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Abstract: This paper investigates the dynamic patterns in the small-signal behavior of power systems
with wind power generation. The interactions between synchronous generators and wind generators
are investigated. In addition, the impact of increased wind generation penetration on the damping
and frequency of the synchronous generator’s electromechanical oscillations is addressed. Wind
generators of three different technologies are considered throughout this study. Very detailed dynamic
models of wind generators are used and detailed.
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1. Introduction

The investigation of the small-signal behavior of power systems requires the use of
appropriate models. The models of synchronous generators needed to study the rotor
angle’s small-signal stability are well-established in the technical literature [1] and are
called electromechanical models. Rotor angle small-signal stability is concerned with
poorly damped oscillations of the frequency, voltage, and power in the frequency range
between 0.1 and 2 Hz. Such oscillations are usually called electromechanical oscillations
since they originate in the oscillation of the synchronous generator rotors.

Massively incorporating inverter-based generation into power systems has led to new
forms of power system stability called resonance stability and converter-driven stability [2].
The investigation of such forms of stability requests much more detailed models (elec-
tromagnetic models) instead of the electromechanical models used to study rotor angle
small-signal stability.

The study of the effect of wind power generation on the damping and frequency of
power system electromechanical oscillations has been addressed using simplified models
of wind generators (see [3–8]) in which the machine dynamics have been neglected and the
dynamics of inner current controllers have been assumed to be ideal. Moreover, the design
of damping controllers has been conducted using such simplified models [9,10].

This paper investigates the dynamic patterns in the small-signal behavior of power
systems with wind generation. Dynamic patterns are close associations between state
variables and eigenvalues of the linear model of a dynamic system. The aim of our study is
to provide a foundation for the modeling practices of wind generation for the rotor-angle
small-signal stability of power systems. Hence, the interaction between synchronous and
wind generators is studied. In addition, the variation in the damping and frequency of the
electromechanical oscillation of a synchronous generator connected to an infinite bus as
wind generation increases is measured.

This study addresses the performance of the three dominant technologies of wind
generators (WGs): type 1, type 3, and type 4 ([11,12]). Very detailed models of WGs will be
reviewed and used throughout the paper. Linear dynamic models will be built in Matlab
and will be used to obtain their eigenstructure. Tools based on the eigenstructure of linear
dynamic models allow the identification of dynamic patterns.
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The first generation of WGs (type 1) was based on squirrel cage induction generators
(SCIGs) because of their simplicity and robustness. Two pole machines were coupled
to the wind turbine through a gearbox. The rotating speed was almost constant. The
wind turbine did not operate, in general, at the maximum efficiency operating point. Soft
starters based on voltage control were implemented to avoid the high starting currents of
induction machines.

The second generation of WGs (type 3) was based on doubly fed induction generators
(DFIGs) with speed control in such a way that the wind turbine runs at the maximum
efficiency operating point. DFIGs make use of voltage-source back-to-back power electronic
converters that deal with a small fraction of machine rating. Two-pole machines, coupled
to the wind turbine through a gearbox, are still used. Today, type 3 wind technology
dominates onshore wind generation.

The third generation of WGs (type 4) is based on multi-pole synchronous generators
(MSGs). Multi-pole synchronous generators avoid the gearbox that connects the wind
turbine and the induction machine in SCIGs and DFIGs. MSGs use voltage-source back-to-
back power electronic converters that deal with the whole machine rating. Either constant
external field excitation or permanent magnets are used. Today, type 4 wind technology
dominates offshore wind generation.

The paper is organized as follows: Sections 2–4 contain the detailed models of type
1, 3, and 4 WGs. Section 5 details the general structure of the linear model of a WG.
Section 6 proposes tools to identify dynamic patterns in linear dynamic systems. Section 7
investigates the dynamic patterns encountered in power systems with wind generation.
Section 8 assesses the impact of the penetration of wind generation on power system small
signal stability. Section 9 offers the conclusions of the paper. The Appendix A contains
generator data used in the eigenvalue analysis carried out.

2. Model of Type 1 WGs

The general non-linear model of an induction machine in direct and quadrature
axes rotating at synchronous speed [13] is governed by a set of differential and algebraic
equations that can be grouped into three subsystems.

• Stator windings:

d
dt

[
ψsd
ψsq

]
= −ω0

[
Rs 0
0 Rs

][
isd
isq

]
− ω0ωs

[
0 −1
1 0

][
ψsd
ψsq

]
+ ω0

[
vsd
vsd

]
[

ψsd
ψsq

]
=

[
Lss 0
0 Lss

][
isd
isq

]
+

[
Lm 0
0 Lm

][
ird
irq

] (1)

• Rotor windings:

d
dt

[
ψrd
ψrq

]
= −ω0

[
Rr 0
0 Rr

][
ird
irq

]
− ω0sωs

[
0 −1
1 0

][
ψrd
ψrq

]
+ ω0

[
vrd
vrd

]
[

ψrd
ψrq

]
=

[
Lm 0
0 Lm

][
isd
isq

]
+

[
Lrr 0
0 Lrr

][
ird
irq

] (2)

• Rotor:
2Hωs

ds
dt = tm − te

te = ψqridr − ψdriqr
(3)

where

vsd, vsq: d- and q-axis components of stator voltage.
vrd, vrq: d- and q-axis components of rotor voltage.
isd, isq: d- and q-axis components of stator current.
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ird, irq: d- and q-axis components of rotor current.
ψsd, ψsq: d- and q-axis components of stator flux.
ψrd, ψrq: d- and q-axis components of rotor flux.
Rs, Rr: stator and rotor resistances.
Ls, Lr: stator and rotor leakage inductance.
Lm: magnetizing reactance.
ω0: speed base ω0 = 2π f0.
f0: fundamental frequency.
ωs: synchronous speed ωs = 1.
s: slip.
tm: mechanical torque.
te: electromagnetic torque.

Figure 1 shows the equivalent circuit of the induction machine with the criteria
adopted. Bold letters in Figure 1 correspond to complex variables. The rotor windings of
squirrel cage machines are short-circuited. Hence

vrd = vrq = 0 (4)
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Figure 1. Equivalent circuit of an induction machine.

The general model of a type 1 WG can be reduced by assuming that the derivatives of
the components of the stator fluxes are zero. In other words, we assume that the dynamics
of the stator fluxes are much faster than the dynamics of the rotor fluxes and the rotor.
Therefore, the set of no linear differential and algebraic Equations (1)–(3) can be written in
compact form as

.
x = f(x, z,υ, u)
0 = g(x, z,υ, u)

(5)

where x, z, and υ are, respectively, the vectors of state, algebraic, and stator voltages, and u
is the input variable

xT =
[
ψrd ψrq s

]
zT =

[
isd isq ird irq te ψsd ψsq

]
υT =

[
vsd vsq

]
u = tm

3. Model of Type 3 WGs

Figure 2 displays the control scheme of a DFIG [14]. The rotor windings are fed by a
three-phase voltage-source back-to-back converter. The back-to-back converter is made of
two converters coupled through a DC link capacitor: the machine side converter (MSC) and
the grid side converter (GSC). The MSC applies a variable-frequency-three-phase voltage
system to the rotor windings. The variation in the frequency of the rotor winding voltages
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results in a variation in the rotor speed. Provided that the stator frequency f1 is constant, a
variation in the rotor frequency f2 results in a change in rotor speed n according to:

s =
n1 − n

n1
=

f2

f1
(6)
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Figure 2. Control scheme of a type 3 WG.

The electronic converter is built of two converters coupled through a DC link capacitor,
as shown in Figure 2.

The MSC controls both the torque and the rotor reactive power. The machine magne-
tizing current component is the direct-axis component of the rotor current in a reference
system with the stator flux. The machine excitation current component controls the ma-
chine’s reactive power. One possible strategy is to set it equal to zero. This is the one
adopted in this paper. The machine torque current component is the quadrature-axis
component of rotor current in a reference system solid with stator flux. It controls the
electromagnetic torque. The control loops of the MSC are shown in Figure 3. The inner
control loops control the rotor current components. An outer control loop controls the
rotor speed.
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ψ

σ

( )*
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rd
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rdv

I
P

K
K

s
+

+
−

s

*
s

Machine

Side

Converter

I
P

K
K

s
+

adi
∗

ad
i

+
−

ad
v′

ad
v

−
+

sd s a aqv L iω+

I

P

K
K

s
+

+
−

−

aqi
∗

aqi

aqv′
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P

K
K

s
+

+
−

2

Cv

( )*2

Cv

Grid

Side

Converter

Figure 3. Control scheme of the MSC of a type 3 WG.

The GSC controls the overall generator reactive power and the DC link capacitor
voltage. The power balance in the DC link capacitor governs its voltage. The power
balance in the DC link capacitor can be controlled through the direct-axis component of the
GSC current. The quadrature-axis component of GSC current controls the reactive power
supplied by the GSC. The control loops of the GSC are shown in Figure 4. The inner control
loops control the filter-current components. An outer control loop controls the DC link
capacitor voltage.
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Figure 4. Control scheme of the GSC of a type 3 WG.

According to the equivalent circuit in Figure 5, the differential-algebraic equations
that describe the model of a type 3 WG can be written as a set of differential and algebraic
equations that can be grouped into seven groups.
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• Machine stator windings:

d
dt

[
ψsd
ψsq

]
= −ω0

[
Rs 0
0 Rs

][
isd
isq

]
− ω0ωs

[
0 −1
1 0

][
ψsd
ψsq

]
+ ω0

[
vsd
vsd

]
[

ψsd
ψsq

]
=

[
Lss 0
0 Lss

][
isd
isq

]
+

[
Lm 0
0 Lm

][
ird
irq

] (7)

• Grid-side converter:
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d
dt

[
ψad
ψaq

]
= −ω0

[
Ra 0
0 Ra

][
iad
iaq

]
−ω0ωs

[
0 −1
1 0

][
ψad
ψaq

]
+ ω0

[
vsd
vsq

]
− ω0

[
vad
vad

]
[

ψad
ψaq

]
=

[
La 0
0 La

][
iad
iaq

] (8)

• Rotor:

ds
dt =

1
2Hωs

(tm − te)

te = ψqridr − ψdriqr
(9)

• DC link capacitor:

d(v2
C)

dt = 2
C (pr − pa)

pr = vrdird + vrqirq
pa = vadiad + vaqiaq

(10)

• Control of the grid-side converter:

.
xa1 = KI

(
i∗aq − iaq

)
v′aq = xa1 + KP

(
i∗aq − iaq

)
+ vsq

vaq = −v′aq − ωsLaiad.
xa2 = KI

(
i∗ad − iad

)
v′ad = xa2 + KP

(
i∗ad − iad

)
vad = −v′ad + ωsLaiaq + vsd
.
xa3 = KI

((
v2

C
)∗ − v2

C

)
i∗ad = xa3 + KP

((
v2

C
)∗ − v2

C

)
(11)

• Machine rotor windings:

d
dt

[
ψrd
ψrq

]
= −ω0

[
Rr 0
0 Rr

][
ird
irq

]
−ω0sωs

[
0 −1
1 0

][
ψrd
ψrq

]
+ ω0

[
vrd
vrd

]
[

ψrd
ψrq

]
=

[
Lm 0
0 Lm

][
isd
isq

]
+

[
Lrr 0
0 Lrr

][
ird
irq

] (12)

• Machine-side converter:

.
x1 = KI

((
i∗rd

)ψs − (ird)
ψs
)

v′rd = x1 + KP

((
i∗rd

)ψs − (ird)
ψs
)

(vrd)
ψs = v′rd − sωsLrrσ

(
irq

)ψs

.
x2 = KI

((
i∗rq

)ψs
−

(
irq

)ψs

)
v′rq = x2 + KP

((
i∗rq

)ψs
−

(
irq

)ψs

)
(
vrq

)ψs = v′rq + sωs

(
Lrrσ(ird)

ψs + Lrr(1 − σ)ism

)
.
x3 = KI(s∗ − s)(

i∗rq

)ψs
= x3 + KP(s∗ − s)

(13)
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ism = ψs
Lm

ψs =
√

ψ2
sd + ψ2

sq
(14)

ϕ = arctan ψsd
ψsq[

vrd
vrq

]
=

[
cos ϕ − sin ϕ
sin ϕ cos ϕ

][
vrd
vrq

]ψs

[
ird
irq

]
=

[
cos ϕ − sin ϕ
sin ϕ cos ϕ

][
ird
irq

]ψs

(15)

where:

vad, vaq: d- and q-axis components of rotor-side filter voltage.
iad, iaq: d- and q-axis components of grid-side filter current.
ψad, ψaq: d- and q-axis components of grid-side filter flux.
Ra, La: resistance and inductance of a grid-side filter.
vC: DC link capacitor voltage.
C: capacitance of a DC link capacitor.
xa1, xa2, xa3: state variables that describe the PI controllers of the grid side converter.
x1, x2, x3: state variables that describe the PI controllers of the machine side converter.
KP, KI : parameters of the PI regulators (the values of the parameters of the PI regulators
depend on the loop).
[·]∗: reference value of [·].
The general model of a type 3 WG is simplified, assuming that the dynamics of the

components of the stator flux are negligible [15]. Hence, the set of no linear differential and
algebraic Equations (7)–(15) can be written in compact form as:

.
x = f(x, z,υ, u)
0 = g(x, z,υ, u)

(16)

where x, z, υ and u are, respectively, the vectors of state, algebraic, stator voltages, and
input variables:

xT =
[
ψsd ψsq ψrd ψrq ψad ψaq s v2

C xa1 xa2 xa3 xr1 xr2 xs

]
υT =

[
vsd vsq

]
zT =

[
ψsd ψsq isd isq ird irq iad iaq vad vaq i∗ad ism ψs ϕ

(vrd)
ψs

(
vrq

)ψs vrd vrd (ird)
ψs

(
irq

)ψs te pr pa

(
i∗rq

)ψs
]

u =
[
tm i∗aq v∗C (i∗rd)

ψs s∗
]

4. Model of a Type 4 WG

Figure 6 displays the control scheme of a MSG ([16,17]). The machine stator windings
are fed by a three-phase voltage source back-to-back converter. The back-to-back converter
is made of two converters coupled through a DC link capacitor: the machine side converter
(MSC) and the grid side converter (GSC). The MSC applies to the stator windings in a
three-phase voltage system of variable frequency. The variation in the frequency of machine
stator voltages results in a variation in the rotor speed.

The MSC is used to control either the torque or the rotor. The component in the quadra-
ture axis of the stator current controls the electromagnetic torque when the component in
the direct axis of the stator current is equal to zero. shows the controllers of the MSC. The
control loops of the MSC are shown in Figure 7. The inner control loops control the stator
current components. An outer control loop controls the rotor speed.
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Figure 7. Controllers of the MSC of a type 4 wind generator.

The control philosophy of the GSC of a type 4 WG is identical to the control philosophy
of a type 3 WG. Hence, the block diagrams in Figure 4 are fully applicable to type 4 WGs.

The equations that describe the model of a type 4 WG can be written as a set of
differential and algebraic equations that can be grouped into six groups [16–18].

Stator windings (see Figure 8):

d
dt

[
ψsd
ψsq

]
= −ω0

[
Rs 0
0 Rs

][
isd
isq

]
− ω0ωr

[
0 −1
1 0

][
ψsd
ψsq

]
+ ω0

[
vsd
vsd

]
[

ψsd
ψsq

]
=

[
Ld 0
0 Lq

][
isd
isq

]
+

[
Lmd
0

]
ird

(17)
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• Grid-side converter:

d
dt

[
ψad
ψaq

]
= −ω0

[
Ra 0
0 Ra

][
iad
iaq

]
−ω0ωs

[
0 −1
1 0

][
ψad
ψaq

]
+ ω0

[
vsd
vsq

]
− ω0

[
vad
vad

]
[

ψad
ψaq

]
=

[
La 0
0 La

][
iad
iaq

] (18)

• Rotor:

dωr
dt = 1

2H (te − tm)
te = ψsdisq

(19)

• DC link capacitor:

d(v2
C)

dt = 2
C (ps − pa)

ps = vsdisd + vsqisq
pa = vadiad + vaqiaq

(20)

• Control of the grid side converter.

.
xa1 = KIa

(
i∗aq − iaq

)
v′aq = xa1 + KPa

(
i∗aq − iaq

)
vaq = vq − ωsLaiad − v′aq.
xa2 = KIa

(
i∗ad − iad

)
v′ad = xa2 + KPa

(
i∗ad − iad

)
vad = vd + ωsLaiaq − v′ad
.
xa3 = KIv

((
v2

C
)∗ − v2

C

)
i∗ad = xa3 + KPv

((
v2

C
)∗ − v2

C

)
(21)

• Control of the machine side converter:

.
x1 = KI

(
i∗sd − isd

)
v′sd = x1 + KP

(
i∗sd − isd

)
vsd = v′sd − ωrLqisq
.
x2 = KI

(
i∗sq − isq

)
v′sq = x2 + KP

(
i∗sq − isq

)
vsq = v′sq + ωr(Ldisd + Lmdird).
x3 = KI(ω

∗
r − ωr)

i∗sq = x3 + KP(ω
∗
r − ωr)

(22)

where:

Ld, Lq: d- and q-axis synchronous inductance.
Lmd, Lmq: d- and q-axis magnetizing reactance.

The set of no linear differential and algebraic Equations (17)–(22) can be written in
compact form as:

.
x = f(x, z,υ, u)
0 = g(x, z,υ, u)

(23)
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where x, z, υ and u are, respectively, the vectors of state, algebraic, stator voltages, and
input variables:

xT =
[
ψsd ψsq ψad ψaq v2

C xa1 xa2 xa3 xs1 xs2 ωr xωr

]
zT =

[
isdisqiad iaq vad vaq vsdvsqv′sd v′sq i∗ad te ps pai∗sq

]
υT =

[
vd vq

]
uT =

[
tm ird i∗aq

(
v2

C

)∗
i∗sd ω∗

r

]
5. Linear Models of WGs

The linear model of a WG is obtained by linearizing the set of non-linear differential
and algebraic equations.

.
x − .

x0 = ∂f(x,z,υ,u)
∂x

∣∣∣
x=x0,z=z0,υ=υ0,u=u0

(x − x0)

+ ∂f(x,z,υ,u)
∂z

∣∣∣
x=x0,z=z0,υ=υ0,u=u0

(z − z0)

+ ∂f(x,z,υ,u)
∂u

∣∣∣
x=x0,z=z0,υ=υ0,u=u0

(υ− υ0)

+ ∂f(x,z,υ,u)
∂u

∣∣∣
x=x0,z=z0,υ=υ0,u=u0

(u − u0)

(24)

0 = ∂g(x,z,υ,u)
∂x

∣∣∣
x=x0,z=z0,υ=υ0,u=u0

(x − x0)

+ ∂g(x,z,υ,u)
∂z

∣∣∣
x=x0,z=z0,υ=υ0,u=u0

(z − z0)

+ ∂g(x,z,υ,u)
∂u

∣∣∣
x=x0,z=z0,υ=υ0,u=u0

(υ− υ0)

+ ∂g(x,z,υ,u)
∂u

∣∣∣
x=x0,z=z0,υ=υ0,u=u0

(u − u0)

on in a more compact form: ∆
.
x

0
0

 =

 A11 A12 A13
A21 A22 A32
A31 A32 A33

 ∆x
∆z
∆υ

+

 B1
B2
B3

∆u

∆i =
[

0 C2 0
] ∆x

∆z
∆υ

 (25)

The linear model of a WG for small-signal stability analysis of a power system is
obtained by eliminating the algebraic variables from (25):

∆
.
x = A∆x + Bυ∆υ+ Bu∆u

∆i = C∆x + Dυ∆υ+ Du∆u
(26)

The model of the electrical grid is described by a set of algebraic equations that relate
the voltage variables with the current variables:

∆i = J∆υ (27)

The overall power system model is built by incorporating (27) to (26):

∆
.
x =

[
A + Bυ(J − Dυ)

−1C
]
∆x +

[
Du + Bu(J − Dυ)

−1Du

]
∆u (28)
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6. Identifying Dynamic Patterns in Linear Dynamic Systems

Dynamic patterns are close associations between state variables and eigenvalues of
the linear model of a dynamic system. Participation factors developed in the context of
Selective Modal Analysis [19] have become standard tools for identifying the relationships
between eigenvalues and state variables [20].

Let us consider an undriven linear dynamic system described by a set of linear first-
order differential equations:

∆
.
x = A∆x

A ∈ ℜN×N (29)

The solution of the set of linear differential Equation (29) provides the response of
the linearized dynamic system to initial conditions different from zero. Such a solution
depends on the exponential of the state matrix A according to:

∆x = eAt∆x(0) (30)

A meaningful approach to computing the exponential of the state matrix A is based on
its eigenvalues and eigenvectors. An eigenvalue λi of the state matrix A and the associated
right vi and left wi eigenvectors are defined as:

Avi = viλi (31)

wT
i A = λiwT

i (32)

The study of Equations (31) and (32) indicates that the right and left eigenvectors
are not uniquely determined (they are computed as the solutions of a linear system of N
equations and N + 1 unknowns). An approach to eliminating that degree of freedom is to
introduce a normalization such as:

wT
i vi = 1 (33)

In the case of N distinct eigenvalues, Equations (31)–(33) can be written together for
all eigenvalues in matrix form as:

AV = VΛ

WA = ΛW
WV = I

(34)

where Λ, V y W are, respectively, the matrices of eigenvalues and right and left eigenvectors:

Λ =

λ1
. . .

λN


V =

[
v1 · · · vN

]
W =

wT
1

...
wT

N


If the exponential of the state matrix eAt is expressed in terms of eigenvalues and right

and left eigenvectors of the state matrix (34), Equation (30):

∆x = VeΛtW∆x(0) =
N

∑
i=1

vieλit
[
wT

i ∆x(0)
]

(35)

The study of Equation (35) allows drawing the following conclusions:

• The system response is expressed as the combination of the system response for
N modes.
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• The eigenvalues of the state matrix determine the system’s stability. A real nega-
tive (positive) eigenvalue indicates exponentially decreasing (increasing) behavior.
A complex eigenvalue of the negative (positive) real part indicates oscillatory decreas-
ing (increasing) behavior.

• The components of the right eigenvector vi indicate the relative activity of each variable
in the i-th mode.

• The components of the left eigenvector wi weight the initial conditions (they are the
excitations) in the i-th mode.

The participation factor of the j-th variable in the i-th mode is defined as the product
of the j-th components of the right vji and left wji eigenvectors corresponding to the i-th
mode [19]:

pji = wjivji (36)

The participation factor of a variable in a mode is its nondimensional magnitude. In
other words, it is independent of the units of the state variables.

In addition, as a result of the adopted normalization (33), the sum of the participation
factors of all variables in a mode and the sum of the participation factors of all modes in a
variable are equal to unity.

N

∑
j=1

pji =
N

∑
i=1

pji = 1 (37)

The S subsystem participation in the i-th mode is defined as the magnitude of the sum
of the participation factors of the variables that describe the subsystem S [21]:

pSi =

∣∣∣∣∣∑j∈S
pji

∣∣∣∣∣ (38)

7. Dynamic Patterns in Power Systems with Wind Generation

Our approach to studying the dynamic patterns in power systems with wind genera-
tors starts by comparing the eigenvalues of a synchronous generator (SG) connected to an
infinite bus with the eigenvalues of a WG (of any type) also connected to an infinite bus.
Then, we consider the case of two generators: SG and WG, and investigate the interaction
of the two generators in the case of WG using different technologies.

7.1. Single Generator Connected to an Infinite Bus

The eigenvalues of the linear model of four models of a single generator (SG, type
1 WG, type 3 WG, or type 4 WG) connected to an infinite bus, according to Figure 9,
are firstly detailed and compared. We are precisely interested in learning if WGs exhibit
electromechanical oscillations as SGs do.
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Figure 9. A single-line diagram of a single generator connected to an infinite bus.

Tables 1 and 2 contain, respectively, the complex and the real eigenvalues of the linear
model of an SG connected to an infinite bus. The model of an SG comprises detailed repre-
sentations of the synchronous machine, the governor turbine, and the excitation system.
Tables 1 and 2 display twelve eigenvalues, as the linear model is described by twelve state
variables. There are three complex pairs and six real eigenvalues. All of them lie in the left-
half plane, which means that the system is stable. The electromechanical oscillation of the
synchronous generator is characterized by the complex pair (1, 2). The electromechanical
oscillation is easily identified since the damping of the associated eigenvalue is much lower
than the damping of the remaining complex pairs of eigenvalues (7%) and its frequency
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(1 Hz) is in the frequency range of power system electromechanical oscillations (between
0.1 and 2 Hz).

Table 1. Complex eigenvalues of the model of a synchronous generator connected to an infinite bus.

Complex Eigenvalues

No. Real (1/s) Imaginary
(rad/s) Damping (%) Frequency (Hz)

1, 2 –0.4682 ±6.1222 7.62 0.97

3, 4 –0.6560 ±0.7209 67.30 0.11

5, 6 –36.6094 ±0.1017 100.00 0.02

Table 2. Real eigenvalues of the model of a synchronous generator connected to an infinite bus.

Real Eigenvalues

No. Real (1/s) Time Constant (s)

7 –0.1421 7.0386

8 –1.6772 0.5962

9 –3.1264 0.3199

10 –4.927 0.2030

11 –10.1524 0.0985

12 –99.7227 0.0100

If a type 1 WG is connected to an infinite bus instead of a SG, the linear model is only
described by three state variables. Tables 3 and 4 contain, respectively, the complex and
the real eigenvalues of the linear model of a type 1 WG connected to an infinite bus. There
is one complex pair and one real eigenvalue. All of them lie in the left-half plane, which
means that the system is stable. The electromechanical oscillation is characterized by a
complex pair. The frequency of the electromechanical oscillation of a type 1 WG is in the
range of power system electromechanical oscillations. In contrast, its damping is much
higher than the damping of SG electromechanical oscillations.

Table 3. Complex eigenvalues of the model of a type 1 WG connected to an infinite bus.

Complex Eigenvalues

No. Real (1/s) Imaginary
(rad/s) Damping (%) Frequency (Hz)

1, 2 –4.1759 ±9.2741 41.06 1.48

Table 4. Real eigenvalues of the model of a type 1 WG connected to an infinite bus.

Real Eigenvalues

No. Real (1/s) Time Constant (s)

3 –3.719 0.2689

If a type 3 WG is connected to an infinite bus instead of a type 1 WG, the linear model
is described by twelve state variables. Table 5 contains the eigenvalues of the linear model
of a type 3 WG connected to an infinite bus. There are six complex pairs. All of them
lie in the left-half plane, which means that the system is stable. The frequency of four
complex pairs is around 3 Hz, whereas the frequency of the remaining two complex pairs is
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around 0.3 Hz. The damping of all complex modes is between 40% and 70%. The frequency
and damping of system eigenvalues are determined by the design criteria of the control
loops of the converter controls [15]. The bandwidth of the inner and outer control loops is
25 rad/s and 2.5 rad/s, respectively. The requested damping of the equivalent second-order
system is 70%. It should be noted that the frequency and damping of the eigenvalues of a
type 3 WG are not in the range of SG electromechanical oscillations.

Table 5. Eigenvalues of the model of a type 3 WG connected to an infinite bus.

Complex Eigenvalues

No. Real (1/s) Imaginary
(rad/s) Damping (%) Frequency (Hz)

1, 2 –17.5000 ±17.8536 70.00 2.84

3, 4 –8.8205 ±16.8485 46.38 2.68

5, 6 –15.5190 ±16.2157 69.14 2.58

7, 8 –9.4275 ±15.7293 51.41 2.50

9, 10 –1.9406 ±1.9075 71.32 0.30

11, 12 –1.6215 ±1.8696 65.52 0.30

The connection of a type 4 WG to an infinite bus is studied as well. The linear model is
also described by twelve state variables. Table 6 displays the eigenvalues of its state matrix.
There are six complex pairs lying in the left-half plane, which means that the system is
stable. The damping and frequency of the eigenvalues of a type 4 linear model are fairly
similar to those of a DFIG one, as they are dictated by the design criteria of the converter
controls [18]. Moreover, the frequency and damping of the eigenvalues of a type 4 WG are
not in the range of SG electromechanical oscillations.

Table 6. Eigenvalues of the model of a type 4 WG connected to an infinite bus.

Complex Eigenvalues

No. Real (1/s) Imaginary
(rad/s) Damping (%) Frequency (Hz)

1, 2 –15.6949 ±18.563 64.56 2.95

3, 4 –10.7595 ±18.4774 50.32 2.94

5, 6 –17.5000 ±17.8536 70.00 2.84

7, 8 –22.3780 ±17.723 78.39 2.82

9, 10 –1.8051 ±1.8309 70.21 0.29

11, 12 –1.8655 ±1.8083 71.80 0.29

We have found that type 1 WGs exhibit well-damped oscillations in the upper fre-
quency range of SG electromechanical oscillations. In addition, type 3 and 4 WGs exhibit
well-damped oscillations outside the frequency range of the SG electromechanical oscilla-
tions due to the design criteria of their converter controls.

7.2. Two Generators Connected to an Infinite Bus

The interaction between SGs and WGs of different technologies is evaluated first,
assuming the power system example in Figure 10. Eigenvalues and participation factors of
each generator (subsystem participation) in each eigenvalue are used for this purpose. It
will be assumed that both generators supply 50% of the total generation delivered to the
infinite bus.
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Tables 7 and 8 display, respectively, the complex and real eigenvalues when the
WG is type 1. Table 9 display the generator participations. The generator with greatest
participation in each eigenvalue is highlighted in shadow grey. Participations close to one
indicate that the dynamics associated to the eigenvalue of interest are dominated by the
corresponding generator. Hence, generator participations clearly indicate that the complex
pair of eigenvalues (1, 2) and the real one (9) are associated with the type 1 WG, whereas
the remaining ones are associated with the SG.

Table 7. Complex eigenvalues when both the SG and the type 1 WG supply 50% of the total generation.

Complex Eigenvalues

No. Real (1/s) Imaginary
(rad/s) Damping (%) Frequency (Hz)

1, 2 –5.1143 8.1753 53.04 1.30

3, 4 –0.6037 6.4592 9.31 1.03

5, 6 –0.6062 0.6890 66.06 0.11

Table 8. Real eigenvalues when both the SG and the type 1 WG supply 50% of the total generation.

Real Eigenvalues

No. Real (1/s) Time Constant (s)

7 –0.1421 7.0358

8 –1.6763 0.5966

9 –2.9954 0.3338

10 –3.1205 0.3205

11 –5.0899 0.1965

12 –10.1434 0.0986

13 –37.3601 0.0268

14 –37.4924 0.0267

15 –99.7556 0.0100

The interaction between a SG and a type 3 WG is now considered. Complex eigen-
values, real eigenvalues and participation factors, displayed, respectively, in Tables 10–12,
indicate that the dynamics of SGs and type 3 WG are fairly decoupled. Generator participa-
tion clearly indicates that complex pairs of eigenvalues (1, 2), (3, 4), (5, 6), (7, 8), (11, 12),
and (13, 14) are associated with the type 3 WG, whereas the remaining ones are associated
with the SG.
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Table 9. Generator participations when both the SG and the type 1 WG supply 50% of the to-
tal generation. The generator with greatest participation in each eigenvalue is highlighted in
shadow grey.

Generator

SG Type 1 WG

1, 2 0.01 1
3, 4 1 0.01
5, 6 1 0.01

7 1 0
8 1 0
9 0.1 1.1

10 1.11 0.11
11 0.98 0.02
12 1 0
13 1 0
14 1 0

Ei
ge

nv
al

ue

15 1 0

Table 10. Complex eigenvalues when both the SG and the type 3 WG supply 50% of the
total generation.

Complex Eigenvalues

No. Real (1/s) Imaginary
(rad/s) Damping (%) Frequency (Hz)

1, 2 –17.5000 17.8536 70.00 2.84

3, 4 –9.5207 16.8765 49.13 2.69

5, 6 –10.4829 16.4688 53.70 2.62

7, 8 –15.7406 16.4223 69.20 2.61

9, 10 –0.5839 6.4667 8.99 1.03

11, 12 –1.7774 1.9346 67.65 0.31

13, 14 –1.7898 1.8556 69.42 0.30

15, 16 –0.6027 0.6779 66.44 0.11

Table 11. Real eigenvalues when both the SG and the type 3 WG supply 50% of the total generation.

Real Eigenvalues

No. Real (1/s) Time Constant (s)

17 –0.1421 7.0359

18 –1.6764 0.5965

19 –3.1339 0.3191

20 –5.0505 0.1980

21 –10.1437 0.0986

22 –37.3345 0.0268

23 –37.5585 0.0266

24 –99.7559 0.0100
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Table 12. Generator participations when both the SG and the type 3 WG supply 50% of the to-
tal generation. The generator with greatest participation in each eigenvalue is highlighted in
shadow grey.

Generator

SG Type 3 WG

1, 2 0 1
3, 4 0 1
5, 6 0 1
7, 8 0 1
9, 10 1 0

11, 12 0 1
13, 14 0 1
15, 16 1 0

17 1 0
18 1 0
19 1 0
20 1 0
21 1 0
22 1 0
23 1 0

Ei
ge

nv
al

ue

24 1 0

The study on the interaction of the SG and the type 4 WG, based on the analysis of
Tables 13–15, also indicates that their dynamics are very much decoupled.

Table 13. Complex eigenvalues when both the SG and the type 4 WG supply 50% of the total generation.

Complex Eigenvalues

No. Real (1/s) Imaginary
(rad/s) Damping (%) Frequency (Hz)

1, 2 –15.6949 18.5630 64.56 2.95

3, 4 –19.7868 17.9872 74.00 2.86

5, 6 –17.5000 17.8536 70.00 2.84

7, 8 –13.9452 17.2824 62.80 2.75

9, 10 –0.7044 6.4014 10.94 1.02

11, 12 –1.9596 1.9324 71.20 0.31

13, 14 –1.8051 1.8309 70.21 0.29

15, 16 –36.5513 1.0242 99.96 0.16

17, 18 –0.6014 0.6784 66.33 0.11

Table 14. Real eigenvalues when both the SG and the type 4 WG supply 50% of the total generation.

Real Eigenvalues

No. Real (1/s) Time Constant (s)

19 –0.1421 7.0361

20 –1.6765 0.5965

21 –3.1324 0.3192

22 –5.0131 0.1995
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Table 14. Cont.

Real Eigenvalues

No. Real (1/s) Time Constant (s)

23 –10.1523 0.0985

24 –99.787 0.0100

Table 15. Generator participations when both the SG and the type 4 WG supply 50% of the total generation.
The generator with greatest participation in each eigenvalue is highlighted in shadow grey.

Generator

SG Type 4 WG

1, 2 0 1
3, 4 0.02 1.01
5, 6 0 1
7, 8 0.01 1
9, 10 1 0.02

11, 12 0 1
13, 14 0 1
15, 16 1.02 0.02
17, 18 1 0

19 1 0
20 1 0
21 1 0
22 0.99 0.01
23 1 0

Ei
ge

nv
al

ue

24 1 0

The conclusions drawn are consistent with other research found in the technical
literature [3–8]. However, our approach has proven to offer further insight into the coupling
of SG and WG dynamics.

8. Impact of Wind Generators on Power System Small-Signal Stability

Figure 11 shows that the damping and the frequency of the SG electromechanical os-
cillation increase as the proportion of wind generation increases. This fact can be explained
in terms of the lack of inertia of WGs: as WG increases, only SG inertia remains, resulting
in higher electromechanical oscillation frequency and damping. The impact of the type 4
WF is higher than the impact of the types 1 and 3 WGs.

The impact of representing WGs as Constant Current Loads (CCLs) is also assessed. It
should be noted that the electromechanical eigenvalues obtained representing the WG as a
CCL are closed to the electromechanical eigenvalues when the WG is either type 1 or 3.

The impact of wind generation on the damping and frequency of power system elec-
tromechanical oscillation is evaluated by increasing the amount of wind generation while
decreasing the amount of synchronous generation. Figure 11 displays the SG electromechan-
ical eigenvalue shift as the proportion of wind generation increases. The damping of the
electromechanical oscillation without wind generation is also displayed with a dash-dot line.
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9. Conclusions

This paper has investigated the dynamic patterns in the small-signal behavior of power
systems with wind power generation using very detailed models of wind generators, in
contrast with the more simplified models used in electromechanical analysis and simulation
of power systems. Close associations between eigenvalues and state variables of SGs and
WGs have been identified using participation factors. It has been found that the dynamics
of WGs are fairly decoupled from the dynamics of SGs. In other words, SGs and WGs
exhibit distinct dynamic patterns. Hence simplified.

In addition, this paper has included a fundamental study on the effect of wind power
generation on power system small-signal stability. Precisely, the effect of wind power
generators of three different technologies (types 1, 3, and 4 WGs) on the damping and
frequency of the electromechanical oscillation of a synchronous generator has been deter-
mined. A simple power system built of two generators (SG and WG) has been considered,
and the wind generation was increased while the synchronous generation was reduced.
The increase in wind generation results in an increase in the damping and frequency of
the electromechanical oscillation. In addition, constant current load models can be used to
represent types 1 and 3 for small-signal stability studies.

Funding: This research received no external funding.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A Data

• Step-up transformer reactance: Xt = 0.15 pu.
• Transmission line reactance: Xl = 0.1 pu.
• Synchronous machine data: H = 6.5 s, T′pd0 = 8.0 s, T′′d0 = 0.03 s, T′q0 = 0.4 s,

T′′q0 = 0.05 s, xd = 1.8 pu, xq = 1.7 s, X′d = 0.3 s, X′p = 0.55 s X′′p= 0.25 s, X′′q= 0.2,
S(1) = 0.0392, S(1.2) = 0.2227, Ra = 0.0025 pu

• Static excitation system data: TR = 0.01 s TC = 10.0 s, TB = 1.0 s, KA = 200 pu.
• Steam turbine-governor data: K = 20.0 pu, T3 = 0.1 s, T4 = 0.3 s, T5 = 7.0 s, T6 = 0.6 s,

K1 = 0.3, K3 = 0.3 pu, K5 = 0.4.
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• Squirrel cage induction generator data: Rs = 0.01 pu, Xs0.15 pu, Xm = 5.0 pu, Rr = 0.01
pu, Xr = 0.15 pu, H = 3.0 pu.

• Doubly fed induction generator data: Rs = 0.01 pu, Xs = 0.15 pu, Xm = 5.0 pu, Rr =
0.01 pu, Xr = 0.15 pu, H = 3.0 pu, C = 0.05 pu, Ra = 0.06 pu, Xa = 0.6 pu, Ird_psis = 0
pu, Irq_psis = 1 pu, s = −0.1 pu.

• Doubly fed induction generator grid side PI current controller data: KP = 0.0068 pu,
KI = 1.1937 s−1

• Doubly fed induction generator machine side PI current controller data: KP = 0.0220 pu,
KI = 0.5881 s−1

• Doubly fed induction generator PI DC link voltage controller data: KP = −0.0875 pu,
KI = −0.1563 s−1

• Doubly fed induction generator PI speed controller data: KP = 21.4222 pu, KI = 38.2539 s−1

• Multipole synchronous generator data: Rs = 0.02 pu, Xs = 0.1 pu, Xmd = 0.9 pu,
Xmq = 0.5 pu, Rr = 0.02 pu, Ra = 0.015, Xa= 0.15, H = 7 s, C = 0.05 pu, Isd = 0 pu,
Isq = −1.0 pu.

• Multipole synchronous generator grid side PI current controller data: KP = 0.0007 pu,
KI = 0.1194 s−1

• Multipole synchronous generator machine side PI d-axis current controller data:
KP = 0.0914 pu, KI= 1.9894 s−1

• Multipole synchronous generator machine side PI q-axis current controller data:
KP = 0.0468 pu, KI= 1.1937 s−1

• Multipole synchronous generator PI DC link voltage controller data: KP = −0.0875 pu,
KI = −0.1563 s−1

• Multipole synchronous generator PI speed controller data: KP = 49 pu, KI = 87.5000 s−1
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