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Abstract: Wind energy is a renewable resource with abundant reserves, and its sustainable devel-
opment and utilization are crucial. The components of wind turbines, particularly the blades and
various surfaces, require meticulous defect detection and maintenance due to their significance. The
operational status of wind turbine generators directly impacts the efficiency and safe operation of
wind farms. Traditional surface defect detection methods for wind turbines often involve manual
operations, which suffer from issues such as high subjectivity, elevated risks, low accuracy, and
inefficiency. The emergence of computer vision technologies based on deep learning has provided a
novel approach to surface defect detection in wind turbines. However, existing datasets designed for
wind turbine surface defects exhibit overall category scarcity and an imbalance in samples between
categories. The algorithms designed face challenges, with low detection rates for small samples.
Hence, this study first constructs a benchmark dataset for wind turbine surface defects compris-
ing seven categories that encompass all common surface defects. Simultaneously, a wind turbine
surface defect detection algorithm based on improved YOLOv5 is designed. Initially, a multi-scale
copy-paste data augmentation method is proposed, introducing scale factors to randomly resize the
bounding boxes before copy-pasting. This alleviates sample imbalances and significantly enhances
the algorithm’s detection capabilities for targets of different sizes. Subsequently, a dynamic label
assignment strategy based on the Hungarian algorithm is introduced that calculates the matching
costs by weighing different losses, enhancing the network’s ability to learn positive and negative
samples. To address overfitting and misrecognition resulting from strong data augmentation, a
two-stage progressive training method is proposed, aiding the model’s natural convergence and
improving generalization performance. Furthermore, a multi-scenario negative-sample-guided learn-
ing method is introduced that involves incorporating unlabeled background images from various
scenarios into training, guiding the model to learn negative samples and reducing misrecognition.
Finally, slicing-aided hyper inference is introduced, facilitating large-scale inference for wind turbine
surface defects in actual industrial scenarios. The improved algorithm demonstrates a 3.1% increase
in the mean average precision (mAP) on the custom dataset, achieving 95.7% accuracy in mAP_50
(the IoU threshold is half of the mAP). Notably, the mAPs for small, medium, and large targets
increase by 18.6%, 16.4%, and 6.8%, respectively. The experimental results indicate that the enhanced
algorithm exhibits high detection accuracy, providing a new and more efficient solution for the field
of wind turbine surface defect detection.

Keywords: objection detection; YOLOv5; copy-paste; Hungarian; slicing-aided hyper inference

1. Introduction

Wind energy, as a clean and renewable energy source characterized by abundant
reserves and zero emissions, is considered a crucial avenue for addressing energy shortages.
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To achieve sustainable development, its effective utilization becomes paramount. Wind
turbine generators, as core equipment for harnessing wind energy, play a direct role in the
efficiency and safe operation of wind farms. Therefore, comprehensive and precise defect
detection and maintenance of wind turbine generators are of urgent importance.

Traditional methods for detecting surface defects in wind turbines rely on signals
obtained from various sensors to determine whether there are faults in the turbine blades.
Common detection techniques include infrared thermal imaging [1], ultrasonic detection [2],
fault detection based on vibration signals [3,4], acoustic emission detection [5–7], and
grating fiber detection [8].

These traditional approaches typically rely on discrete sensor data, making it chal-
lenging to comprehensively and efficiently capture subtle changes on the surface of wind
turbine blades. Due to the complex working environment of wind turbines, sensor signals
are susceptible to noise interference, resulting in inadequate detection accuracy and stability
that fall short of industrial-level detection requirements. With the rise of deep learning,
leveraging its powerful feature learning and pattern recognition capabilities can avoid the
tedious feature engineering involved in traditional methods. Simultaneously, deep learning
models can be trained on large amounts of data to enhance their generalization ability for
different defect types. Object detection technology based on deep learning brings a new and
efficient solution to wind turbine surface defect detection, significantly improving detection
accuracy and reducing false positives, making real-time monitoring and maintenance in
large-scale wind farms more feasible. The introduction of deep learning technology propels
surface defect detection in wind turbines into a more intelligent and efficient era, providing
robust support for sustainable development of the wind energy industry.

Deep learning object detection models mainly fall into two technical branches: two-stage
and single-stage. Two-stage object detection models typically include two stages. First, the
model generates a series of candidate regions that may contain objects. Then, the model
classifies these candidate regions and performs precise bounding box regression. The origin
of two-stage models is R-CNN [9], which uses the selective search algorithm to generate
candidate regions and employs convolutional neural networks (CNNs) for classification. To
address the inefficiency of R-CNN, Fast R-CNN [10] conducts convolution operations over
the entire image and introduces region of interest (RoI) [11] pooling layers for improved
computational efficiency. Faster R-CNN [12] further improves Fast R-CNN by introducing
the region proposal network (RPN) to generate candidate regions through deep learning,
thereby enhancing detection speed. Subsequent models such as R-FCN [13], NAS-FPN [14],
and Mask R-CNN [15] build on Faster R-CNN by improving features such as feature
extraction, complex classification and regression heads, and multi-scale object handling.
Some research studies, including CornerNet [16], CenterNet [17], and RepPoints [18],
introduced new ideas and technologies. Despite differences from traditional models, they
maintain the basic framework of generating candidate regions and classifying regression.

While two-stage object detection models excel in detection accuracy, they are slower
and require significant computational resources, making them less efficient. To address
these issues, researchers have proposed single-stage object detection models, which do not
require a candidate region generation stage and can directly produce object category proba-
bilities and position coordinates. They achieve faster detection speeds as final detection
results can be obtained in a single pass. You Only Look Once (YOLO) is a representative
single-stage object detection model. Qiu et al. [19] proposed a small defect detection model,
the YOLO-based small object detection approach (YSODA), based on the YOLO algorithm,
which can detect small surface defects in wind turbines and achieve real-time detection
speeds. Yao et al. [20] designed an efficient detection algorithm based on YOLOX [21],
focusing on identifying damage to wind turbine blades. By strengthening the lightweight
backbone feature extraction network based on the RepVGG [22] architecture, improving
the inference speed, and designing a cascaded feature fusion module, the model enhances
the perception of small target area features, and its ability to detect multi-scale target damage
is improved. Zhang et al. [23] proposed a high-precision detection model named SOD-YOLO,
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which processes wind turbine blades through foreground segmentation and a Hough trans-
form, which reduces feature information loss for small target defects and other defects
using CBAM [24] attention mechanisms and reduces the model size and improves detection
efficiency through channel pruning algorithms, achieving efficient and fast wind turbine
defect detection. Expanding the scope of defect detection methodologies, the study by
Wang et al. [25] presents a data-driven framework for automatically detecting surface cracks
on wind turbine blades using images captured by UAVs. Their approach utilizes Haar-like
features and cascading classifiers, demonstrating effectiveness through both real-world
UAV-taken images and artificially generated datasets. Following this, Wang et al. [26] also
proposed a two-stage data-driven approach for precise detection of surface cracks on wind
turbine blades from UAV-captured images that involves crack location and crack contour
detection stages, leveraging extended Haar-like features and a novel clustering algorithm
for crack segmentation. Zhang et al. [27] explored the use of the YOLOv5 algorithm for
wind turbine blade damage detection. Their experimental results showcase the model’s
capability to predict the location and class of blade damage with near-human-level accuracy,
highlighting the importance of image enhancement techniques for smaller training sets. To
address the challenges associated with visual quality degradation in UAV-taken images
due to atmospheric particles, Ye et al. [28] proposed a double-patch lightweight neural
network (DPLDN) for image dehazing and enhancement. Their approach demonstrates
superior performance compared with existing techniques, with potential applicability in
wind turbine blade image segmentation tasks.

Despite significant progress in general defect detection by current surface defect
detection algorithms, most existing datasets suffer from limited defect categories, imbal-
anced samples between categories, insufficient accuracy in small- and medium-sized target
detection, low generalization ability in complex scenes, and frequent false detections. Addi-
tionally, current algorithms often limit detection and inference to small images and cannot
efficiently handle the requirements of high-speed detection in large images, especially
those captured in actual industrial scenarios using drones. These challenges make current
wind turbine surface defect detection algorithms limited in addressing the complexity and
diversity of real industrial scenarios, calling for more innovative and meticulous solutions.

In order to address the aforementioned issues, we constructed a wind turbine surface
defect dataset that encompasses all common defects. Building upon this foundation,
we propose a high-precision wind turbine surface defect detection algorithm based on
enhanced YOLOv5. Our primary contributions are outlined as follows:

• In accordance with existing industry standards, we establish a benchmark dataset for
wind turbine surface defects that comprises seven categories. This dataset is designed
to cover all common surface defects, addressing the deficiency in categories within
the field of wind turbine surface defect detection.

• To mitigate the issues of class imbalance among the samples and insufficient precision
in detecting small-to-medium-sized targets, we devise a multi-scale copy-paste [29]
data augmentation method. This approach increases the exposure of samples at
different scales, significantly enhancing detection accuracy.

• We introduce a dynamic label assignment strategy based on the Hungarian
algorithm [30] that involves weighing different losses, replacing the original static
label assignment strategy, and enhancing the model’s ability to distinguish between
positive and negative samples.

• To alleviate overfitting resulting from strong data augmentation, we propose a two-
stage progressive training strategy. By designing two distinct training pipelines,
the model naturally converges during the training process, thereby improving its
generalization ability.

• We propose a multi-scenario negative sample-guided learning method to improve
the model’s ability to learn the features under different background conditions by
adding unlabeled background images covering the five scenarios of the wind turbine
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during the training process, contributing to increased generalization across various
backgrounds and reducing misrecognition in backgrounds.

• We introduce slicing-aided hyper inference [31] to enable prediction inference in large
images captured by actual unmanned aerial vehicles, facilitating wind turbine surface
defect detection in real industrial scenarios.

2. Data Collection and Dataset Construction

Wind turbine generators work in a variety of complex and even extreme environments
for long periods of time, resulting in diverse surface defects whose root causes are similarly
intricate and varied. The dataset used in this study covers all common types of defects,
which are separated into seven categories: surface dust and oil, uneven surface sand,
peeling surface paint, leading edge corrosion, non-open cracking, lightning burns, and open
tip cracking. These will be described as follows in order to illustrate their characteristics
and the causes of their formation:

• Surface oil: Dust, particulate matter, and oil from the environment adhere to the
generator’s surface and may result from atmospheric particulate matter, oil vapors,
etc. Accumulated dust and oil will reduce the surface finish, leading to increased
friction on the generator’s surface and affecting the efficiency of turbine operation.

• Surface eye: Abrasion, wind-blown sand, and other natural factors result in the
formation of uneven surface eyes. The irregular surface may cause abnormal airflow,
increase aerodynamic resistance, and impact the aerodynamic performance of the
wind turbine.

• Surface injury: Prolonged exposure to ultraviolet radiation, temperature fluctuations,
and other factors result in aging and peeling of the coating, which may lead to
corrosion, diminish protective capabilities, and reduce the overall weather resistance
of the generator.

• Corrosion: Corrosion of the metal surface is induced by factors such as salt spray
and chemical pollution in humid environments, and it can diminish the strength and
rigidity of the leading edge of the blades, reducing the overall structural integrity of
the blades and potentially leading to fatigue failure.

• Hide crack: This results from thermal and mechanical stress caused by external tem-
perature and humidity variations. These cracks may gradually propagate internally,
causing damage to the blade structure and consequently impacting the safe operation
of the wind turbine.

• Lightning strike: When a wind turbine generator is struck by lightning, it generates
high-temperature, high-energy arc discharges. Lightning strike marks may result
in localized material damage and ablation, potentially affecting the strength and
conductivity of the blades, particularly in severe cases.

• Crack: The high-speed rotation of blades subjects them to significant forces and
torques during prolonged operation, potentially leading to open cracks at the blade
tips and even outright breakage.

The experimental dataset was derived from the wind turbine images collected by
drones at the Jilin wind farm in China, with a total of 482 unlabeled 5184 × 3888 resolution
images and 980 labeled 640 × 640 resolution images collected from the website. The
482 unlabeled images were first labeled using the Labelme tool because the model needs to
be inputted with smaller images in order to be efficiently trained, and for large-resolution
images, direct input will lead to insufficient memory or computational resources. At the
same time, in order to maintain consistency with the resolution of the network acquisition
data, the 482 labeled 5184 × 3888 resolution images were labeled at the same time slices,
and after slicing, 2150 images with a resolution of 640 × 640 were generated. Because some
loss and deviation were present in the sliced image labels, they were manually corrected
and merged with the 980 labeled images collected from the network to obtain a total of
3130 labeled 640 × 640 resolution images for the wind turbine surface defect dataset.
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For this dataset, a series of data augmentation techniques were applied to enhance the
subsequent model training, allowing it to better comprehend and adapt to various changes
in wind turbine surface defects, thereby improving detection accuracy. The augmentation
processes included the following:

• Vertical and horizontal flipping: Flipping operations were employed to introduce
mirror symmetry transformations, simulating different perspectives and angles that
may occur during the actual operation of wind turbines. This aids the model in
learning the shape features of defects in both the horizontal and vertical directions,
enhancing its ability to recognize symmetric defects.

• Adding or reducing brightness by 25%: Brightness adjustments were applied, con-
sidering the significant impact of lighting conditions on wind turbine surfaces in real
industrial scenarios. This expanded the dataset’s distribution in terms of illumina-
tion changes, facilitating the model’s adaptation to various lighting conditions in
the images.

Thus far, we have constructed a wind turbine surface defect detection dataset con-
taining 9377 images separated into seven categories. The complete construction process of
the dataset is shown in Figure 1, and Figure 2 shows a sample image of each category of
the dataset.

Figure 1. The process of constructing the wind turbine surface defect dataset.
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Figure 2. Plot of each sample of the wind turbine surface defect dataset. From top to bottom and left
to right are surface oil, corrosion, hide crack, crack, surface injury, surface eye, and lightning strike.

Figure 3 shows the number of different target sizes for each category of wind turbine
surface defect, where the defects in each category show differentiated distributions for
each size of the target. Surface oil was mainly concentrated on large targets, corrosion
showed a relatively balanced distribution of medium and large targets, cracks and hide
cracks had a more balanced distribution of targets of all sizes, surface eye was mainly
concentrated on large targets, and surface injury and lightning strikes showed higher
numbers for medium targets.

Figure 3. Plot of the quantity of different target sizes for each category of wind turbine surface defect.

3. Improved Surface Defect Detection Algorithm for Wind Turbines Based on YOLOv5
3.1. YOLOv5 Network Model

In YOLOv5, a powerful backbone plays a crucial role in the improvement of target
detection performance. The backbone for YOLOv5 was chosen to be CSP-Darknet53 [32],
an improved version of the deep convolutional network Darknet53 [33] that introduces a
cross-stage partial (CSP) network strategy. This strategy improves the efficiency of feature
information flow by partitioning the feature map into two parts and then introducing
cross-stage partial connections between them. The use of CSP-Darknet53 makes YOLOv5’s
backbone more powerful and capable of capturing the complex features in an image more
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efficiently, providing strong support for subsequent target detection tasks. The neck plays a
key role in connecting the backbone and head in the target detection network, and its main
task is to extract the feature pyramid so that the model can better adapt to targets of different
sizes and scales. The neck part of YOLOv5 combines spatial pyramid pooling (SPP) [34]
and a path aggregation network (PANet) [35]. SPP improves adaptation to scale changes by
introducing a spatial pyramid pooling layer that enables the network to perceive features
at different scales. PANet, on the other hand, effectively prompts information to propagate
along the network path by introducing a path aggregation mechanism, enhancing the
correlation of features at different layers and further improving the detection performance.
Such a neck design enables YOLOv5 to have stronger feature extraction and integration
capabilities when dealing with the target detection task. YOLOv5 adopts a non-decoupled
head structure that fuses the classification and bbox detection tasks in the same convolution
for processing, reducing the number of model parameters and improving the convergence
speed of the network. In real-world industrial applications, this means higher training
efficiency and a faster inference speed, which enable wind turbine surface defect detection
to be applied to production practice more quickly. YOLOv5 adopts strategies such as mosaic
and mixup in data augmentation, effectively improving the robustness and generalization
ability of the model by comprehensively utilizing diverse data. This is of great significance
when dealing with targets in complex real-world scenarios, such as in wind turbine surface
defect detection. The overall network structure diagram of YOLOv5 is shown in Figure 4.

Figure 4. Overall network structure diagram of YOLOv5.

3.2. Improved Strategies of YOLOv5 for Surface Defect Detection

In this paper, YOLOv5 is applied to self-constructed multi-category wind turbine
surface defect detection. In order to overcome the existing problems, we carried out a series
of improvements for the whole algorithmic process of YOLOv5. The overall process is
shown in Figure 5.

After the dataset was constructed, it was fed into the network for training. In the
dataset of wind turbine surface defect detection, the diversity and complexity of the
defects lead to large differences between different samples in the dataset. Training the
model requires more data to improve the generalization performance. However, directly
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increasing the size of the original dataset will lead to a long data loading time and affect the
training efficiency. Therefore, the RepeatDataset strategy was used to enlarge the dataset,
where the original dataset was repeated many times. In this way, each epoch of the network
during training would traverse the entire repetitive dataset, solving the problem of a small
dataset size to a certain extent and improving the training efficiency.

For the YOLOv5 algorithm, a two-stage progressive training strategy was first de-
signed to divide the training process into two independent processes to better guide
the model to learn the features of the surface defects of complex wind turbines, and a
multi-scale copy-paste data enhancement algorithm which was also designed by us was
introduced in the first training stage to expand the targets at different scales. The original
static label assignment strategy was replaced with the designed dynamic label assignment
strategy based on the Hungarian algorithm, achieving more intelligent and precise label
assignment by optimizing the target assignment problem, thus enabling the model to better
focus on the key targets during the training process and improving the detection accuracy
and generalization performance. In addition, the multi-scene negative sample learning
strategy was introduced in the training, which guided the model to learn negative samples
by adding unlabeled multi-scene background images, and finally, the slicing-aided hyper
inference algorithm was selected for the original unsliced image for inference prediction,
playing a key role in the whole process and ensuring the ability to efficiently detect large
images in real industrial scenarios.

Figure 5. Overall process of improved strategies of YOLOv5.

3.2.1. Multi-Scale Copy-Paste Algorithm

The traditional copy-paste method has been widely used in the field of object seg-
mentation. Its main steps involve randomly selecting two images, performing random
horizontal flipping, and then selecting a portion of the target from one image to copy and
paste it onto another image. However, this method has several limitations.

Firstly, traditional copy-paste relies on pre-annotated mask labels, limiting its applica-
bility due to the constraints of annotation quality and accuracy. The occurrence of occlusion
after copying and pasting may lead to confusion between the pasted target and the original
target, making it difficult for the model to distinguish them accurately and reducing the
quality of generated data. Secondly, the traditional method does not consider the scale
changes of the pasted targets, resulting in a uniform scale for pasted targets that may not
meet the scale requirements of diverse targets in real-world scenarios. Particularly in our
constructed multi-type wind turbine surface defect dataset, different categories of targets
exhibit significant scale differences which traditional copy-paste fails to address effectively,
limiting the model’s generalization ability.
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We propose an improved multi-scale copy-paste method for wind turbine surface
defect detection that eliminates the need for mask labels and directly pastes targets into
the corresponding images. Simultaneously, it considers the scale changes of the pasted
targets by introducing a new parameter, scale_range, to define the scale factor. This random
scaling of the target boxes allows the model to adapt to targets of different scales, thereby
enhancing its robustness.

Let the size of image I be H ×W and the original set of bounding boxes be B = {bi}N
i=1,

where each bounding box bi is represented by the upper-left coordinate (x1i, y1i) and the
lower-right coordinate (x2i, y2i) (i.e., bi = (x1i, y1i, x2i, y2i)). The multi-scale copy-paste
algorithm proceeds as follows.

First, we introduce the scale factor s as shown in Equation (1):

s ∈ (scale_range[0], scale_range[1]) (1)

The original target box is scaled using the scale factor, and the resulting scaled bound-
ing box is given by Equation (2):

bscale,i = (x′1i, y′1i, x′2i, y′2i) (2)

where the scaled coordinates are given by Equation (3):

x′1i = x1i
y′1i = y1i

x′2i = x1i + (x2i − x1i) · s
y′2i = y1i + (y2i − y1i) · s

(3)

After flipping, the coordinates of the bounding box are given by Equation (4):

bscale, f lip,i =
(
W − x′2i, y′1i, W − x′1i, y′2i

)
(4)

The equation for calculating the intersection over area (IoA) matrix is given by Equa-
tion (5), where area represents the area calculation and bj denotes the bounding box of the
region where the pasted object is located:

IoA =

area
(

bscale, f lip,i ∩ bj

)
area

(
bj
)

N

i,j=1

(5)

Subsequently, based on the IoA matrix and the IoA threshold (ioa_thresh), the set of
valid target indices is filtered out as shown in Equation (6):

Ivalid = {i | all (IoA[i, :] < ioa_thresh )} (6)

Next, n indexes from a are randomly selected, where n is given by Equation (7):

n = min(round(prob ·|Ivalid |), |Ivalid |) (7)

For each selected index i, the flipped target box is copied to the target image J, and
the target box set B is updated. Subsequently, boundary processing is performed on all
target box coordinates to ensure that the target box is completely within the image (i.e.,
ensuring that the coordinates satisfy 0 ≤ x′1i, x′2i ≤ W and 0 ≤ y′1i, y′2i ≤ H). Additionally,
unreasonable target boxes are removed (i.e., x′2i ≤ x′1i or y′2i ≤ y′1i). Finally, the image with
augmented target boxes is returned, concluding the multi-scale copy-paste algorithm.

The application results of the multi-scale copy-paste data augmentation algorithm
are shown in Figure 6, where the red arrow points to the pasted multi-scale target. This
method allows for the direct replication and pasting of targets between images without
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the need for pre-annotated masks. When observing the results in the figure, it is evident
that the target was successfully copied and pasted into another image after multi-scale
copy-paste processing, displaying diversity in scale.

This algorithm not only achieved effective transfer of targets but also precise adjust-
ments in scale. Consequently, it enlarged the exposure rate of the targets and increased
the quantity of multi-scale targets. By introducing diverse scale variations, this method
injected more realistically rich scenes into the training set, enhancing the model’s perception
and recognition capabilities for targets of different sizes. This feature proves particularly
prominent when dealing with scenarios where scale differences exist, such as the wind
turbine surface defect dataset.

The algorithm that we proposed was designed based on the mmdection framework,
aiming to provide an efficient and flexible data augmentation solution that can be easily
integrated into the training pipeline of various object detection algorithms. It achieved a
plug-and-play design for practical use.

Figure 6. Application diagram of the multi-scale copy-paste data enhancement algorithm. The image
is after mosaic-enhanced image stitching.

3.2.2. Dynamic Label Assignment Strategy Based on the Hungarian Algorithm

One of the most critical issues in the training process of object detection models is the
positive and negative sample matching strategy, also known as the label matching strategy.
A better label matching strategy often enables the network to better learn object features,
thereby improving detection capabilities.

Early sample label matching strategies were usually based on prior rules of spatial and
scale information to determine sample selection. YOLOv5 employs a static label matching
strategy as shown in Figure 7. The matching process for positive and negative samples
initially filters the samples based on their aspect ratios. Subsequently, positive samples
are selected based on the position information, choosing the grid where the center of the
ground truth (GT) is located with its two adjacent grids as positive samples. Here, a grid
refers to the division of the image into small squares that form a grid structure. Specifically,
if the aspect ratio of the anchor and GT box falls within the specified threshold (set to 4.0),
then it is considered a successful match. This means that as long as the width and height of
the GT box are between 0.25 times and 4.0 times the width and height of a certain anchor,
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it is considered a positive sample. In the case of a successful match, the grid containing
the center of the GT box is divided into four quadrants. Even if the center of the GT
box falls into the lower-left quadrant, the left and bottom two grids are still considered
positive samples.

Figure 7. Label matching strategies of YOLOv5.

The above method belongs to a static matching strategy based on empirical rules,
meaning that the sample selection is constrained by manually defined rules. This static
matching approach may lack flexibility when dealing with complex and dynamic real-
world scenarios, making it ineffective in addressing the diversity and scale variations of
targets. Therefore, a dynamic label assignment strategy based on the Hungarian algorithm
is proposed, as shown in Algorithm 1.

Algorithm 1 Hungarian Dynamic Label Assignment Algorithm.

Input:
The cost matrix C, where Cij denotes the cost of matching the ith predicted bounding
box with the jth true target bounding box;

Output:
The optimal matching matrix M, where Mij = 1 indicates a successful match between
the ith predicted bounding box and the jth ground truth bounding box, and Mij = 0
indicates no match;

1: Normalize rows and columns of C to ensure that there is at least one zero element in
each row and column;

2: Find zero elements in C and mark them as unmatched;
3: If an unmatched zero element is found, then mark it as matched, and mark the other

zero elements in its row and column as matched;
4: Repeat step 3 until no more unmatched zeros can be found;
5: If the number of unmatched rows or columns is less than the total number of rows or

columns, then proceed to step 6; otherwise, go to step 7;
6: Find the smallest value in unmatched rows and matched columns, then subtract it from

all unmatched elements and go to step 4;
7: Restore all the matched rows and columns, and keep the matched rows and columns;
8: return optimal matching matrix M;

The calculation of the cost matrix C is based on different loss functions, where three
have been defined: classification loss, regression loss, and IoU loss. The final matching cost
is obtained by weighting these three losses, as shown in Equation (8):

C = FocalLoss × weight FocalLoss + BBoxL1Loss × weight BBoxL1Loss + IoULoss × weight IoULoss (8)

The classification loss is computed using the focal loss [36] as shown in Equation (9),
where cls_pred represents the target class scores predicted by the model, gt_labels is the
true class labels of the targets, N is the number of predictions, α is a scaling factor, γ controls
the shape of the loss curve, and δgt_labelsi

is the Kronecker delta function, which is one if
gt_labelsi is equal to the predicted class and zero otherwise:
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FocalLoss (cls_pred, gt_labels) =
N

∑
i=1

[
−α(1 − cls_predi)

γ log(cls_predi) · (δgt_labelsi
− cls_predi)

]
(9)

The regression L1 loss, which measures the average absolute error between the pre-
dicted bounding box and the true bounding box, is computed using BBoxL1Cost. This is
shown in Equation (10), where pred_bboxes represents the bounding box coordinates predicted
by the model and gt_bboxes represents the coordinates of the true target bounding box:

BBoxL1Loss(pred_bboxes, gt_bboxes) =
1
N

N

∑
i=1

| pred_bboxesi − gt_bboxesi | (10)

The regression IoU loss is calculated using the generalized IoU (GIoU) [37], which
considers the calculation of the IoU and the concept of the minimum enclosing rectangle. By
manipulating the relationship between the IoU and the minimum enclosing rectangle, the GIoU
loss provides a more comprehensive bounding box matching loss, as shown in Equation (11):

GIoULoss = 1 − GIoU (11)

The calculation of the GIoU utilizes the generalized IoU function, as shown in
Equations (12)–(14). In these equations, the IoU represents the overlap (intersection over
union) between the predicted bounding box and the ground truth bounding box, while
enclosure measures the difference between the area of the minimum enclosing rectangle
and the union area, quantifying the proportion of the minimum enclosing rectangles of two
bounding boxes to their union:

GIoU =
IoU − enclosure

IoU
(12)

IoU =
Intersection Area

Union Area
(13)

enclosure =
Smallest Enclosing Box Area − Union Area

Smallest Enclosing Box Area
(14)

The obtained matching matrix M is used to associate each predicted bounding box with
its corresponding ground truth target, determining its associated ground truth category.
Then, the loss is calculated. The dynamic label matching strategy based on the Hungarian
algorithm design allows for personalized loss calculation for each predicted target, and it is
able to adaptively adjust the target associations during the training process. Compared with
traditional fixed matching methods, this dynamic loss calculation aligns better with the
diversity of targets in real-world scenarios, contributing to improved modeling capabilities
for complex target structures.

3.2.3. Two-Stage Progressive Training

The use of strong data augmentation strategies such as mosaic and copy-paste can
enhance the model’s ability to learn from diverse data to some extent. However, they
also pose potential issues that may result in the generated training images deviating
from the natural distribution of real-world images in the feature space. This deviation may
introduce samples that do not adhere to the statistical characteristics of real-world scenarios,
thereby challenging the model’s generalization performance. In practical applications, such
deviation may lead to unpredictable behavior in real-world scenarios due to significant
differences between the training samples and the actual application environment.

To address this concern, we designed a two-stage progressive training strategy where
the model training is divided into two stages, with each employing different data aug-
mentation strategies, as illustrated in Figure 8. Taking the example of training the model
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for 100 epochs, we designed two training pipelines with the following data augmenta-
tion methods:

• Mosaic: This augmentation strategy involves randomly selecting four different images
and merging them into a new image at a certain ratio, creating a mosaic effect for
enhanced training.

• Letterbox: This technique fills the image edges with a gray background and scales the
image to a specified size, preventing deformation caused by scaling.

• Augment HSV: This technique generates new training samples by adjusting the im-
age’s hue, saturation, and value, enhancing the model’s robustness to changes in
lighting and color.

• Random flip: This techniques randomly flips the image horizontally or vertically to
increase data diversity.

For the first 90 epochs, the adopted strategies included mosaic, the proposed multi-
scale copy-paste, augment HSV, and random flip. The goal was to enhance the model’s
expressive power by introducing rich spatial, scale, and color variations, thereby improving
its accuracy in complex scenarios. In the subsequent 10 epochs, the training entered a
new phase, transitioning to weaker data augmentation strategies. In this stage, letterbox,
augment HSV, and random flip, which are relatively gentle augmentation techniques, were
retained. However, mosaic and multi-scale copy-paste, two strong data augmentation
methods, were discarded. This progressive training strategy helps the model converge
more naturally by gradually reducing the augmentation intensity, enabling the model to
focus progressively on real-world features. This prevents both overfitting to noise and the
complexity introduced by strong data augmentation strategies, ultimately enhancing the
model’s generalization performance.

Figure 8. Two-stage progressive training strategy.

3.2.4. Multi-Scenario Negative Sample-Guided Learning

In real-world scenarios for wind turbine surface defect detection, a challenge arises in
the detection task when high-resolution, unsliced images are collected by unmanned aerial
vehicles (UAVs). During the training phase, small sliced images are used to accelerate the
model training speed and improve efficiency. The difference in training data often results
in the training set lacking background images, while actual application scenarios with large
images may cover diverse scenes and complex background information.

Trained models may encounter difficulties when facing large images in real-world
scenarios as they have not been trained on background information, which can lead to
misidentifications in situations with significant background variations, thereby affecting
the accurate detection of wind turbine surface defects.

To address these issues, we propose a strategy called multi-scenario negative sample-
guided learning. Negative samples refer to unlabeled background images from various
scenes that do not contain specific wind turbine defect targets, and their introduction
aims to train the model to better understand and adapt to various background scenarios,
thereby improving its generalization performance in real-world applications. We selected
211 unlabeled background images containing scenes such as clear sky, snow, grass, sand,
and haze, as shown in Figure 9. By applying augmentation operations, including vertical
and horizontal flips, as well as brightness adjustments (adding or subtracting 25%), we
expanded this set to 628 training samples. These samples were added to the training
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set to guide the model in learning richer contextual information, thereby enhancing the
model’s detection accuracy in real-world scenarios and robustness in detecting across
multiple scenes.

Figure 9. Unlabeled multi-scenario negative samples.

3.2.5. Slicing-Aided Hyper Inference

Due to the requirement of performing inference and predictions on high-resolution,
unsliced images collected by unmanned aerial vehicles (UAVs) for wind turbine surface
defect detection, which aligns with the real industrial scenario of defect detection, we
introduce the slicing-aided hyper inference (SAHI) algorithm, as illustrated in Figure 10.
SAHI is a universal framework designed to address the challenges of small object detection.
Its innovation lies in the thorough utilization of slicing techniques by finely dividing the
input image during the inference phase.

Figure 10. Slicing-aided hyper inference algorithm. P1–P3 are overlapping patches sliced from the
original image, and each patch is subsequently resized and predicted separately for each patch while
preserving the aspect ratio.

The core idea involves partitioning the input image into mutually overlapping blocks
and adjusting each block appropriately to ensure that its original aspect ratio is maintained
during resizing. Subsequently, for each independent overlapping block, forward prop-
agation of the target detection is applied, allowing for more effective capture of feature
information related to small targets.

In the algorithmic flow of SAHI, the application of non-maximum suppression (NMS)
is crucial for handling overlapping regions. During NMS, the intersection over union (IoU)
is calculated between predicted bounding boxes to match highly overlapping and similar
boxes. The purpose of this step is to optimize detection results, preventing redundant boxes
and thereby improving the accuracy and stability of detection. Within the matched boxes,
SAHI further introduces a threshold for detection probability (Td). By removing boxes with
detection probabilities below the predefined threshold, SAHI can filter out results with high
uncertainty or potential noise, ensuring that the final output consists of high-confidence
target detection boxes.

Following the post-processing steps of NMS and probability threshold filtering, SAHI
combines all processed image blocks mapped back to the original image size. This step aims
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to produce consistent and complete target detection results, enabling the SAHI algorithm
to perform wind turbine surface defect detection in real-world scenarios effectively.

3.3. Experiments
3.3.1. Evaluation Metrics

The performance of our model was evaluated using mAP, defined as a range of IoUs
from 0.5 to 0.95, and the average precision (AP) was computed at intervals of 0.05 of an IoU
and then averaged across all APs, with the formula shown in Equation (15):

mAP =
1
N

N

∑
i

APi (15)

Here, mAP_50 and mAP_75 calculate the average precision using a fixed IoU threshold
of 0.5 and 0.75, respectively, with the latter being used for the average precision calcula-
tion, and mAP_s/m/l distinguishes between small, medium, and large objects based on
their respective average precisions. Here, small, medium, and large refer to targets with
dimensions smaller than 32 × 32, between 32 × 32 and 96 × 96, and larger than 96 × 96,
respectively.

3.3.2. Experimental Set-Ups

All experiments were conducted under the same experimental conditions. The hard-
ware configuration for the experiments is presented in Table 1, and we maintained consis-
tent control over the model training parameters, as outlined in Table 2.

Table 1. Experimental environment parameter configuration.

Parameters Configuration

OS Ubuntu 18.04.5 LTS
Python version 3.9.16

Pytorch version and CUDA version 2.0.0+cu117
GPU Tesla V100S × 2 *

Video memory size 32510MiB × 2
* Sourced from NVIDIA Corporation in Santa Clara, CA, USA.

Table 2. Training parameter configuration.

Parameters Configuration

Epoch 100
RepeatDataset 5

EMAHook 0.0001
Base_lr 0.01

Img_scale 640 × 640
Optimizer SGD
Loss_obj CrossEntropyLoss
IoULoss CIoU

In the case of adopting the multi-scale copy-paste algorithm with the scale_range set
to (0.8, 1.2) and introducing the dynamic label assignment strategy based on the Hungarian
algorithm, this study set the weights for classification loss, regression loss, and IoU loss to
2.0, 5.0, and 2.0, respectively. The dataset in the experiment was divided at an 8:2 ratio, with
the training and test sets containing 7502 and 1875 images, respectively. A series of YOLO
algorithm-based variants was selected for comparison, including YOLOv6-s, YOLOv7-e,
YOLOv8-s, and YOLOX-s, to validate the performance of the model in this study.
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3.3.3. Analysis

The experimental results are shown in Table 3. On the wind turbine surface defect test
set, our model achieved significant advantages in multiple key indicators. In terms of mAP,
our method reached 0.893, which was approximately 3.1%, 13.2%, 27.0%, 37.4%, and 50.4%
higher than YOLOv5-s, YOLOv6-s, YOLOv8-s, YOLOv7-e, YOLOX-s, MobileNetV2 [38],
and Mask R-CNN, respectively. Under different IoU thresholds and scale conditions
of mAP_50, mAP_75, mAP_s, mAP_m, and mAP_l, our method performed excellently,
surpassing other algorithms with outstanding results of 0.957, 0.927, 0.807, 0.906, and
0.928, respectively. While improving the detection accuracy, our method achieved the
best balance between model light-weighting and high performance in terms of parameter
quantity and FLOPs.

Table 3. Experimental results of different models on the testing sets.

Method mAP mAP_50 mAP_75 mAP_s mAP_m mAP_l Params (M) FLOPs (G) Time (s/img) *

Ours 0.893 0.957 0.927 0.807 0.928 0.906 7.039 7.59 7.25
yolov5-s 0.862 0.94 0.884 0.621 0.764 0.838 7.039 7.59 6.75
yolov6-s 0.761 0.935 0.828 0.584 0.737 0.816 17.19 21.886 10.5
yolov8-s 0.623 0.85 0.676 0.437 0.552 0.699 11.138 14.278 7.5
yolov7-e 0.519 0.845 0.55 0.395 0.508 0.563 36.535 51.792 8
yolox-s 0.389 0.743 0.356 0.304 0.362 0.435 8.94 13.525 7.25

MobileNetV2 0.865 0.933 0.891 0.743 0.896 0.872 6.796 6.637 6.5
Mask R-CNN 0.715 0.812 0.633 0.427 0.671 0.705 25.56 43.374 8.6

* Inference detection on large images.

Table 4 presents comparative experimental results with the addition of different
modules, where various configurations are compared in terms of different performance
indicators by introducing the multi-scale copy-paste, Hungarian assigner, multi-scenario
negative sample-guided learning, and two-stage progressive training strategies.

Table 4. Added experimental comparison results for different methods.

Method
mAP mAP_50 mAP_75 mAP_s mAP_m mAP_l Time (s/img) *Multi-Scale

Copy-Paste
Hungarian
Assigner

Negative
Sample

Two-Stage
Training

0.783 0.952 0.876 0.621 0.764 0.838 6.75√
0.866 0.936 0.885 0.709 0.868 0.904 7.25√
0.833 0.945 0.863 0.691 0.773 0.843 7√ √
0.873 0.941 0.89 0.712 0.875 0.907 7√ √ √
0.854 0.947 0.899 0.722 0.899 0.877 7√ √ √
0.875 0.942 0.891 0.7 0.864 0.908 7.25√ √ √ √
0.893 0.957 0.927 0.807 0.928 0.906 7.25

* Inference detection on large images.

The introduction of our designed multi-scale copy-paste method resulted in a signifi-
cant performance improvement in mAP, mAP_50, and mAP_75, reaching 0.866, 0.936, and
0.885, respectively. Compared with the baseline model without improvement, our method
demonstrated noticeable advantages in the detection performance of small-, medium-,
and large-scale objects, with corresponding improvement rates of 0.709, 0.868, and 0.904,
representing increases of 8.8%, 10.4%, and 6.6%, respectively. This fully demonstrates the
effectiveness of our method in multi-scale object detection scenarios.

With the introduction of the Hungarian assigner strategy, we observed a 5% improve-
ment in mAP and target detection performance, and in the detection of small-, medium-,
and large-scale objects, increases of 7%, 0.9%, and 0.5% in performance were observed, re-
spectively. Introducing the multi-scenario negative sample-guided learning and two-stage
progressive training strategies led to further improvements in model performance.
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In the model that integrated all improvement strategies, mAP, mAP_50, and mAP_75
increased by 11%, 0.5%, and 5.1%, respectively, compared with the baseline model without
improvement. In multi-scale detection, the performance of small, medium, and large
targets increased by 18.6%, 16.4%, and 6.8%, respectively. These series of experimental
results fully demonstrate the effectiveness of our method and its generality in different
scenarios. Additionally, when applying the slicing-aided hyper inference algorithm for
inference detection on large images, our inference speed was maintained at 7.25 s per image
(with an average of 20 targets per large image), showing high inference efficiency in real
industrial scenarios.

Tables 5 and 6 present the performance comparison results between the baseline
model and our model in various category defects. In terms of leading edge erosion, the
mAP improved from 0.793 to 0.96, demonstrating a significant enhancement. Specifically,
mAP_50 and mAP_75 increased from 0.955 and 0.91 to 0.98 and 0.968, respectively. For the
category of blade tip opening damage, both mAP_50 and mAP_75 maintained a high level
at 1.0, indicating the robustness of our model in this category.

Concerning hide cracks, the mAP increased from 0.716 to 0.885. Notably, mAP_s and
mAP_m increased from 0.476 and 0.701 to 0.732 and 0.879, respectively, indicating signifi-
cant improvements in small-scale and medium-scale targets. In the categories of surface
eye, surface injury, and surface oil, our model showed comprehensive improvements in all
metrics compared with the baseline model.

In the category of lightning strikes, all metrics showed improvements except for slight
decreases in mAP_50 and mAP_l. Overall, the improved model demonstrates significant
advantages in wind turbine surface defect detection.

Table 5. Results of the baseline model for each category on the testing sets.

Category mAP mAP_50 mAP_75 mAP_s mAP_m mAP_l

Corrosion 0.793 0.955 0.91 0.876 0.767 0.845
Crack 0.876 1.0 1.0 NAN NAN 0.88

Hide Crack 0.716 0.941 0.79 0.476 0.701 0.889
Surface Eye 0.765 0.936 0.839 NAN 0.748 0.767

Surface Injury 0.812 0.964 0.904 0.638 0.801 0.843
Surface Oil 0.838 0.953 0.91 NAN 0.723 0.85

Lightning Strike 0.681 0.918 0.776 0.492 0.741 0.793

Table 6. Results of our model for each category on the testing sets.

Category mAP mAP_50 mAP_75 mAP_s mAP_m mAP_l

Corrosion 0.96 0.98 0.968 0.941 0.964 0.956
Crack 0.893 1.0 1.0 NAN NAN 0.893

Hide Crack 0.885 0.979 0.918 0.732 0.879 0.979
Surface Eye 0.889 0.938 0.906 NAN 0.964 0.882

Surface Injury 0.938 0.965 0.944 0.938 0.951 0.923
Surface Oil 0.934 0.956 0.947 NAN 0.92 0.935

Lightning Strike 0.751 0.883 0.806 0.617 0.889 0.775

The actual detection results for our model on the test set are shown in Figures 11–17.
It can be observed that the model’s detections were highly accurate across all categories,
effectively distinguishing and detecting targets of various scales.

The application of the slicing-aided hyper inference algorithm demonstrated out-
standing inference and prediction capabilities in our model for the original large images,
as shown in Figures 18–21. Figure 18 displays the detection results for the entire large
image, while Figures 19–21 provide enlarged views of the detection regions from Figure 18.
Upon observing the results, it is evident that the model excelled in detecting small objects
and accurately identified various defect categories at the overall scale. Even in densely
populated areas of different categories, the model exhibited precise detection of defects.

Figure 22 presents a comparison of the detection performance between the original
model and the improved model. It is noticeable that the original images exhibited significant
instances of misidentification during actual large-scale image detection. In contrast, the



Energies 2024, 17, 1796 18 of 25

improved model substantially reduced instances of misidentification, showcasing excellent
performance and providing a high-precision and efficient solution for wind turbine surface
defect detection.

Figure 11. Comparison of corrosion original labeling and test results.

Figure 12. Comparison of crack original labeling and test results.
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Figure 13. Comparison of hide crack original labeling and test results.

Figure 14. Comparison of surface eye original labeling and test results.

Figure 15. Comparison of surface injury original labeling and test results.



Energies 2024, 17, 1796 20 of 25

Figure 16. Comparison of surface oil original labeling and test results.

Figure 17. Comparison of lightning strike original labeling and test results.
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Figure 18. Application of slicing-aided hyper inference to reasoning results in real large image.

Figure 19. Application of slicing-aided hyper inference to reasoning results in real large image (part).
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Figure 20. Application of slicing-aided hyper inference to reasoning results in real large image (part).

Figure 21. Application of slicing-aided hyper inference to reasoning results in real large image (part).

Figure 22. Comparison of detection results between the baseline model and our model in a real large
image (red labeled areas are misidentified targets).
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4. Conclusions

This study addressed the challenges of wind turbine surface defect detection technol-
ogy, constructing a comprehensive dataset based on industry standards. Our proposed
approach enhances the YOLOv5 object detection algorithm for the accurate and rapid
detection and identification of wind turbine surface defects.

Compared with the baseline YOLOv5 network, our model introduces a multi-scale
copy-paste strategy to increase exposure to samples of different scales, improving the
model’s perception and accuracy for multi-scale targets. Additionally, we incorporated a
dynamic label assignment strategy based on the Hungarian algorithm to optimize the label
assignment process, enhancing the model’s localization and classification performance.
We introduced a two-stage progressive training strategy to overcome the overfitting is-
sues associated with strong data augmentation, improving the model’s generalization
performance across different scales of targets while maintaining a stable parameter count.
Simultaneously, we introduced multi-scenario negative sample-guided learning to reduce
false negatives, resulting in better adaptation to complex backgrounds in real industrial sce-
narios.

On our self-constructed wind turbine surface defect detection dataset, our algorithm
demonstrated outstanding detection accuracy for seven defect categories. Specifically, the
detection accuracies for corrosion, cracks, hide cracks, surface eye, surface injury, surface oil,
and lightning strikes were 96%, 89.3%, 88.5%, 88.9%, 93.8%, 93.4%, and 75.1%, respectively.
Our algorithm achieved improvements of 16.7%, 1.7%, 16.9%, 12.4%, 12.6%, 9.6%, and 7%
compared with the baseline model, demonstrating the algorithm’s high industrial value in
practical applications.

Our algorithm not only addresses the issue of incomplete samples in the wind turbine
surface defect domain but also provides an efficient and rapid solution for wind turbine
surface defect detection. The multi-scale copy-paste strategy that it involves overcomes
the challenge of significant object scale differences in wind turbine surface defect datasets.
The introduction of this strategy is not only meaningful for wind turbine surface defect
detection but can also be applied in other fields for handling targets of different scales,
improving model generalization and adaptability. Similarly, the designed label assignment
strategy not only provides more accurate label assignments for wind turbine surface defect
detection but is also valuable for other target detection tasks in different domains. The
introduction of two-stage progressive training and multi-scenario negative sample-guided
learning successfully mitigates overfitting caused by strong data augmentation. This not
only helps to improve the model’s generalization performance but also provides an effective
method to reduce misidentification and alleviate overfitting in the training of deep learning
models in other domains. Therefore, our research offers an advanced technical solution for
the industrial sector, laying a solid foundation for further developments in wind turbine
surface defect detection.
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