 BCν̃a =0 ν̃a =0 ∂ν̃a
∂xj

nj =0

Tα Tα =0 BCTα =0 ∂Tα
∂xj

nj =0 ∂Tα
∂xj

nj =0

Appendix B. Derivation of Consistent Discretization Schemes for the Adjoint
Convection Term of the Temperature Equation

In this appendix, the formulas for the consistent adjoint fluxes, given by Equation (34),
to the second-order upwind discretization of the energy equation convection term are
derived. In the discrete adjoint, the discrete residual RTα

P of the Tα equation at cell P is
given by

RTα
P = ∑

Q∈Ωd

(
TαQ

∂RT
Q

∂TP

)
+

∂F
∂TP

(A6)

Using Equation (31) as the discrete residual of the primal equation,

∑
Q∈Ωd

TαQ
∂RT

Q

∂TP
=∑

Q
TαQ ∑

f∈F(Q)

∂ΦT,QN
FO

∂TP︸ ︷︷ ︸
RTα

FO,Q

+∑
Q

TαQ ∑
f∈F(Q)

∂ΦT,QN
SO

∂TP︸ ︷︷ ︸
RTα

SO,Q
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The term RTα
FO,P, including the derivatives of first-order fluxes, is first developed:

RTα
FO,P =∑

Q
TαQ ∑

f∈F(Q)

ρFcF
pvQN

⟨n⟩

(
wQN

U
∂TQ

∂TP
+w̃QN

U
∂TN
∂TP

)
∆S f

= ∑
f∈F(P)

ρFcF
pvPN

⟨n⟩wPN
U (TαP−TαN)∆S f (A7)

By adding and subtracting ρFcF
pvPN

⟨n⟩TαP∆S f , and using w̃PN
U =1 − wPN

U as well as the mass
fluxes over all faces of ΩP that sum up to zero, Equation (A7) becomes

RTα
FO,P =− ∑

f∈F(P)
ρFcF

pvPN
⟨n⟩

(
w̃PN

U TαP+wPN
U TαN

)
∆S f (A8)

In Equation (A8), ρFcF
PvPN

⟨n⟩
(
w̃PN

U TαP+wPN
U TαN

)
∆S f stands for the consistent first-order

adjoint convective flux, as given in Equation (34).
The differentiation of the second-order flux term RTα

SO,P with respect to TP gives

RTα
SO,P =∑

Q
TαQ ∑

f∈F(Q)

ρFcF
pvQN

⟨n⟩

wQN
U

∂

∂TP

(
∂T
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)
Q

dQ f
j +w̃QN

U
∂

∂TP

(
∂T
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)
N

dN f
j

∆S f

=−∑
Q

ρFcF
p

∂

∂TP

(
∂T
∂xj

)
Q

 ∑
f∈F(P)

vQN
⟨n⟩

(
w̃QN

U TαQ+wQN
U TαN

)
dQ f

j ∆S f −TαQ ∑
f∈F(P)

vQN
⟨n⟩ dQ f

j ∆S f


The multiplier of ∂

∂TP

(
∂T
∂xj

)
Q

gives rise to the so-called adjoint gradient term given by

Equation (35). To proceed with the derivation, the discretization of ∂T
∂xj

using Gauss’ theorem
(Equation (32)) is differentiated with respect to TP, and this yields

RTα
SO,P =∑

Q
ρFcF

p
∂Tα

∂xj

∣∣∣∣∣
Q

∂

∂TP

(
∂T
∂xj

)
Q

ΩQ

=∑
Q

ρFcF
p

∂Tα

∂xj

∣∣∣∣∣
Q

∑
f∈F(P)

(
wQN

L
∂TQ

∂TP
+w̃QN

L
∂TN
∂TP

)
nQN

j ∆S f

= − ∑
f∈F(P)

ρFcF
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(
w̃PN

L
∂Tα

∂xj

∣∣∣∣∣
P

+wPN
L

∂Tα

∂xj

∣∣∣∣∣
N

)
nPN

j ∆S f (A9)

where, considering also that the normal vector nPN
j points outwards from ΩP, the identity

∑ f∈F(P) nPN
j ∆S f = 0 has been used to obtain the last expression. From Equation (A9), it

can be seen that the term within the summation is identical to the second-order consistent
adjoint flux given in Equation (34).
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