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Abstract: Amidst an energy crisis stemming from increased energy costs and the looming threat of war,
there has been a burgeoning interest in energy conservation and management worldwide. Industrial
complexes constitute a significant portion of total energy consumption. Hence, reducing energy
consumption in these complexes is imperative for energy preservation. Typically, factories within
similar industries aggregate in industrial complexes and share similar energy utilities. However,
they often fail to capitalize on this shared infrastructure efficiently. To address this issue, a network
system employing a virtual utility plant has been proposed. This system enables proactive measures
to counteract energy surplus or deficit through AI-based predictions, thereby maximizing energy
efficiency. Nevertheless, deploying conventional server systems within factories poses considerable
challenges. Therefore, leveraging edge devices, characterized by low power consumption, high
efficiency, and minimal space requirements, proves highly advantageous. Consequently, this study
focuses on constructing and employing data collection and AI systems to utilize edge devices as
standalone systems in each factory. To optimize the AI system for low-performance edge devices, we
employed the integration-learning AI modeling technique. Evaluation results demonstrate that the
proposed system exhibits high stability and reliability.

Keywords: edge device; low-power computing; virtual plant utility; energy management; AI;
deep learning

1. Introduction

Amidst an energy crisis fueled by escalating energy costs and the specter of war, global
interest in energy conservation and management has surged. In response, the government
of the Republic of Korea has initiated various efforts to conserve energy. One such initiative
involves the implementation of the Factory Energy Management System (FEMS), mandated
by the Third Energy Master Plan for energy-intensive facilities consuming more than
100,000 tons of oil equivalent (TOE), effective from 2025 onward. Furthermore, the Korean
government is actively promoting FEMS adoption among factories consuming less than
100,000 TOE [1]. Notably, energy-related policies in Korea are predominantly industry-
centric, given that the industrial sector, particularly industrial complexes, accounts for a
significant portion of the nation’s energy consumption. As shown in Figure 1, industrial
complexes alone contributed to approximately 48% of the Republic of Korea’s total energy
consumption [2]. Hence, it becomes imperative to implement energy-saving strategies
and management protocols within these energy-intensive industrial complexes to bolster
energy efficiency and conservation.

Within these industrial complexes, factories specializing in similar industries often
coalesce. Despite this proximity, many factories fail to leverage shared energy utilities effec-
tively. Instead, they resort to self-generation or individual contracts with energy production
entities. This decentralized approach to energy procurement proves disadvantageous as it
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precludes the preparedness for potential issues arising from energy surpluses or shortages.
Moreover, energy trade under such arrangements typically occurs through contracts with
high unit prices [3].
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A network system has been devised to address these challenges by leveraging a virtual
utility plant. Within this network system, factories within an industrial park that share the
same energy utilities establish a stable supply chain, utilizing common facilities to stabilize
the provision of energy utilities. Moreover, this concept facilitates energy trade between
energy-producing companies and consumer companies by forecasting energy demand and
supply and employing routing algorithms. This approach optimizes energy utilization and
minimizes waste [4].

To effectively utilize an energy utility-sharing network such as the VUP network
system, artificial intelligence AI-based techniques are essential for predicting energy pro-
duction and demand across common facilities, energy production, and trading entities. The
conventional method for deploying these techniques involves each company utilizing its
own on-premise servers.

However, deploying FEMS or VUP simulators in industrial complexes using con-
ventional server systems necessitates additional equipment, such as air conditioners and
dehumidifiers, to regulate temperature and humidity for server management. Nonetheless,
this approach consumes a significant amount of energy. Moreover, given the spatial con-
straints inherent in many factories within industrial complexes, setting up these systems
using conventional server infrastructure poses numerous limitations.

To address these challenges, a method such as Software-as-a-Service (SaaS) can be
considered. While SaaS offers easy setup with low initial costs, it entails ongoing fixed ex-
penses [5]. Additionally, concerns about security may arise due to the sharing of operational
and sensor data among factories [6,7].

For a more fundamental solution, ARM-based edge devices present a viable option.
This approach entails replacing conventional server systems with ARM-based edge devices.
Unlike conventional servers, which consume several thousand watts of power, each ARM-
based device consumes only tens of watts. Their lower power consumption reduces the
occurrence of overheating issues, thereby easing device management burdens. Further-
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more, ARM-based devices occupy significantly less space, approximately 40 to 50 times less
than conventional server systems, thus optimizing space utilization. However, ARM-based
embedded devices typically offer lower performance than conventional server systems,
impacting processing throughput. Additionally, they utilize ARM-based application proces-
sors (APs) rather than conventional x86- or AMD64-based central processing units (CPUs).
This imposes constraints and limits the scope of support they can provide.

Notably, AI learning often requires high graphics processing unit (GPU) perfor-
mance, which has historically posed challenges for embedded devices with lower perfor-
mance capabilities.

Recent studies have been exploring methods to overcome various limitations, includ-
ing constraints related to space, environment, and energy, using edge devices. A key focus
of this research is leveraging the capabilities of low-performance edge devices, strategi-
cally positioned closer to data collection points [8]. Related studies examine strategies
for distributing data processing by relocating segments of existing AI systems to edge
devices. However, these efforts primarily aim to complement existing systems rather than
replace them entirely. Consequently, they neither operate autonomously nor fully resolve
challenges such as external data access.

Additionally, the utilization of TinyML, which offers benefits such as low power con-
sumption, real-time operation, and high accuracy, has been studied [9,10]. Nonetheless,
these devices may struggle with processing large volumes of data in real time owing
to their constrained specifications. Specifically, they may not be suitable for environ-
ments characterized by significant fluctuations in data production, necessitating frequent
model updates.

Another avenue of research involves developing predictive systems by optimizing
clustering algorithms on edge devices [11]. This line of inquiry explores the potential of
employing GPUs such as the Jetson Nano to deploy AI systems on edge devices, as opposed
to conventional predictive systems. However, implementing this approach on edge devices
with limited GPU performance poses significant challenges. These studies predominantly
focus on refining artificial intelligence algorithms and often overlook aspects such as
data collection, thereby limiting the advancement of comprehensive systems exclusively
utilizing edge devices.

Furthermore, active research is underway on refining AI models. By employing
hyperparameter auto-tuning, opportunities for enhancing AI model performance can be
identified [12,13]. However, owing to the necessity of frequent model reconstruction caused
by significant production fluctuations, this method proves unsuitable for edge devices
owing to the high computational burden. Self-adaptive deep learning techniques can
more effectively accommodate production fluctuations [14]. Nevertheless, self-adaptive
deep learning is also unsuitable for edge devices with limited specifications owing to high
computational demands and the potential for overfitting issues.

Additionally, studies have aimed at implementing a recommendation system us-
ing AWS as a backend platform for edge devices [15]. However, this study also ex-
plores how to utilize edge devices as supplementary tools rather than directly addressing
various limitations.

Herein, we introduce an integrated lightweight platform, as depicted in Figure 2,
aimed at addressing the limitations observed in prior studies. The integrated lightweight
platform is designed to facilitate the independent operation of systems running on existing
server infrastructure on edge devices. Sensor data collected within the platform were
gathered using a programmable logic controller (PLC). This collected data underwent con-
version and preprocessing utilizing the connector and preprocessor modules. Subsequently,
the data were stored using a relational database management system known as MyRocks
5.6, which employs a key-value store as its backend storage engine [16].
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Utilizing the data stored in MyRocks, an AI system was constructed by employing
integration-learning AI modeling techniques to forecast future supply and demand in
factory settings. Integration-learning AI modeling utilizes online learning, characterized
by lower computational costs compared to alternative algorithms, to adapt to changing
data patterns in response to orders. If model retraining becomes necessary due to evolving
conditions, the AI model can be retrained using offline learning techniques.

To alleviate the performance limitations of edge devices, delay techniques were em-
ployed to mitigate prediction-related load, facilitate data collection, and minimize platform
interruptions, thereby enhancing stability.

To the best of our knowledge, no prior research has been conducted on developing a
comprehensive system—from data collection to prediction—solely utilizing edge devices
without reliance on networks or external devices.

This study conducted energy utility predictions using edge devices, aiming to de-
velop a practical prediction system that can substitute conventional systems requiring
high computing power. The reliability of edge devices was assessed by comparing their
prediction duration with that of conventional systems. This research offers the potential
to enhance conventional systems, which consume significant energy, by integrating edge
devices. Moreover, this study contributes to the development of a lightweight platform
and the improvement of edge device reliability.

2. Background
2.1. Data Collection System

A traditional method of data collection is through a process known as data acquisition
(DAQ). This method encompasses converters, sensors, data collection, and programmable
logic controllers (PLCs) [17], albeit in a limited sense. However, this traditional notion of
data collection fails to address the expanded scope of modern concepts, which include big
data, AI, high-performance computing, and data processing. Consequently, contemporary
data collection systems encompass broader functionalities, such as storing data using
programs such as databases, preprocessing data for applications such as AI, and conducting
real-time data processing. Data collection systems, now conceptualized in this expanded
manner, play a pivotal role in systems reliant on data collection. Consequently, efforts
are underway to enhance the efficiency of such data collection systems by decentralizing
database and data preprocessing tasks to edge devices, thereby enabling more tasks to be
performed at the endpoint level.
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2.2. Database Management System

Data collected through sensors and PLCs in the data collection system necessitate
storage. Owing to the ease of managing and utilizing data with a database, this approach
is often preferred over storing data in files for future reference and management purposes.
Database management systems are not only integral to data collection systems but are also
extensively utilized for various processes such as AI prediction and data analysis.

Hence, a database plays a crucial role in data preservation and management. Histori-
cally, server systems were commonly employed for this purpose. However, in this study, a
database management system was implemented on edge devices to address environmental
constraints, such as limited space and operational conditions, as well as to mitigate power
consumption issues. This study contributes to evaluating the reliability of database man-
agement systems on edge devices by assessing the operation of the AI system alongside
the utilization of a database management system in embedded devices.

2.3. Deep Learning

An artificial neural network (ANN) with multiple hidden layers is referred to as
a deep neural network (DNN), with deep learning algorithms responsible for training
DNNs [18,19].

Deep learning is a subset of machine learning, which focuses on discerning the rela-
tionship between input and output data. It analyzes and identifies data features to construct
a model, subsequently used for predicting new data. Furthermore, deep learning employs
an ANN to process input data and forecast outcomes.

The term “deep” in “deep learning” signifies the presence of numerous stacked layers
within the ANN. With this layered architecture, deep learning extracts features from
extensive datasets, thereby yielding high accuracy.

Prominent deep learning models encompass the multi-layer perceptron (MLP), convo-
lutional neural network (CNN), and recurrent neural network (RNN) [20,21].

2.3.1. MLP

MLP is a type of ANN structured with multiple layers of neurons. It serves as
an algorithm capable of modeling complex non-linear relationships and addresses the
limitations inherent in single-layer perceptrons. Consequently, MLP is efficiently applied to
classification or regression problems and is one of the most widely utilized ANN algorithms.

MLP comprises an input layer, responsible for receiving input data, an output layer,
which generates final predictions or output results, and hidden layers situated between the
input and output layers. These hidden layers encompass multiple neurons interconnected
with weights. Additionally, MLP operates as a feed-forward neural network (FFNN),
with computations progressing from the input layer towards the output layer. Results are
computed using the input data weights and activation function, with the process reiterated
until reaching the output layer. Figure 3 depicts the computational process of MLP.

Each datum entering the input layer undergoes weighting using the connections to
each node. Subsequently, the data pass through the h( ) function and are transmitted as
input data, denoted as z, to the hidden layer. Typically, the logistic sigmoid function or
hyperbolic tangent function serves as the h( ) function within the hidden layer. Similarly,
z is weighted using the connections to the output layer, and the resulting values are
transformed through the f ( ) function to produce the output. In regression problems, MLP
outputs results as they are. However, for binary classification problems with two classes, 0
and 1, the results are processed through a sigmoid function. For multi-class problems, the
results undergo transformation via the Softmax function.
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2.3.2. Offline Learning

Offline learning, also known as batch learning, is a training approach that utilizes
all available data for training. This method demands considerable time and resources as
all data are learned simultaneously. Nonetheless, it boasts high accuracy and reliability
since AI learning occurs across the entire dataset. Moreover, offline learning is efficient as it
conducts matrix operations in a single batch, facilitating stable convergence of AI models.

2.3.3. Online Learning

Online learning, meanwhile, swiftly updates models by training them with incoming
data, requiring fewer resources compared to batch learning. It involves updating the model
with each execution or specific unit, enabling prompt adaptation to dynamic data changes.
However, this method is susceptible to drawbacks such as noise, computational overhead,
and overfitting.

3. AI System

The primary objective of an AI system based on edge devices for factories is to leverage
AI for real-time predictions using collected data.
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Hence, this section delves into the rationale behind selecting an AI model that operates
on edge devices. Furthermore, it presents an architecture and methodology for integration-
learning AI modeling as a benchmark for AI systems on edge devices.

3.1. AI Model

In this study, a previously researched AI algorithm served as the machine learning
algorithm [22].

Two evaluation metrics, R2 and CvRMSE, were employed to assess the validity of
the prediction models using the MLP and support vector regression (SVR) algorithms,
respectively. For the SVR model, evaluation metrics were examined across three different
kernels: linear, radial basis function network (RBF), and polynomial.

Based on the verification results of the models, the MLP demonstrated an R2 of 0.84
and CvRMSE of 17.35% for predicting electricity consumption, and an R2 of 0.88 and
CvRMSE of 12.52% for predicting liquefied natural gas (LNG) consumption. The SVR
model, when utilizing the linear kernel, exhibited an R2 of 0.72 and CvRMSE of 21.59% for
predicting electricity consumption, and an R2 of 0.82 and CvRMSE of 21.59% for predicting
LNG consumption. When employing the RBF kernel, the SVR model showed an R2 of
0.75 and CvRMSE of 20.52% for predicting electricity consumption, and an R2 of 0.88 and
CvRMSE of 17.01% for predicting LNG consumption. Finally, with the polynomial kernel,
the SVR model yielded an R2 of 0.71 and CvRMSE of 22.10% for predicting electricity
consumption, and an R2 of 0.82 and CvRMSE of 21.58% for predicting LNG consumption.

Table 1 summarizes the results of the prediction models for each applied algorithm.

Table 1. Comparison of results of prediction models.

MLP
SVR

Linear RBF Polynomial

Electricity
R2 0.84 0.72 0.75 0.71

CvRMSE 17.35% 21.59% 20.52% 22.10%

LNG
R2 0.88 0.82 0.88 0.82

CvRMSE 12.52% 21.59% 17.01% 21.58%

Based on the results, the model’s validity is highest when applying MLP for predicting
both electricity and LNG consumption.

Furthermore, MLP is notable for its capacity to update weights. This study aimed to
ensure the reliability of the AI system’s construction by reflecting real-time data weights
and reconstructing the system when model retraining is necessary. Hence, the decision was
made to utilize the MLP algorithm in this study.

The MLP model was developed and analyzed using Python 3.9.7, Tensorflow 2.3.0,
Keras 2.4.3, Sklearn 1.0.2, Pandas 1.4.1, Numpy 1.19.5, and Matplotlib 3.5.1. The dataset
was split into training and test data, with a ratio of 90% for training data and 10% for
test data. Daily data spanning approximately 3 years were used for the electricity usage
prediction model, and daily data covering around 3 months were utilized for the LNG
usage prediction model. Data preprocessing involved the application of Minmax Scaling
and Standard Scaling methods. Additionally, the previously developed predictive models
served as base models before undergoing hyperparameter optimization. All hyperparame-
ters were set to default settings and analyzed. Validation for each MLP-based prediction
model was conducted by comparing predicted values with actual measured values over a
1-month period.

3.2. Integration-Learning AI Modeling

When employing AI models to predict energy management systems or demand and
supply within an industrial complex, various factors such as process or task changes must
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be considered. Therefore, the AI model must be sensitive to data fluctuations and ensure
the continual checking of the reliability and accuracy of predicted values.

Many AI models currently utilized in systems requiring real-time data reflection often
utilize online learning to manage real-time data streams or large datasets. Online learning
offers the advantage of promptly reflecting changes as they occur. However, setting up
large server systems in factories implementing online learning is challenging owing to
spatial, cost, and energy constraints. To address these challenges, a solution has been
devised: replacing large server systems with low-performance edge devices, known as
integration-learning AI modeling. Integration-learning AI modeling combines online and
offline learning. It primarily operates via online learning, which updates the AI model in
real time. However, if overfitting or bias occurs due to continuous weight updates and
the average accuracy of the AI model drops below a threshold value, offline learning is
initiated to retrain the AI model using all collected data up to that point, thereby mitigating
bias in the data. The proposed integration-learning AI modeling system is illustrated in
Figure 4.
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Factory prediction systems must incorporate both online and offline learning because
factory production is characterized not only by its time-series nature but also by its strong
dependency on produced items. Thus, sensitivity to the most recent data is crucial, necessi-
tating the use of online learning. However, past data can also provide valuable insights,
and online learning tends to gradually favor more recent data, leading to bias. Therefore,
offline learning should also be employed to counteract this drawback.

Several issues need to be addressed to effectively utilize integration-learning AI
modeling, which combines online and offline learning, on edge devices. First, it may be
challenging to implement integration-learning AI modeling on edge devices due to their
limited computational performance. Additionally, there may be a latency issue where
the prediction process extends beyond the completion of the next prediction due to high
inference latency. Furthermore, there could be device-related issues during offline learning,
potentially hindering model training.

To address these challenges, the model was optimized to be lightweight for online
learning. Comparative analysis with an existing model revealed no significant difference in
sensor data prediction. Although prediction speed was slower compared to a conventional
server system, there were no bottlenecks observed in prediction and online learning for
both the conventional server system and edge devices. However, bottlenecks occurred
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during data retrieval. Moreover, the CPU-based MLP model demonstrated low load during
prediction, online learning, and backpropagation.

In the case of offline learning, there is a possibility of increased model training time as
data accumulate. To mitigate this issue, the algorithm was enhanced by incorporating a tech-
nique to delay offline learning. This technique schedules training during non-operational
time slots, such as idle periods, to prevent disruption to factory operations. Additionally,
if a significant amount of data accumulates, potentially leading to high load conditions,
offline learning is delayed accordingly.

4. Construction of Data Collection System

To conduct learning and predictions using AI, it is imperative to initially gather data
for model training. Consequently, a robust data collection system becomes indispensable.
Specifically, for operating a prediction system on an edge device independently, a reliable
data collection system is paramount. While a previous evaluation of a data collection
system on an edge device was conducted, it did not meet the reliability standards necessary
for constructing an AI system and integrated platform [23]. Hence, experiments were con-
ducted in this study to ensure the reliability of the data collection system on a lightweight
platform integrating AI and data collection systems.

4.1. Database Selection

The aim of this study was to ascertain whether tasks function on the edge device
similarly to the conventional server system. Therefore, it was crucial to examine any issues
arising when data collection and predictions are simultaneously executed. Consequently,
various databases were compared to assess the time taken to load data and the resources
utilized for data loading. Through this evaluation, the reliability of the database on the edge
device was appraised, and the most suitable database management system was determined
based on the reliability assessment results.

Three databases widely used across various domains were selected for evaluation.
MySQL was chosen as a relational database management system, while InfluxDB, a time-
series database management system known for its adeptness in handling time-series data,
was selected, considering the characteristics of sensor data [24,25]. Finally, MyRocks,
a relational database management system utilizing the RocksDB key-value store as its
backend storage engine, was included. These three databases underwent comparison for
evaluation. To gauge the reliability of the integration platform and AI system, collected
data were employed to conduct AI predictions every 10 seconds, and the database load
was monitored. Based on the results, the most suitable database management system for
constructing an AI system with edge devices was determined.

4.2. Evaluation
4.2.1. Evaluation Setup

In this evaluation, tests were conducted using the ASUS Tinker Board 2 as the edge
device [26]. This device consumes a maximum of 30 W of power. The database versions
utilized for this evaluation were MySQL v5.7, MyRocks v5.6, and InfluxDB v1.8.

4.2.2. Dataset

The dataset employed for the evaluation comprised data collected at second intervals
from a demonstration factory. The test involved bulk inserting five million sensor data
points, which consisted of 100 float and integer data points per second.

4.2.3. Evaluation of Data Insertion in Edge Device

Upon bulk inserting approximately 3.7 GB of data, MyRocks completed the task
in 3030 s, while InfluxDB took 83,100 s, as depicted in Figure 5. However, MySQL en-
countered an error and could not function as a database. The elapsed time difference
between MyRocks and InfluxDB exceeded 27 times. This indicates that under heavier loads,
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the data collection system may pose a bottleneck in the operation of both AI and data
collection systems.
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InfluxDB utilizes approximately 33% less memory than MyRocks, and its CPU utiliza-
tion is approximately 6% lower than that of MyRocks, as illustrated in Figure 6. However,
this difference in resource utilization is the reason why InfluxDB took approximately
27 times longer than MyRocks. In this scenario, InfluxDB’s lower memory usage and CPU
utilization are attributed to an input/output (I/O) bottleneck. Consequently, it is evident
that MyRocks utilized resources more efficiently over time.
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It is apparent that InfluxDB encounters issues with resource utilization due to its
high I/O latency, which may compromise data processing reliability under heavier loads.
Conversely, MyRocks demonstrated shorter elapsed time and higher resource utilization,
indicating superior reliability as a data collection system compared to InfluxDB. Therefore,
MyRocks was chosen as the optimal database for edge devices, and subsequent experiments
were conducted using it.

5. Evaluation and Results
5.1. Evaluation Methodology

For this study, the Tinker Board 2, a widely utilized edge device, was employed for
the evaluation. The specifications of this edge device are outlined in Table 2.

Table 2. Edge device specifications.

Components TinkerBoard 2 (ASUS, Taipei, Taiwan)

SoC Rockchip RK3399 (Rockchip, Fuzhou, China)
Memory LPDDR4 2 GB
Storage Samsung mSD 256 GB (Samsung, Yongin-si, Republic of Korea)

OS Debian 11
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MyRocks v5.6 was used as the database for the data collection system. All settings of
RocksDB 6.8.0 were set to their defaults.

The experiment data consisted of power data obtained from 10 companies every
minute. The first evaluation involved real-time data reception, while simultaneously
conducting offline learning of the integration-training AI modeling technique to reconstruct
the AI model using 100 days of data. This method aimed to evaluate the elapsed time for
offline learning required to reconstruct the AI model. Subsequently, the second evaluation
measured the elapsed time for online learning while making predictions based on real-time
data collection.

The prediction model was configured to forecast power data for the next unit time
interval based on data received every minute. In this study, the unit time for the AI model’s
predictions was set to 15 min.

Scikit-learn was utilized as the library for AI modeling. For evaluation comparison,
a server system with specifications outlined in Table 3, representative of a typical server
used in conventional server systems, served as the comparison target. The evaluation
comparison was conducted using this specified server.

Table 3. Server system specifications.

Components Dell R630 (Dell, Round Rock, TX, USA)

CPU E5-2620 v3
Memory 128 GB
Storage Samsung 870 evo 250 GB (Samsung, Republic of Korea)

OS Ubuntu 22.04

In this study, real-time power data were obtained from 10 factories, and the AI model
was trained and utilized for predictions on the edge device. This approach ensured the
reliability of the integrated platform for both data collection and AI systems on the edge
device, thereby contributing to research on low-power computing.

5.2. Integration-Learning AI Modeling Offline Learning Evaluation

This study was conducted with the aim of making comparisons with the
existing system.

As illustrated in Figure 7, there was approximately a 2.8 times performance difference
in offline learning between the two models. Data were collected at 1-minute intervals in
this study. Since predicting and controlling factory energy usage at intervals of seconds is
inefficient, predictions were made with a unit time of over 1 minute. Therefore, having a
model training time of less than 1 minute is not a concern. Moreover, offline learning was
conducted during factory downtime, ensuring it did not directly impact predictions.
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Hence, although offline learning while operating the data collection system on edge
devices may be slower compared to conventional systems, it was verified that both the data
collection system and offline learning operate with high reliability even on edge devices.

5.3. Integration-Learning AI Modeling Online Learning Evaluation

In the performance evaluation of online learning, the edge devices were approxi-
mately four times slower than the conventional server system, as depicted in Figure 8.
However, with a time requirement of only 0.04 s, this discrepancy does not significantly
impact predictions.
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It is worth noting that the performance evaluation results of online learning mentioned
above do not include database access time. If the evaluation were to encompass database
access time, it would lead to a high load, as illustrated in Figure 9, owing to the complexity
of the queries sent to the database. Consequently, the majority of the elapsed time would
be attributed to database processing. Thus, the performance difference is less pronounced
than when the database access time is excluded. Even when the database access time is
factored in, online learning performance registers a short elapsed time of less than 1 minute.
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In summary, utilizing edge devices as a lightweight platform for data collection and AI
systems, integrating learning AI modeling suitable for various environments, yields lower
performance than the conventional server system. However, offline learning typically takes
less than 30 s on average. Furthermore, there is no significant disparity in online learning
performance between this AI system and the conventional server system, indicating a high
level of reliability in this AI system.
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6. Conclusions

In this study, we investigated the feasibility of operating data collection and AI systems
on edge devices as standalone lightweight platforms in each factory.

The reliability of operation on the standalone edge device was assured through
integration-learning AI modeling. Furthermore, even when the edge device was used
independently, the load remained low, allowing for improvements to the AI model.

Additionally, although there was a performance difference of 2.8 times in offline
learning and up to four times in online learning compared to the conventional system,
predictions could be made without any issues on the edge device for a unit time of over
1 minute. In the database evaluation under high load conditions, reliable data collection
was achieved when MyRocks was used.

This evaluation demonstrates the potential for replacing conventional server systems,
which encounter issues such as high power consumption, inefficient space utilization, and
management load. Moreover, it highlights the possibility of ensuring reliability in building
edge devices as standalone systems in factories.

This study introduces an integrated lightweight platform by developing both a data
collection system and the entire AI system cycle on an edge device. To the best of our
knowledge, while there have been numerous endeavors to address energy, environmental,
and space constraints, this study represents a significant milestone as the first to overcome
these challenges by constructing a comprehensive system entirely on an edge device.

Our investigation devised an AI system capable of learning and predicting data with
significant fluctuations on existing low-performance edge devices that are not special-
ized for AI tasks. This breakthrough addresses the constraints encountered with exist-
ing techniques, notably the high computational load, thereby enabling the utilization of
low-performance edge devices in handling data with significant fluctuations through the
AI system.

This research shows promise for various applications, including smart factories and
smart homes, as well as in scenarios where network connectivity and physical locations are
constrained due to security concerns or environmental characteristics.

Based on the insights gained from this study, we are currently involved in real-time
prediction activities, having deployed our integrated lightweight platform in a demon-
stration factory. Additionally, we are investigating the enhancement of our capabilities by
evolving the data collection system into an IIoT (Industrial Internet of Things) platform to
enable control functionalities. Moreover, we have devised plans for a visualization project
in response to requests from the demonstration factory.

For future research, our objectives include enhancing the performance of online learn-
ing and the edge device AI model by clustering edge devices and enhancing the data
collection system. We also intend to explore the feasibility of utilizing edge devices as a
lightweight platform for the entire prediction and data collection system cycle.

Moreover, we aim to expand our research beyond AI system development and delve
into improving AI algorithms. Our plans entail exploring advanced AI algorithms, refining
hyperparameter tuning techniques specifically designed for edge devices, and investigating
self-adaptive methodologies to enhance the AI model itself.
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