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Abstract: This research explores the detection of flame front evolution in spark-ignition engines using
an innovative neural network, the autoencoder. High-speed camera images from an optical access
engine were analyzed under different air excess coefficient λ conditions to evaluate the autoencoder’s
performance. This study compared this new approach (AE) with an established method used by the
same research group (BR) across multiple combustion cycles. Results revealed that the AE method
outperformed the BR in accurately identifying flame pixels and significantly reducing overestimations
outside the flame boundary. AE exhibited higher sensitivity levels, indicating its superior ability
to identify pixels and minimize errors compared to the BR method. Additionally, AE’s accuracy in
representing combustion evolution was notably improved, offering a more detailed depiction of
the process. AE’s strength lies in its independence from specific threshold searches, a requirement
in the BR method. By relying on learned representations within its latent space, AE eliminates
laborious threshold exploration, ensuring reliability and reducing workload pressures. Comparative
analyses consistently confirmed AE’s superior performance in accurately reproducing and delineating
combustion evolution compared to BR. This study highlights AE’s potential as a promising technique
for precise flame front detection in combustion processes. Its ability to autonomously extract features,
minimize errors, and enhance overall accuracy signifies a significant step forward in analyzing
flame fronts. AE’s reliability, reduced need for manual intervention, and adaptability across various
conditions suggest a promising future for improving combustion analysis techniques in spark-ignition
engines with optical access.
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1. Introduction

In recent decades, advancements in both experimental and computational research
have facilitated a comprehensive examination of the fundamental physical processes taking
place within spark-ignition (SI) internal combustion engines (ICEs) [1–3]. In the field of ICE,
researchers often rely on single-cylinder optical access engines to perform a morphological
analysis of the flame front evolution [4,5]. The identification of kernel formations holds
significant importance in assessing the ability of an igniter to guarantee strong combustion
events [6], particularly in critical operating conditions such as lean–ultra-lean fuel mix-
tures [7]. These conditions, characterized by low luminosity, notably hinder the recognition
of combustion evolution, particularly in capturing the early stages of flame development.
Moreover, the opacity of the images, caused by the accumulation of residues on the piston
head together with reflections from objects inside the combustion chamber, complicates
the observation process, intensifying the haze effect with each cycle [8]. The challenges in
successfully detecting the physical aspects of flame front evolution therefore require robust
and advanced techniques. At present, Machine Learning (ML) sees growing utilization
in controlling engine parameters [9], categorizing images [10], eliminating background
noise [11], and identifying objects and edges [12]. Concerning the latter, the literature

Energies 2024, 17, 1759. https://doi.org/10.3390/en17071759 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en17071759
https://doi.org/10.3390/en17071759
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-8449-9202
https://orcid.org/0000-0001-7942-9720
https://doi.org/10.3390/en17071759
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en17071759?type=check_update&version=1


Energies 2024, 17, 1759 2 of 20

shows the promising results of deep learning algorithms based on a Convolutional Neural
Network (CNN) [13,14].

In previous works of the same research group [15], ML algorithms with CNN struc-
tures were employed to detect the flame front evolving in a single-cylinder optical access
engine and the corresponding performance compared with the ones obtained through the
utilization of a semi-automatic algorithm proposed by Shawal et al. [16] and used as a base
reference. The results show that the proposed methods identify some combustions, initially
marked as misfires or anomalies by the base reference method as valid. This shift allows
for a closer examination of the igniter’s performance during the early kernel formation.
It creates a strong match between an analysis using indicators and visual imaging. Addi-
tionally, metric parameters confirm superiority in accuracy, sensitivity, and specificity [17]
on average of the proposed algorithms, making it more suitable for analyzing ultra-lean
combustion, a focal point in automotive research. The algorithms’ automated threshold
estimation enhances detailed flame analyses, showcasing their potential in improving
combustion analysis techniques. However, the segmentation and labeling process needed
for training the abovementioned models required human intervention. This manual effort
is time-consuming and introduces subjectivity, potentially affecting the model’s ability to
generalize across different datasets or conditions. Moreover, the training of such models
demands substantial computational power, particularly when handling a large volume
of images or high-resolution data. This necessity for significant computing resources can
be costly and time-consuming. Therefore, exploring the potential of diverse approaches
is deemed necessary. Employing an autoencoder-based methodology [18] presents an
opportunity to streamline the preprocessing phase, diminishing the reliance on manual
segmentation and labeling [19]. By harnessing the autoencoder’s capacity to autonomously
extract meaningful features, this approach could mitigate subjectivity, enhance generaliz-
ability across diverse datasets, and curtail the computational resources necessitated during
training [20]. Delving into this path could reveal a better and more adaptable system
for identifying flame fronts in a combustion analysis. An autoencoder is a type of artifi-
cial neural network used for unsupervised learning, which consists of an encoder and a
decoder [21]. The encoder compresses the input data into a latent space representation,
reducing it to its core features. This compressed representation is then decoded by the
decoder to reconstruct the original input as accurately as possible. It aims to learn efficient
representations of the data by minimizing the reconstruction error between the input and
the output [21]. Karimpouli et al. [22] enhanced Digital Rock Physics (DRP) segmentation
using a convolutional autoencoder algorithm on 20 Berea sandstone images. Through
data augmentation, 20,000 realizations were generated. The extended CNN architecture
achieved a 96% categorical accuracy on the test set, surpassing conventional methods
that utilize thresholding to define separate stages, making it challenging to automatically
differentiate them. Cheng et al. [23] introduced a novel image compression architecture
based on a convolutional autoencoder. The design involved a symmetric convolutional
autoencoder (CAE) with multiple down-sampling and up-sampling units, replacing con-
ventional transforms. This CAE underwent training using an approximated rate-distortion
function to optimize coding efficiency. Additionally, applying a principal component anal-
ysis (PCA) to feature maps resulted in a more energy-compact representation, enhancing
coding efficiency further. The experiments showcased superior performance, achieving a
remarkable 13.7% BD-rate improvement over JPEG2000 on Kodak database images. Posch
et al. [24] employed a variational autoencoder (VAE) to create artificial flow fields for
engine combustion simulations. The VAE accurately replicated input data and produced 20
sets of fields for simulations. Results indicated a decrease in variability in VAE-generated
cycles compared to the original data: original data showed 1.69% and 1.29% variability in
peak firing pressure and MFB 50%, while VAE-generated cycles exhibited 0.65% and 0.71%,
respectively. The VAE maintained fundamental physics, surpassing traditional methods in
preserving flow field properties.
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Within this contest, the present work delves into a comprehensive analysis of com-
bustion processes, specifically focusing on the flame front evolution detection of images
obtained via a high-speed camera and coming from an optical access engine. This study
employs an autoencoder, i.e., an innovative neural network architecture, and operates via
unsupervised learning, utilizing an encoder–decoder structure to reconstruct input data,
thereby delineating flame fronts. Tests were conducted at 1000 rpm under two different air
excess coefficient λ [25] conditions. The initial evaluation of the proposed ANN algorithm’s
performance occurred at λ = 1, while subsequent tests explored lower brightness and
critical conditions due to quartz fouling risk, at λ = 1.7. The proposed method eliminates
noise effectively, leveraging learned representations within its latent space, resulting in
enhanced precision and accuracy compared to the method previously established by the
same research group [26]. This research conducts an in-depth comparison between these
methodologies, evaluating their performance through various quantitative metrics. Sensi-
tivity, specificity, and accuracy metrics were employed to gauge the precision in identifying
flame pixels, distinguishing edge and non-edge pixels, and overall performance in delin-
eating combustion evolution. The evaluation involved an analysis of over 63 combustion
cycles, leveraging both qualitative and quantitative assessments. Results showcase the
superiority of the proposed method over the base-reference approach. The autoencoder
architecture [27–30] (from now on AE) exhibits higher sensitivity levels, indicating its
superior capability in accurately identifying pixels outside the flame edge, leading to re-
duced overestimations if compared to the method used as the base reference (from now on
BR). Moreover, AE demonstrates improved accuracy, precisely delineating both edge and
non-edge pixels, which significantly enhances the representation of combustion evolution.
Notably, the AE method’s robustness and reliability are highlighted by its independence
from specific threshold exploration, a requirement in the BR methodology. AE’s automated
processing and reliance on learned representations within its latent space eliminate the
need for laborious threshold searches, offering enhanced reliability and reduced workload
pressures. Furthermore, the comparative analysis with manually obtained binarized images
and early flame development assessments consistently affirm AE’s superior performance in
accurately reproducing and delineating combustion evolution compared to the established
BR method. These findings underscore AE’s potential as a promising methodology for
accurate flame front evolution detection in combustion processes.

2. Materials and Methods
2.1. Experimental Setup

The experiments were conducted on a 500-cc single-cylinder research engine with
optical accessibility (Figure 1). This engine features four valves, a pent-roof combustion
chamber, and a reverse tumble intake. Its internal cylinder bore measures 85 mm with a
piston stroke of 88 mm, resulting in a compression ratio of 8.8:1. To ensure proper function,
piston rings made of a self-lubricating Teflon-graphite mix were used, necessitating dry
contact between rings and the cylinder liner. Engine speed control was managed by an
AVL 5700 dynamic brake during both motored and firing conditions. Fuel injection was
carried out by a Mitsubishi KSN230B port fuel injector situated in the intake manifold,
delivering standard European market gasoline (E5) at 4 bar of absolute pressure. Variations’
λ condition was achieved by adjusting the fuel quantity while keeping the throttle position
fixed to maintain consistent turbulence within the combustion chamber. The quantity of
fuel injected by the PFI injector was assessed post-engine testing using flow measurements
under consistent pressure and energizing durations. Following approximately 20,000
consecutive repetitions, the total injected mass was determined by weighing with a Micron
AD scale, accurate to within ±10 mg. Subsequently, the mass per cycle, known as the
dynamic flow rate, as per the SAE J1832 [31] standard, was calculated.



Energies 2024, 17, 1759 4 of 20

Energies 2024, 17, x FOR PEER REVIEW 4 of 20 
 

 

An Athena GET HPUH4 engine control unit (ECU) controlled injector energizing 
time and ignition timing. Pressure measurements were taken using a piezoresistive trans-
ducer (Kistler 4075A5) at the intake port and a piezoelectric transducer (Kistler 6061 B) in 
the cylinder. The Kistler Kibox combustion analysis system, with a temporal resolution of 
0.1 CAD and accuracy of ±0.6 CAD, captured data including λ from a fast lambda probe 
at the exhaust pipe (Horiba MEXA-720, accuracy of ±2.5%), pressure signals, ignition sig-
nals from the ECU, absolute crank angular position measured by an optical encoder (AVL 
365C), and trigger signals for synchronizing data collection. This synchronization facili-
tated the use of a Vision Research Phantom V710 high-speed CMOS camera paired with 
a Nikon 55 mm f/2.8 lens for imaging purposes. 

  
(a) (b) 

Figure 1. (a) Single-cylinder research engine and (b) schematic representation of optical access. 

Each test point permits the recording of up to 63 consecutive combustion events. Syn-
chronization between imaging and indicating data is ensured by a shared trigger signal 
from an automotive camshaft position sensor (Bosch 0232103052). This synchronization 
allows for the correlation of 2D flame development data on a swirl plane with the in-cyl-
inder pressure trace of the corresponding cycle. The high-speed camera initiates recording 
upon the detection of the trigger signal’s rising edge, with the option to set a tunable pre-
trigger length for acquiring frames even before this edge. Each frame, utilizing 512 × 512 
pixels, captures the entire flame evolution within the optical constraints of the setup. The 
maximum sampling rate of 11 kHz corresponds to a temporal resolution of 0.6 CAD/frame 
at 1000 rpm. Table 1 summarizes the key optical parameters. Flame distortions, wrinkling, 
and convection impose limitations on optical detection, allowing the observation of a 
flame average radius up to approximately 20 mm without reaching the optical boundary. 
This detection boundary corresponds to roughly 5% of Mass Fraction Burned (MFB05) as 
detected by the indicating system at λ = 1.0. 

Table 1. Imaging specifications. 

Feature Value Unit 
Image resolution 512 × 512 pixel 

Sampling rate 11 kHz 
Exposure time 90 µs 

Bit depth 12 bit 
Spatial resolution 124 µm/pixel 

Temporal resolution  0.60 CAD/frame 
  

Figure 1. (a) Single-cylinder research engine and (b) schematic representation of optical access.

An Athena GET HPUH4 engine control unit (ECU) controlled injector energizing time
and ignition timing. Pressure measurements were taken using a piezoresistive transducer
(Kistler 4075A5) at the intake port and a piezoelectric transducer (Kistler 6061 B) in the
cylinder. The Kistler Kibox combustion analysis system, with a temporal resolution of
0.1 CAD and accuracy of ±0.6 CAD, captured data including λ from a fast lambda probe at
the exhaust pipe (Horiba MEXA-720, accuracy of ±2.5%), pressure signals, ignition signals
from the ECU, absolute crank angular position measured by an optical encoder (AVL 365C),
and trigger signals for synchronizing data collection. This synchronization facilitated the
use of a Vision Research Phantom V710 high-speed CMOS camera paired with a Nikon
55 mm f/2.8 lens for imaging purposes.

Each test point permits the recording of up to 63 consecutive combustion events.
Synchronization between imaging and indicating data is ensured by a shared trigger signal
from an automotive camshaft position sensor (Bosch 0232103052). This synchronization al-
lows for the correlation of 2D flame development data on a swirl plane with the in-cylinder
pressure trace of the corresponding cycle. The high-speed camera initiates recording upon
the detection of the trigger signal’s rising edge, with the option to set a tunable pre-trigger
length for acquiring frames even before this edge. Each frame, utilizing 512 × 512 pixels,
captures the entire flame evolution within the optical constraints of the setup. The maxi-
mum sampling rate of 11 kHz corresponds to a temporal resolution of 0.6 CAD/frame at
1000 rpm. Table 1 summarizes the key optical parameters. Flame distortions, wrinkling,
and convection impose limitations on optical detection, allowing the observation of a
flame average radius up to approximately 20 mm without reaching the optical boundary.
This detection boundary corresponds to roughly 5% of Mass Fraction Burned (MFB05) as
detected by the indicating system at λ = 1.0.

Table 1. Imaging specifications.

Feature Value Unit

Image resolution 512 × 512 pixel
Sampling rate 11 kHz
Exposure time 90 µs

Bit depth 12 bit
Spatial resolution 124 µm/pixel

Temporal resolution 0.60 CAD/frame

2.2. Test Campaign

Tests were carried out with the engine operating at 1200 rpm at two different operating
conditions:
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- At λ = 1.0, the ignition timing (IT) was optimized to achieve Maximum Brake Torque,
obtained by reaching 50% of Mass Fraction Burned (MFB50) after 10 CAD aTDC. This
specific operating point was utilized for the initial assessment of the proposed ANN
algorithm’s performance, as detailed in the following paragraph.

- At λ = 1.7, similar procedures were followed to verify the algorithm’s efficacy under
lower brightness conditions. Such a condition is characterized not only by reduced
brightness but predominantly by heightened quartz fouling, primarily attributed to
potential misfires or incomplete combustions.

Table 2 summarizes the main technical characteristics of the experimental points
chosen to develop and test AE’s methodology. For every operating point examined, a total
of 63 consecutive combustion events were conducted, and the resulting performance data,
including the indicating analysis and images, were recorded. Combustion stability was
evaluated by means of the Coefficient of Variance (CoV) of the Indicated Mean Effective
Pressure (IMEP), namely, the ratio between the IMEP standard deviation and IMEP mean
value. Each test point is considered stable or unstable if featured with CoVIMEP below 4%.
It is worth highlighting that, in lean mixture conditions, the IT must be advanced due to the
increased combustion duration. IMEP progressively decreases, and CoVIMEP increases [26].

Table 2. Main characteristics of the operating point tested in the experimental campaign.

Operating Point IT [CAD aTDC] IMEP [bar] CoVIMEP [%]

λ = 1.0 −15 4.10 0.86
λ = 1.7 −40 1.98 >10

Figure 2, comparing in-cylinder pressures for each operating condition against the
motored case averaged over the 63 recorded cycles, demonstrates a general trend. As λ

decreases, a reduction in in-cylinder pressure is observed due to the decreased trapped
mass within the cylinder, impacting the available work output [26]. In the critical case at
λ = 1.7, a delay in the pressure peak’s rise is evident, and in certain instances, the peak
does not rise at all, indicating instances of misfire or incomplete combustions. The reason
for the lower peak pressure in comparison to the motored case is because not only air
but also vaporized fuel becomes trapped, causing an increase in the amount of material
to be compressed, specifically the volume of the fuel–air mixture [26]. Consequently, the
maximum achievable peak pressure decreases at TDC due to the increased charge volume.
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Figure 2. Comparison between the in-cylinder pressures for each operating condition (black lines), at
(a) λ = 1.0 and (b) λ = 1.7 against the motored case (blue line) averaged over the 63 recorded cycles.

Figure 3 depicts, for similar sizes of the flame front, images of the combustion at
varying λ conditions. As the λ value increases, there is a noticeable reduction in brightness.



Energies 2024, 17, 1759 6 of 20

Additionally, as previously mentioned, the three images under the λ = 1.7 critical condition
not only showcase decreasing brightness but also reveal quartz fouling attributed to misfire
phenomena (see the red circles).
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brightness. Additionally, critical condition images highlight reduced luminosity and quartz fouling
due to incomplete combustion phenomena.

2.3. Algorithms’ Post-Processing

In this section, the structures and the functionalities of the algorithm used in previous
activities of the same research group [26], and used as references for comparative purposes
in the present work, are discussed alongside the newly proposed artificial neural network
architecture.

2.3.1. Base Reference Method

The dedicated algorithm for post-processing combustion images conducts ignition
detection, image filtering, contouring, and frame binarization (refer to Figure 4).
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Figure 4. Representation of the main post-processing steps applied to the original image.

Each captured image undergoes filtering using a 3 × 3-pixel median spatial filter
to minimize salt and pepper noise. Within a 220 × 220-pixel sub-area at the center, the
algorithm calculates the average of the maximum gray levels (MGLavg) from the initial
50 frames to identify the ignition onset. Equations (1) and (2) determine MGLavg and its
standard deviation MGLavg,dev, respectively, where n represents the statistic window’s size
and j denotes the frame index within this window. The detection criterion for the first
ignition event is expressed in Equation (3), incorporating an arbitrary constant K.

MGLavg =
1
n

n

∑
j=1

MGLj (1)

MGLavg,dev
max
1≤j≤n

{
MGLj −MGLavg

}
(2)
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MGLi > MGLavg + K×MGLmax,dev (3)

The binarization of grayscale images converts them into black (unburned area, pixel
values = 0) and white (burned area, pixel values = 1) representations. It helps extract
quantitative data, such as the equivalent flame area (Aeq) in mm2 (Equation (4)) and
equivalent flame radius (Req) in mm.

Aeq = π× Req
2 = nw × sf2 (4)

where nw is the number of white pixels and sf is the scaling factor [mm/pixel]. The
equivalent flame radius is defined as the radius of a hypothetical circle with the same area
as the cross-sectional area of the flame.

The binarization threshold is determined using a semi-automatic algorithm proposed
by Shawal et al. [16]. For subsequent images following the first ignition event, the threshold
(THj) is proportional to the average gray level (AVGj) of the preceding image (Equation
(5)).

THj = AVGj ×K1 + K2 (5)

The constants K1 and K2 are user-defined based on algorithm output, particularly Req,
to accurately portray flame front evolution while minimizing overestimation or underesti-
mation. However, under conditions with low brightness, identifying the moment of kernel
formation can be challenging.

This issue suggests the necessity for innovative algorithms to address these challenges
and ensure reliable results, especially when different operators might produce varying
outcomes (Figure 5).
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Figure 5. (a) Some instances of Req that fail to accurately depict the flame radius’s progressive
growth during combustion development, contrasted with Req (solid lines) that appear promising for
replicating this physical phenomenon in combustion. (b) On the right-hand side, an illustration of the
contouring process applied to the potentially suitable cases, assessing the base reference algorithm’s
ability to reproduce the original images’ flame fronts. The selection of (K1

3, K2
3) enhances flame front

reproduction, suggesting it as the optimal choice.

2.3.2. Procedure to Determine the Architecture of the Proposed Autoencoder

An autoencoder is a type of neural network used for unsupervised learning to recon-
struct input data [27]. It consists of two main parts: an encoder and a decoder. The goal is to
compress the input data into a lower-dimensional representation (in the encoder) and then
reconstruct it back to its original form (in the decoder) [28]. For this kind of application, a
stacked denoising autoencoder structure has been used [29] (Figure 6).
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bias. The objective of the denoising autoencoder is to minimize the average reconstruction
error L [28], refining the parameters through training. Equation (6) symbolizes the objective
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x. This objective

function can be optimized using similar methods to those employed in other types of
autoencoders.
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[
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(

X, gθ′

(∼
X
)))]

(6)

It is worth highlighting that, regarding the noise during image acquisition, it was
found to be consistent under uniform camera settings. However, it is important to note that
this may vary with different camera types and applications. Therefore, during the training
phase, the algorithm must be tailored accordingly.

The proposed architecture undergoes initial validation using a specific combustion
event at a λ = 1.0. During testing, the algorithm’s output is compared to human-perceived
binarized images, serving as the target. Figure 7 visually depicts, as an example, the
primary steps executed within the MATLAB 2020 A environment. Initially, the grayscale
raw image (Figure 7A) is transformed into a colored representation (Figure 7B) employing
a jet colormap, aligning its levels with the bit depth of the original image (255). This
step significantly aids in delineating the flame contour. The user identifies this contour
on the colored image by outlining the flame front in red. To enhance subsequent image
binarization, pixels outside the flame boundary are filled in black (Figure 7C) based on a
critical threshold, which relates to the average level (i.e., noise) of an image without flame
development (Figure 7A’). Finally, pixels within this defined perimeter are filled in white
by the user, resulting in the image shown in Figure 7D.
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Figure 7. (A) The main steps to create the target image for comparison with the proposed algorithm’s
output involve several key processes. (B) The definition of the noise level to be subtracted from image
(B) in order to derive image (C) is crucial. Image (A′) represents an image with no flame occurring,
utilized as a reference to establish the noise level. Meanwhile, figure (B′) visually represents image
(A′) in false colors. On the other hand, (C′) highlights the average level of (A′) across the entire
spectrum, ranging from the minimum to the maximum level. The histogram presented on the right-
hand side illustrates the distribution of pixel levels in (C′). Lastly, image (D) showcases the outcome
of the binarization process, presumably after the aforementioned steps have been executed. This final
image serves as a product of the preceding processes, presumably depicting the desired target for
comparison with the output generated by the proposed algorithm. The histogram on the right side
shows the level distribution of the pixels of (C′).

The comparison between the binarized images derived from the proposed algorithm
and the target ones is quantitatively assessed using evaluation metrics [27]. This analysis
aims to gauge potential overestimation or underestimation by the algorithm. The pixel
classification is categorized as follows: true negative (TN) denotes pixels correctly identified
as not part of the edge; true positive (TP) indicates correctly detected edge pixels; false
negative (FN) accounts for pixels where the algorithm fails to detect the edge; and false
positive (FP) refers to those detected as part of the edge but do not actually belong to it.
Based on these metrics, the model’s sensitivity (Equation (7)), specificity (Equation (8)), and
accuracy (Equation (9)) are computed for evaluation.

Sensitivity = TP/(TP + FN) (7)

Specificity = TN/(TN + FP) (8)

Accuracy = (TP + TN)/(TP + TN + FP + FN) (9)

These metrics provide insights into the algorithm’s precision in identifying true edge
pixels, its ability to exclude non-edge pixels correctly, and its overall performance in
delineating the combustion evolution accurately. The selection of the best-performing
autoencoder structure involves employing evaluation metrics after an exhaustive hyper-
parameter grid search. The identified structure, determined through this comprehensive
search process, is composed as follows (Figure 8): The encoder section begins with an input
layer accepting grayscale images of dimensions (512, 512, 1). It subsequently employs 2D
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convolutional layers with 3 × 3 filters and increasing depth (16, 8, 4) to extract hierarchical
features. CNNs, or Convolutional Neural Networks, represent a deep learning architecture
incorporating convolutional structures. Comprising key elements like convolution, pooling,
and fully connected layers [30], CNNs leverage the convolution layer for feature extraction,
followed by pooling layers that reduce the number of parameters and enhance training
efficiency by conveying data information to subsequent network layers. Ultimately, the
fully connected layer employs linear transformation to produce output results. CNNs
adapt convolutional dimensions to suit diverse processing domains. Two-dimensional
CNNs (2D-CNNs) find primary application in image classification endeavors. Max-pooling
layers with a 2 × 2 window size and stride 2 down-sample the feature maps after each
convolutional layer. Conversely, the decoder section mirrors the encoder’s structure by
using transposed convolutional layers to up-sample the encoded features back to the origi-
nal image dimensions. These layers employ 3 × 3 filters with a stride of 2. The decoder
concludes with a convolutional layer generating the final reconstructed image with a single
channel (grayscale) and a regression layer for training purposes. The architecture is trained
using the “adam” optimizer with 100 epochs and a mini-batch size of 28 samples. This
optimizer is known for its effectiveness in training neural networks.
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Figure 8. Architecture of the optimized proposed autoencoder.

Figure 9 shows the preliminary analysis results, which allowed us to define the
autoencoder architecture. For the sake of brevity, only the results of the autoencoder
architecture, which performed best, are displayed. The encoder part of the proposed
structure is trained on a raw image (Figure 9A), deliberately augmented with added
noise (Figure 9B), depicting the initial stage of the flame front evolution. Noise during
training supports the model in several ways: it prevents over-reliance on specific data,
allowing adaptability to varied inputs; improves feature extraction by focusing on essential
information; acts as a regularization tool to prevent overfitting; and enhances the model’s
stability when handling real-world data [29]. After that, the decoder part is tested on the
elaborated image. The resulting output from this decoder (Figure 9C) is then subjected
to a binarization process via the MATLAB “imbinarize” default function (Figure 9D),
without building any specific binarization process. The purpose behind this procedure
is to create a binarized version for a comparative analysis with the manually obtained
binarized image (Figure 9B’), following the aforementioned procedure (Figure 7). This
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comparison performed by overlapping the two binarized images (Figure 9A’) aims to assess
the performance and fidelity of the autoencoder’s reconstruction in capturing the essential
characteristics of the flame front evolution. The confusion matrix offers detailed insights
into the predictive capability of the proposed method in replicating the target shape. It
quantifies both over- (purple area) and underestimations (green area). The specificity
level of about 99% indicates an autoencoder’s ability to accurately detect ‘no flame’ pixels
outside the flame edge. Any observed overestimations are considered incidental evidence.
Sensitivity levels of about 96% reveal the proposed model’s proficiency in detecting pixels
within the target boundary. The high accuracy level (>98%) validates the model’s precision
in distinguishing the flame front and non-flame pixels. Encouraged by these promising
outcomes, the tested architecture has been applied to other cases listed in Section 2.2.
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Figure 9. Output of the autoencoder in the preliminary analysis aimed to assess the performance
of the proposed architecture and comparison with the binarized image of the flame front manually
obtained and used as the target. A is the original image while the other ones are the images post-
processed according to the procedures reported in the Section 2.3.2.

3. Results and Discussion

First, at λ = 1.0, a randomly selected case from the recorded 63 is chosen to assess AE’s
performance against BR.

Figure 10a showcases the equivalent flame radius obtained from both methods, rep-
resented by the blue curve for BR and the red curve for AE. The target values, employed
as a reference (depicted as the black line), will be used for comparison. No appreciable
differences are found between the compared approaches.

With slight underestimations in the first part of the combustion, i.e., kernel formation,
both algorithms prove to be capable of effectively reproducing the target trend. A com-
plementary analysis is carried out by overlapping the corresponding binarized images,
as performed in Figure 9, at three representative frames after the ignition timing (IT), to
quantify any over- and underestimations (Figure 10b).

This additional analysis is necessary to highlight how the proposed method, despite
a slight underestimation of the front with respect to the target, still obtains a much better
result than the BR method. Starting from the specificity levels, both algorithms show
values equal to about 100%, testifying great proficiency in detecting pixels within the target
boundary at each shown CAD aIT.
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Figure 10. (a) Comparison among the target equivalent radius (black line), obtained through the
manual binarization of images as explained in Section 4.1; the one obtained through BR as per
Section 4.1 (green line); and that obtained from AE, according to Section 4.2 (red line). (b) Comparison
among the binarized images using the three aforementioned methodologies conducted at three
different CAD values indicated in (a) by green (4 CAD aIT), yellow (12 CAD aIT), and red (20 CAD
aIT) circles with their respective confusion matrix values.

Concerning the sensitivity, the levels gradually increase as the flame front evolves,
confirming the initial underestimation performed by both algorithms during the early stage
of the combustion and their capability to progressively replicate the target as the process
advances.

However, at 4 CAD aIT, there is a noticeable enhancement in AE’s capability to
replicate the flame shape compared to BR. Specifically, the sensitivity level indicates an
improvement of about 36% in performance by AE over BR (reaching approximately 57%
for AE, compared to around 42% for BR).

Progressing further, an increase in BR enhances both sensitivity levels and AE, result-
ing in approximately a 16% increment at 12 CAD aIT and about an 8% increase at 20 CAD
aIT.

The higher sensitivity levels of AE testify its superiority in accurately identifying
pixels outside the flame edge as ‘no flame’, thereby indicating lower overestimations made
by the proposed structure.

In terms of accuracy, AE exhibits improved performance compared to BR, showcasing a
more comprehensive and precise delineation of the combustion evolution. Higher accuracy
signifies a more comprehensive measure of the algorithm’s overall performance in correctly
identifying both edge and non-edge pixels.
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It accounts for true positives, true negatives, false positives, and false negatives,
providing an inclusive evaluation of the algorithm’s precision in delineating the combustion
evolution accurately.

Due to the impracticality in defining a target curve for all 63 recorded cycles, the
outputs of both AE and BR are subsequently compared by considering data coming from
the indicating analysis.

The curves depicted in Figure 11 represent the trend of the equivalent flame radius for
all 63 combustion cases analyzed at λ = 1.0. The curves identified as BR and AE are narrow,
indicating low dispersion. Low dispersion suggests high event repeatability, meaning
minimal variation from cycle to cycle, consistent with the CoVIMEP value recorded through
the indicated analysis (Table 2). To quantify which of the two sets is narrower and therefore
more faithful to the CoVIMEP value, we consider the dispersion in CAD when the equivalent
front radius is, for instance, equal to 9, 15, and 20 mm, i.e., σReq = 9 mm, σReq = 15 mm,
σReq = 20 mm. This involves determining, for each Req calculated by both algorithms being
compared, the CAD aIT corresponding to the first frame presenting, for example, Req ≥
9, 15, and 20 mm. The uncertainty associated with identifying the CAD aIT where Req is
equal to or exceeds 9, 15, or 20 mm reflects the variability inherent in the determination
process. This variability aligns with the uncertainty observed in the data obtained from
the KIBOX system analysis, and notably corresponds to the 0.6 CAD per frame sampling
frequency of the high-speed camera. Looking at the three dispersion values displayed
in Figure 11, during the initial flame front growth, both methods demonstrate similar
dispersion levels. However, as the equivalent radius reaches 15 mm and 20 mm, AE shows
superior performance compared to BR, displaying reduced dispersion values. This outcome
could indicate a higher fidelity of AE with the experimental data if compared to BR.
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Figure 11. Variation of equivalent flame radius for 63 combustion cases at λ = 1.0. Narrow BR and
AE curves indicate low dispersion, suggesting high repeatability. Dispersion is compared in CAD
at 9 (blue), 15 (yellow), and 20 (red) mm of the equivalent front radius to determine fidelity to the
indicating analysis.

To better emphasize the latter outcome, another analysis can be performed by using
the CA05 acquired from the indicating analysis. At λ = 1.0, the CA05 is derived from
the equivalent flame radius value Req = 20 mm, as detailed in Section 2 [26]. Figure 12a
presents the CA05 trend observed across the 63 cycles (depicted by black markers) alongside
those estimated from the Req values generated by both algorithms (green markers for
BR and red for AE). Meanwhile, Figure 12b illustrates the absolute difference (%Err =∣∣(CAD aIT−CAD aITTarget

)
/CAD aITTarget

∣∣× 100) between the estimation of CAD aIT
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corresponding to the appearance of CA05 performed by the compared algorithm and the
target. In this analysis, the CAD aIT of CA05 identified by the indicating system is referred
to as the target value.
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ers) compared to estimations derived from Req values by both algorithms (BR in red and AE in
green). (b) showcases the absolute relative difference %Err between the CAD aIT estimations for the
appearance of MFB50 by the compared algorithm and the target.

As observable from the graph, AE demonstrates lesser deviation from the target
compared to BR. Specifically, except for a few sporadic instances, the proposed algorithm
maintains the difference below 4% in 57 out of 63 cases, equal to 90%. In contrast, BR
exhibits a discrepancy exceeding 4% in 40% of the cases. Therefore, this outcome signifies a
better alignment of the data from the indicated analysis, indicating a greater confidence of
the AE algorithm in physically reproducing the front development.

The binarization process following the autoencoder outperforms alternative post-
processing methods in flame front evolution detection due to its ability to exploit the
learned representations within the autoencoder’s latent space. This process effectively
translates the extracted features into a clearer and more distinct delineation of the flame
front, resulting in enhanced precision and accuracy compared to other algorithms that
might not leverage such learned representations.

Consequently, this approach does not require specific threshold exploration, which can
be laborious. For instance, unlike the BR case that necessitates semi-automatic threshold
searches, the AE case employs a standard binarization algorithm.

This independence from user intervention results in reduced workload, as the AE
process is entirely automated. Further, as evident from the results, this method exhibits
greater reliability in its output.
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To better emphasize the obtained outcomes, Figure 13 reports the early flame spatial
repeatability when Req = 9 mm. The image is obtained by averaging the luminosity levels
of the 63 consecutive values, i.e., by means of the flame probability presence when the
mean equivalent flame radius is equal to 9 mm [21]. The autoencoder effectively eliminates
noise, evidenced by the near absence of gradients beyond the flame front boundary and
reduced internal gradients. This precision is notable in the high-probability flame zone,
which is distinctly clearer if compared to the BR approach. This underscores two crucial
points, i.e., AE aligns with the evaluation of CoVIMEP from the indicated analysis, where
a larger flame area corresponds to greater stability, consistent with the λ = 1.0 scenario,
and, moreover, it demonstrates a stronger ability to detect the initial flame development if
compared to the BR method. In summary, the autoencoder achieves superior precision in
flame front segmentation, aligning with the indicated analysis’s stability assessment and
outperforming the BR method in early flame evolution detection.
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Figure 13. The probability of the presence of an early flame for Req = 9 mm. The red area indicates
100% of probability of finding the discharge or the flame while the blue one indicates 0% probability.

By examining Figure 2b, three distinct behaviors can be identified summarily. The
first relates to the curve exhibiting the highest-pressure level, the second is associated with
combustion featuring delayed ignitions, and the third set of curves highlights abnormal
combustion occurrences such as misfires. Following an evaluation of the proposed ANN
structure in this study at a specific setting (λ = 1.0), a combustion event was selected for
each of the abovementioned groups to gauge the autoencoder’s performance against BR
under critical conditions (λ = 1.7). As previously demonstrated at λ = 1.0 in Figure 1,
similar assessments have been conducted, and the corresponding outcomes are presented
in Figure 14.

Starting with the ‘High Pressure’ combustion events, in Frame 1, both methods exhibit
promising results. BR achieves a perfect sensitivity of 100%, indicating its ability to correctly
identify all positive cases. However, its specificity is at 97%, suggesting the possibility of
some false positives. The overall accuracy stands at 97%. On the other hand, AE maintains
a sensitivity of 90%, with no false positives (specificity of 100%). Despite sacrificing a small
part of sensitivity, it achieves a higher specificity, and accuracy remains at 97%. Moving
to Frame 2, BR sustains a high sensitivity of 100%, but its specificity decreases to 89%,
implying a higher likelihood of false positives. The accuracy in this frame is 92%. AE
exhibits a sensitivity of 88%, a slight reduction compared to BR. However, its specificity
significantly improves to 99%, indicating greater precision in negative cases. The accuracy
is 96%. In Frame 3, BR maintains a sensitivity of 100%, but both specificity and accuracy
decrease to 76% and 87%, respectively. AE sustains a sensitivity of 100%, and its specificity
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is at 89%, with an accuracy of 93%. Once again, AE maintains higher specificity compared
to BR.
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Figure 14. Comparative performance analysis of the burner recognition (BR) and autoencoder (AE)
in various combustion scenarios at λ = 1.7. Each column represents three distinct instances of flame
development, which depict the beginning, middle, and end of the combustion event. In low-pressure
cases, flame development progresses slower compared to high-pressure cases. Therefore, the same
column does not refer to the same CAD but rather to the same stage of combustion evolution. BR
exhibits high sensitivity but varying specificity across frames, while AE demonstrates consistent and
balanced performance, excelling in specificity and precision. The results suggest AE’s superiority,
particularly in lean and anomalous combustion scenarios.
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Moving on to the scenario of ‘Medium Pressure’, in Frame 1, BR demonstrates a
sensitivity of 98%, meaning it can accurately identify 98% of positive cases. The specificity
is at 96%, suggesting a relatively low rate of false positives, and the overall accuracy is
96%. In comparison, AE exhibits a sensitivity of 78%, indicating a lower ability to correctly
identify positive cases. However, it compensates with a perfect specificity of 100%, resulting
in an accuracy of 97%. Moving to Frame 2, BR achieves a sensitivity of 99% with a specificity
of 92% and an accuracy of 95%. The high sensitivity suggests the effective identification of
positive cases, but the lower specificity implies a higher likelihood of false positives. AE, on
the other hand, maintains a sensitivity of 80% and a perfect specificity of 100%, resulting in
an accuracy of 92%. In Frame 3, BR maintains a high sensitivity of 99%, but both specificity
and accuracy decrease to 82% and 90%, respectively. In contrast, AE sustains a sensitivity
of 99% with a specificity of 97%, leading to an accuracy of 97%.

Lastly, addressing the circumstances involving ‘Low Pressure’, in Frame 1, BR displays
a sensitivity of 61%, indicating its ability to correctly identify 61% of positive cases. The
specificity is at 100%, implying an absence of false positives, and the overall accuracy is 94%.
On the other hand, AE achieves a higher sensitivity of 99%, coupled with a specificity of
97%, resulting in an accuracy of 97%. In Frame 2, BR attains a sensitivity of 99%, suggesting
the effective identification of positive cases. However, the specificity is lower at 70%,
leading to a higher likelihood of false positives, and the accuracy is 78%. AE, in contrast,
maintains a sensitivity of 97% and a higher specificity of 98%, resulting in an accuracy
of 98%. Moving to Frame 3, BR maintains a high sensitivity of 99%, but both specificity
and accuracy decrease to 80% and 91%, respectively. AE sustains a sensitivity of 98%, a
specificity of 96%, and an accuracy of 97%. The comparisons between the equivalent flame
radius confirm the superiority of AE in comparison to BR in reproducing the Req target.

In summary, AE tends to demonstrate a more balanced and consistent performance
across various scenarios, especially excelling in specificity and precision. BR, while achiev-
ing high sensitivity, may encounter challenges in maintaining specificity, impacting its
ability to avoid false positives. Considering these outcomes, it is correct to conclude that
there is a noticeable decrease in BR’s performance and an increase in AE’s performance
across the frames. This gradual difference in performance suggests that AE is more suit-
able for lean combustions, showing increased and consistent performance, especially in
anomalous combustion scenarios, making it superior to BR. In summary, the observations
align with the idea that AE is better suited for the scenarios presented, offering improved
performance over BR, especially in terms of specificity and the ability to handle ultra-lean
and anomalous combustions.

4. Conclusions

The present study presents a comprehensive analysis and comparison between the
base reference method (BR) and the proposed autoencoder (AE) for flame front evolution
detection in combustion processes.

4.1. Obtained Findings

Through a meticulous evaluation and comparative analysis, it is evident that AE,
leveraging its autoencoder architecture, surpasses BR in several aspects.

The evaluation metrics employed for performance assessment, including sensitivity,
specificity, and accuracy, affirm the superior performance of AE over BR. Notably, AE
demonstrates higher sensitivity levels, indicating its superior capability in accurately
identifying pixels outside the flame edge, resulting in lower overestimations. Additionally,
AE showcases improved accuracy, accurately delineating both edge and non-edge pixels,
which is vital in accurately representing the combustion evolution.

The AE’s robustness and reliability are further accentuated by its independence from
specific threshold exploration, which is a notable requirement in the BR methodology.
By employing a standard binarization algorithm and leveraging learned representations
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within its latent space, AE achieves enhanced precision and accuracy in delineating the
flame front evolution without laborious threshold searches.

Furthermore, the comparison with the manually obtained binarized image and the
target, as well as the analysis of early flame development, consistently highlights AE’s
ability to align with CoVIMEP from the indicated analysis and its superior performance in
early flame evolution detection compared to the BR method.

Overall, the results underscore the efficacy of AE in accurately reproducing and delin-
eating the combustion evolution compared to the established BR method. AE’s advanced
capabilities, automated processing, and superior performance metrics position it as a
promising methodology for accurate flame front evolution detection in combustion pro-
cesses. Building on this observation, the comprehensive study underscores AE’s superiority
over BR in flame front evolution detection in combustion processes. The evaluation met-
rics, including sensitivity, specificity, and accuracy, consistently highlight AE’s enhanced
performance. AE’s ability to achieve higher sensitivity and improved accuracy, along with
its independence from specific threshold exploration, positions it as a promising method-
ology for accurate flame front evolution detection in combustion processes. The results
emphasize AE’s advanced capabilities, automated processing, and superior performance
metrics, affirming its potential as a reliable and effective alternative to the established BR
method especially when operating with ultra-lean or anomalous combustion events.

4.2. Potential Challenges and Limitations of the Autoencoder Approach

One primary challenge is connected to the computational efficiency and scalability
of the proposed approach. While the presented outcomes showed promising results, the
applicability of the autoencoder approach for large-scale industrial engines may be limited.
In fact, in the present work, the proposed architecture was trained on an image of one
operational scenario and applied to all other cases. However, in real-engine applications,
when dealing with different engines and varied operating conditions, the method still
requires training on a high amount of data for generalizability, leading to increased time
and resource expenditure.

4.3. Future Works

Considering the abovementioned challenges, future research will be focused on ad-
dressing practical limitations with the aim of enhancing both applicability and robustness
of the autoencoder approach in real-engine testing and industrial applications. The target is
to evaluate the integration of an autoencoder into industrial practices, thereby unlocking its
full potential in optimizing engine performance and emissions control. Future works will
therefore be focused on applying the proposed method at various operating conditions, by
varying, for instance, the engine speed, lambda condition, type of fuel, and load condition
to generalize the proposed approach.
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Nomenclature

Aeq Equivalent Flame Area
AVG Average Grey Level
AE Autoencoder
BR Base Reference
CAD Crank Angle Degree
CAE Convolutional Autoencoder
CoVIMEP Coefficient of Variation of Indicated Mean Effective Pressure
CNN Convolutional Neural Network
DRP Digital Rock Physics
E5 Market Gasoline
Err Percentage Error
ANN Artificial Neural Network
ECU Engine Control Unit
FN False Negative
FP False Positive
ICE Internal Combustion Engine
λ Air Excess Coefficient
MFB Mass Fraction Burned
MGL Maximum Grey Level
ML Machine Learning
PCA Principal Component Analysis
PFI Port Fuel Injection
Req Equivalent Flame Radius
SI Spark Ignition
TDC Top Dead Center
TH Threshold
TN True Negative
TP True Positive
VAE Variational Autoencoder
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