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Abstract: Carbon Capture, Utilization, and Storage (CCUS) represents a vital technology for ad-
dressing pressing global challenges such as climate change and carbon emissions. This research
aims to explore the relationship between the CCUS capability and carbon emissions in the United
States considering thirteen predictors of CCUS and carbon emissions. Incorporating these predictors,
we aim to offer policymakers insights to enhance CCUS capabilities and reduce carbon emissions.
We utilize diverse econometric techniques: OLS, Lasso, Ridge, Elastic Net, Generalized Method
of Moments, and Seemingly Unrelated Regression. Elastic Net outperforms the other models in
explaining CCUS, while OLS is effective for carbon emissions. We observe positive impacts of the
number of projects and foreign direct investment on the CCUS capacity, but limited influence from
the CCUS technology level. However, the relationship between the CCUS capacity and carbon
emissions remains limited. Our study highlights the importance of incentivizing projects to increase
CCUS capabilities and recognizes the critical role of legal and regulatory frameworks in facilitating
effective CCUS implementation in the US. Moreover, we emphasize that achieving decarbonization
goals necessitates the development of affordable green alternatives. It is essential to view CCUS as a
complementary, rather than a sole, solution for emission reduction as we work towards achieving
net-zero emission targets.

Keywords: CCUS; CCUS capacity; carbon emissions; macroeconomy; energy consumption

1. Introduction

Despite ongoing efforts to address climate change, the global consumption of fossil
fuels, including coal, oil, and natural gas, continues to rise, and consequently, the emissions
of greenhouse gases, primarily carbon dioxide (CO2), remain alarmingly high [1]. Across
the globe, countries have established ambitious objectives for carbon neutrality and net-
zero emissions aimed at mitigating the effects of climate change. In the endeavor to reach
net-zero objectives, one highly effective approach involves the deployment of Carbon
Capture, Utilization, and Storage technologies, commonly referred to as CCUS. CCUS
represents a comprehensive suite of technologies that holds great potential for making
substantial contributions to global energy and climate targets in diverse ways. It is widely
recognized as a pivotal clean technology, a viewpoint shared by experts, including officials
at IEA [2].

The CCUS capacity refers to the collective capability of CCUS technologies and projects
to capture and store CO2 emissions. It includes the total capacity for active and commercial
projects across various CCUS facilities while excluding suspended and decommissioned
projects as well as the transport capacity of each project [3]. This capacity is measured in
terms of the amount of CO2 that can be effectively captured and stored, typically expressed
in metric tons (or million metric tons) of CO2 per year. The CCUS capacity is a crucial metric
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in efforts to reduce CO2 emissions and combat climate change, as it represents the potential
for mitigating greenhouse gas emissions from industrial processes and power generation.

Within the realm of CCUS, significant sources of CO2 emissions originate from power
generation facilities, whether they are fueled by biomass or fossil resources. Furthermore,
CCUS encompasses the potential for the direct capture of CO2 from the atmosphere. Once
captured, the compressed CO2 can be transported through a variety of channels, including
pipelines, ships, railways, or trucks, and subsequently employed for various applications if
it is not immediately used upon capture. Additionally, CCUS offers the option of injecting
CO2 into deep geological formations, such as saline reservoirs or depleted oil and gas
reservoirs, providing a secure and enduring repository for the stored CO2 [4]. Figure 1
provides a schematic representation of the CCUS value chain. Currently, CCUS facilities
operating worldwide possess the capacity to abate more than 40 million metric tons (Mt) of
CO2 equivalent annually.
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While CCUS project deployment is becoming increasingly diverse across various
regions, a significant concentration of global CCUS projects is evident in the United States,
as depicted in Figure 2. Among nations, the United States has assumed a leadership
position in CCUS, with a full-chain capacity of 21.89 Mt of CO2 and 16 active projects as of
2022. This accounts for approximately 50.9% of the global capacity in that year [5].
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While historical disparities between CCUS deployment and expectations have been no-
table, there has been a significant surge in momentum in recent years, as evident in Figure 2.
Across the entire global CCUS value chain, there are currently more than 500 projects in
various stages of development. As of early 2022, CCUS project developers have set am-
bitious targets for approximately 50 new CCUS facilities to become operational by 2030.
If this target is met, it could result in the annual capture of approximately 125 Mt of CO2.
However, even with this level of progress, the overall capacity of CCUS would still fall
significantly short of the one-third of 1.2 Bt of CO2 per annum that the 2050 Scenario of Net
Zero Emissions calls for [5].

Despite the recognized potential of CCUS technologies in reducing greenhouse gas
emissions, their widespread implementation remains limited. Several factors contribute
to the limited implementation of CCUS projects. This includes high costs associated with
CCUS technologies acting as a deterrent, compounded by insufficient financial incentives [6]
and supportive government policies [7], complex regulatory requirements, technical chal-
lenges, and public perception concerns further hindering adoption [7,8]. Additionally, the
availability of alternative emission reduction methods and limited awareness about CCUS
benefits contribute to the issue [9].

From the above, the relationship between CCUS adoption and emissions remains inad-
equately understood, leaving a gap in our comprehension of its effectiveness. While the en-
gineering, scientific, and technological aspects of CCUS have been extensively explored [2],
they may not offer a comprehensive view, particularly from an economic standpoint. This
study emphasizes the urgent need to delve deeper into the barriers hindering CCUS deploy-
ment and how macroeconomic factors, energy consumption, and energy prices influence
the feasibility of CCUS projects and their impact on carbon emissions in the United States—
a nation recognized for its leadership in certain CCUS technology and implementation
domains. Moreover, despite existing research focusing on the techno-economic analysis of
CCUS projects [10–12] and general equilibrium models [13], empirical econometric research
on CCUS capacity remains notably lacking [14]. Therefore, this study employs various
econometric modeling techniques, including Ordinary Least Squares (OLS), Lasso, Ridge,
Elastic Net, Generalized Method of Moments, and Seemingly Unrelated Regression (SUR),
to uncover crucial insights into the link between CCUS capacity and carbon emissions and
their associated factors, aiming to strengthen the robustness of the results and contribute
significantly to the existing body of knowledge.

This paper’s structure consists of five sections. Section 1 introduces the research
topic, while Section 2 offers a comprehensive literature review encompassing CCUS, car-
bon emissions, energy consumption, economic activity, and their interconnectedness. In
Section 3, the methodology is outlined, encompassing the use of econometric methods,
data description, and empirical model. Moving to Section 4, this part of the paper presents
and discusses the analytical results. Lastly, Section 5 encapsulates this study’s conclusion,
summarizing key findings and implications.

2. Literature Review

Numerous scholars have diligently identified various factors influencing carbon emis-
sions, such as finance, policy, and urbanization [15,16]. However, many studies have over-
looked the impact of CCUS, including its capacity, technology, and development [17–20].
Few studies, especially quantitative ones, have explored the relationship between CCUS
technology and carbon emissions [14,21] and the full-chain version of CCUS is more com-
mon than individual segments such as capture, storage, and utilization, as in Table 1.

Alsarhan et al. [22] stated that CCUS technology can remove carbon dioxide from the
atmosphere, essentially acting as a “carbon sink”. This process would result in a reduction
in carbon emissions present in the air. However, some researchers have asserted that
the success of CCUS in reducing carbon emissions may be hindered by several factors.
These include high failure rates, a lack of financial support and market incentives, and an
inadequate regulatory framework [22–24]. After accounting for technological regularity
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and economic benefits, Wang et al. [25] concluded that uncertainty remains regarding
CCUS technology’s ability to effectively reduce carbon emissions. Furthermore, the high
cost of utilizing CCUS technology may hinder the emission reduction of CO2 [26]. It is
essential to recognize that the costs, benefits, and overall maturity of CCUS technology can
vary significantly at different stages of development because it is developed following the
technological phases [27]. As a result, the effect of CCUS technology on reducing emissions
may change depending on the stage of development. For instance, the initial stages of
CCUS innovation may have a more detrimental effect on carbon emission efficiency than in
later stages due to elevated costs and energy consumption for technological implementation.
Zhang et al. [14] discovered that China’s digital economy serves as a favorable moderator,
enhancing the impact of increased carbon emission efficiency through CCUS technology.

Table 1. Global CCUS capacity across its value chain [3].

Year Capture
(Mt CO2/Year)

Utilization
(Mt CO2/Year)

Storage
(Mt CO2/Year)

Full Chain
(Mt CO2/Year)

2018 0 0.838 0 36.8769
2019 0.3 0.838 0 42.9769
2020 1.78 0.838 1.12 42.8769
2021 1.78 0.838 1.12 41.8309
2022 1.78 0.963 1.12 43.0109

Note: Transport capacity is included under full chain. The data cover CCUS projects under operation status.

For instance, a higher GDP per capita may stimulate investment in CCUS projects
and research [23]. Similarly, improved employment rates resulting from CCUS initiatives
can spur investment in CCUS projects [28]. Additionally, factors such as trade volume
and foreign direct investment can influence a nation’s industrial activity and emissions,
thereby shaping the prioritization of carbon reduction technologies, including CCUS [29].
Moreover, the relationship between energy factors, such as consumption and prices, and
CCUS adoption is complex. Energy consumption, particularly from fossil fuels, directly
contributes to carbon emissions [30], making it a critical consideration for CCUS implemen-
tation. Higher fossil fuel prices may provide incentives for CCUS investment, while lower
prices could pose obstacles to adoption [31]. Furthermore, the consumption of renewable
energy may impact the urgency of CCUS implementation, particularly for industries reliant
on fossil fuels [32].

Considering the factors related to carbon emissions, researchers have dedicated their
efforts to uncovering the relationship between macroeconomics, energy consumption,
climate change, and emissions [33–35]. However, depending on the country and region,
the impact of economic activity and energy consumption on carbon emissions can yield
inconsistent effects and conflicting outcomes [36]. Some studies suggest that as a nation
undergoes economic development and experiences a rise in energy consumption, its emis-
sions tend to increase [37,38]. Conversely, other research indicates that increased economic
activity and energy usage can lead to emission reductions. For instance, Sterpu et al. [39]
examined the relationship between economic growth, non-renewable energy use, green-
house gas emissions, and renewable energy use in European nations. They found that
while an increased utilization of renewable energy results in a decrease in greenhouse gas
emissions, heightened energy consumption leads to an increase in emissions. Moreover,
according to Maneejuk et al. [40], economic development that surpasses a certain threshold
point can lead to declining CO2 emissions.

Additionally, there is a positive correlation between economic growth and CO2 emis-
sions in developed Middle Eastern and North African nations, while emerging nations
exhibit a negative correlation [41]. Conversely, the findings of Anwar et al. [42] suggested
that increasing economic expansion raises carbon dioxide emissions in G7 countries, sub-
sequently exacerbating environmental pollution. However, they also found that higher
levels of renewable energy consumption, institutional quality enhancement, and tech-
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nological innovation hindered carbon dioxide emissions. Furthermore, Sanli et al. [43]
demonstrated that in the long run, both macroeconomic stability and instability positively
influence carbon emissions, with asymmetric economic complexity shocks exacerbating
environmental pollution. Their study suggested that a sophisticated, complex production
structure may have less detrimental effects on the environment compared to conventional
production methods.

Nonetheless, Zhu et al. [44] suggested that an increase in government focus on en-
vironmental protection may moderate corporate efforts to reduce carbon emissions and
enhance environmental subsidy provisions. This observation is echoed by Cao et al. [45],
who highlighted that coordinated actions between local and central governments on carbon
reduction are achieved through attention to environmental protection regulations. Further-
more, Liu et al. [46] found that businesses in capital-intensive, technologically advanced,
and highly polluting industries demonstrate a more pronounced performance in carbon
reduction. Additionally, attention to carbon reduction and financial market stress is noted
to be closely associated with volatility spillover [47].

This study aims to fill existing research gaps by investigating the relationship between
CCUS technology and carbon emissions in the US, while also exploring various predictors
related to macroeconomics and energy fields. Its contributions are two-fold. Firstly, it
enriches the literature on low-carbon transformation by offering practical insights for
the US in developing low-carbon technology. While previous studies have highlighted
the effectiveness of CCUS technology in reducing carbon emissions, few have focused
specifically on the US context. This study addresses this gap by providing valuable insights
tailored to the US. Secondly, it uncovers key factors that enhance CCUS capacity and reduce
carbon emissions. By integrating various economic and energy factors into a comprehensive
research framework and analyzing their impacts on both CCUS technology and carbon
emissions, this study offers actionable solutions for policymakers to implement more
effective measures toward carbon emission reduction and carbon neutrality.

3. Methodology
3.1. Estimation Methods
3.1.1. Ordinary Least Squares (OLS)

The relationship between a dependent variable and one or more independent variables
is analyzed through the multiple linear regression model [48,49]. The general form of the
linear regression model is

y = Xβ + ε (1)

where yt is the T × 1 vector representing the dependent variable, and X is T × K, a matrix
of independent variables. β is the K × 1 vector of unknown parameters, and ε is the
T × 1 vector representing random disturbance that follows a normal distribution with a
mean of 0 and variance σ2, denoted as ε ∼ iidN(0, σ2). OLS is the most commonly used
method for estimating the unknown parameters in a linear regression model [48,49]. Then,

the OLS estimator is β̂
OLS

= argmin
β

∥y − xβ∥, where ||. || is the standard L2 norm in the

T-dimensional Euclidean space.

3.1.2. Lasso Regression

The least absolute shrinkage and selection operator (Lasso) was developed by Tibshi-
rani [50] for regression analysis where the number of predictors is larger than observations,
i.e., p > T. Lasso performs not only the selection of variables but also parameter estimation
to improve the prediction precision and interpretability of the generated statistical model.
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Let β̂
lasso

= (β̂
lasso
1 , . . . , β̂

lasso
k ), and the Lasso estimate β̂

lasso
is defined as the solution to the

following optimization problem:

β̂
lasso

= argmin
βlasso

{
T
∑

t=1

(
yt −

K
∑

k=1
βlasso

k xkt

)2
}

subject to
K
∑

k=1

∣∣∣βlasso
k

∣∣∣ ≤ c

(2)

where c ≥ 0 is the tuning parameter and for all t, the Lasso function can also be expressed
in compacted form as

β̂
lasso

= argmin
βlasso

(y − Xβlasso)
2
+ λ

∥∥∥βlasso
∥∥∥

1
(3)

where λ is a non-negative regularization parameter and the exact relationship between λ
and the number of non-zero coefficients, denoted as M, is data-dependent.

3.1.3. Ridge Regression

Ridge regression, presented by Hoerl and Kennard [51] is a technique for calculat-
ing the coefficients of multiple-regression models in cases where predictors are highly
correlated, i.e., multicollinearity issue. The Ridge regression is formulated as

β̂
ridge

= argmin
βridge

{
T
∑

t=1

(
yt −

K
∑

k=1
β

ridge
k xkt

)2
}

subject to
p
∑

j=1

(
β

ridge
j

)2
≤ c

(4)

The Ridge function can be stated alternatively as

β̂
ridge

= argmin
βridge

(y − Xβridge)2 + λ
∥∥∥βridge

∥∥∥2

2
(5)

3.1.4. Elastic Net Regression

Elastic Net is a regularization regression method that combines penalties from both the
Lasso and Ridge methods [52]. It is a suitable method for cases involving many predictors
and multicollinearity. The Elastic Net regression can be defined as

β̂
elastic

= argmin
βelastic

{
T
∑

t=1

(
yt −

K
∑

k=1
βelastic

k xkt

)2
}

subject to (1 − α)
∥∥∥βelastic

∥∥∥
1
+ α

∥∥∥βelastic
∥∥∥2

2
≤ c

(6)

where
∥∥∥βelastic

∥∥∥2

2
=

K
∑

k=1

(
βelastic

k

)2
,
∥∥∥βelastic

∥∥∥
1
=

K
∑

k=1

∣∣∣βelastic
k

∣∣∣, and α is the weight parameter.

The Elastic Net estimator β̂
elastic

can be revised as

β̂
elastic

= argmin
βelastic

(y − Xβelastic)2 + λ1

∥∥∥βelastic
∥∥∥

1
+ λ2

∥∥∥βelastic
∥∥∥2

2
(7)

Elastic Net regression stands out as a robust regularization technique, offering solu-
tions to several drawbacks encountered in Lasso and Ridge regression approaches. Its
versatility makes it particularly valuable in datasets characterized by high dimensionality
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and multicollinearity. Elastic Net effectively combines variable selection and shrinkage,
making it a powerful tool for predictive modeling in complex data scenarios.

3.2. Data

This section outlines the variables utilized in this study, categorized into three groups.
The first group encompasses CCUS and carbon emission-related variables, including CCUS
capacity (CCUSCap), number of CCUS projects (Proj), CCUS technology level (Techlv),
government CCUS policy (Govpol), and carbon emissions (CO2E). The second group
comprises economic indicators, such as GDP per capita (Gdppc), unemployment rate
(Unemp), trade volume (Trad), foreign direct investment (FDI), and industrial production
and capacity utilization (Indprod). The third group consists of energy factors, including
prices of coal (CoalP), oil (OilP), and natural gas (NgP), as well as energy consumption of
fossil fuels (ECFF) and renewable energy (ECRE).

Table 2 presents the variables along with their respective data sources and literature
references. The focus of this research is on the United States CCUS capacity and carbon
emissions, along with their associated predictors, spanning from 1972 to 2022, encompass-
ing yearly data and a total of 51 observations. The United States was chosen due to its
extensive CCUS experience, with over 50 years of involvement and possession of nearly
half of the world’s CCUS capacity [3].

Table 2. List of variables, data sources, and related literature.

Name Description Source Authors

CCUSCap Carbon Capture, Utilization, and Storage capacity
(Mt CO2/yr) International Energy Agency

Proj Carbon Capture, Utilization, and Storage projects (active
project/yr) International Energy Agency

Techlv Carbon Capture, Utilization, and Storage technology
level (new patent publication/yr) European Patent Office [14,53]

Govpol Government policy on CCUS (active policy/yr) Climate Policy Database [54,55]

CO2E Carbon dioxide emission from fuel combustion
(Bt CO2/yr) Our World in Data [14,56–60]

Gdppc Gross domestic product (GDP) per capita (current USD) World Bank [14,56–60]
Unemp Unemployment (%) World Bank [61,62]
Trad Trade (% of GDP) World Bank [63–65]

FDI Foreign direct investment (net inflows, balance of
payment, millions current USD) World Bank [14,36,56,65,66]

Indprod Industrial production and capacity utilization (index) Federal Reserve Board [67,68]
CoalP Coal price (Australia market, in USD, real price) World Bank [36,69,70]

OilP Crude oil price (average spot price of Brent, Dubai, and
West Texas Intermediate, equally weighed, real price) World Bank [36,70]

NgP Natural gas price (US Henry hub, real price) World Bank [70,71]

ECFF Primary energy consumption from fossil fuels
(quadrillion Btu)

U.S. Energy Information
Administration [36,71]

ECRE Primary energy consumption from renewable energy
(quadrillion Btu)

U.S. Energy Information
Administration [36,71]

Table 3 provides detailed statistics for each parameter. To maintain consistency in units
and mitigate the influence of long-term stochastic trends or unit roots, the time series data
are transformed into growth rates. Unit root and multicollinearity tests are also conducted
using the variance inflation factor (VIF).

This study examines the asymmetric distribution of variables by scrutinizing their
skewness. From the data showcased in Table 3, it becomes evident that certain variables,
including CO2E, Gdppc, Trad, FDI, Indprod, NgP, ECFF, and ECRE, exhibit negative
skewness. This negative skewness suggests a downward trend in economic, energy, and
carbon-related factors over time. Essentially, it indicates that the majority of observations
have lower values, signifying a decline in these factors. Conversely, variables such as
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CCUSCap, Proj, Techlv, Govpol, Unemp, CoalP, and OilP portray a positive trend in
associated indicators. These variables suggest an upward trajectory in their respective
factors. Furthermore, the outcomes of Jarque–Bera normality tests reveal that, apart from
Techlv, Gdppc, FDI, and NgP, the data do not adhere to a normal distribution. Moreover,
nearly all variables exhibit kurtosis values surpassing 3, indicating the presence of excess
kurtosis. This implies that the distributions have heavier tails than a normal distribution,
highlighting potential outliers or extreme values.

Table 3. Summary of descriptive statistics.

Variable Mean Max Min SD Skew Kurt Jarque–Bera
Test

Unit Root
Test

Equation (8)
VIF

Equation (9)
VIF

CCUSCap 8.2057 137.7784 −12.9397 25.4278 3.5757 16.2961 484.12 *** −7.676 *** NA 3.80
Proj 6.7955 69.3147 −7.4108 16.2677 2.6041 9.6403 152.2 *** −8.514 *** 1.33 3.52

Techlv 5.1427 105.4441 −65.3927 34.5834 0.3044 3.2287 0.8683 −8.767 *** 1.24 1.20
Govpol 7.0265 109.8612 −6.0625 19.8716 3.6620 17.1874 542.03 *** −6.733 *** 1.40 1.27
CO2E 0.2875 6.5732 −11.0443 3.3981 −0.8194 4.2425 8.786 ** −7.037 *** 72.84 NA
Gdppc 5.1189 11.1254 −2.8720 3.0489 −0.0675 3.2040 0.0341 −4.842 *** 3.24 2.54
Unemp −0.9416 78.5480 −40.8576 19.8243 1.5619 7.2747 77.149 *** −5.951 *** 3.49 3.46

Trad 1.8307 22.8996 −18.7570 7.0074 −0.1415 4.4480 4.959 * −6.688 *** 7.92 9.10
FDI 12.0074 116.7361 −96.3151 49.9526 −0.1843 2.4578 0.8858 −9.024*** 2.11 2.14

Indprod 1.9482 9.1821 −12.0660 4.3036 −1.0988 4.5978 14.299 *** −6.050 *** 8.18 8.69
CoalP 7.2200 91.5619 −57.0508 29.1879 0.8164 4.0419 5.3744 * −5.345 *** 2.67 2.58
OilP 7.9432 136.3325 −63.9827 33.2699 0.9264 6.5674 38.968 *** −6.409 *** 4.08 4.95
NgP 6.9924 64.8129 −80.7442 28.1008 −0.3691 3.7934 3.2464 −6.689 *** 3.16 2.38
ECFF 0.3829 5.7313 −9.4953 3.1671 −0.7053 3.6409 4.799 * −6.799 *** 69.97 3.99
ECRE 2.4209 1.3869 −15.3743 5.1674 −0.7268 4.7471 10.15 *** −6.806 *** 1.36 1.26

Note: ***, **, and * in the Jarque–Bera and unit root tests mean p-value ≤ 0.01, ≤0.05, and ≤0.1. “NA” implies that
the variable is a dependent variable.

Additionally, none of the variables exhibit a unit root, suggesting the absence of
non-stationarity. This implies that the variables are stationary over time, without any
significant long-term trend. Concerning multicollinearity, in CCUSCap Equation (8), high
multicollinearity is solely observed between CO2E and ECFF. This indicates a strong
relationship between these two variables, potentially necessitating caution in their inter-
pretation. Conversely, in the case of CO2E Equation (9), no multicollinearity is identified,
with all variance inflation factors (VIFs) registering as less than 10. This suggests that the
variables in this equation are relatively independent of each other, reducing the risk of
multicollinearity-related issues.

3.3. Empirical Model

In this study, several economic and energy factors are included to analyze the deter-
minants of CCUS capacity and carbon emissions. Our empirical models are presented in
Equations (8) and (9), respectively. To address potential endogeneity issues in our empirical
study, we introduce lagged independent variables into our equations. Specifically, we
include lagged terms for the independent variables to mitigate any endogeneity concerns.
Equation (8) now integrates lagged independent variables alongside energy, economic,
carbon emissions, and other related factors to elucidate the relationship with CCUS ca-
pacity. Similarly, Equation (9) incorporates lagged independent variables to explore the
associations between carbon emissions and CCUS capacity, as well as energy, economic,
and carbon-related variables.

CCUSCapt = β0 + β1Projt−1 + β2Techlvt−1 + β3Govpolt−1 + β4CO2Et−1 + β5Gdppct−1
+β6Unempt−1 + β7Tradt−1 + β8FDIt−1 + β9 Indprodt−1 + β10CoalPt−1
+β11OilPt−1 + β12NgPt−1 + β13ECFFt−1 + β14ECREt−1 + εit

(8)

CO2Et = β0 + β1Projt−1 + β2Techlvt−1 + β3Govpolt−1 + β4CCUSCapt−1 + β5Gdppct−1
+β6Unempt−1 + β7Tradt−1 + β8FDIt−1 + β9 Indprodt−1 + β10CoalPt−1
+β11OilPt−1 + β12NgPt−1 + β13ECFFt−1 + β14ECREt−1 + εit

(9)
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4. Results and Discussion
4.1. Model Selection

In this research, we have employed four econometric estimations: Ordinary Least
Squares (OLS), Lasso regression, Ridge regression, and Elastic Net models. The selection
criterion for determining the most suitable model is based on identifying the one that
exhibits the best performance. To assess this, we consider the Akaike Information Criterion
(AIC) and Bayesian Information Criterion (BIC) values, with lower values indicating
better performance.

Table 4 presents the results of the AIC and BIC values for each model. Remarkably,
the Elastic Net model outperforms the others, demonstrating the lowest AIC and BIC
values in the CCUSCap Equation (8). Conversely, OLS performs comparatively better
than other models in the case of CO2E Equation (9). Therefore, the Elastic Net model
and OLS are selected as the statistical models of choice for the CCUSCap and CO2E cases,
respectively. This selection aligns with findings from previous studies indicating that the
Elastic Net model performs better than OLS, Lasso, and Ridge regressions in the presence
of multicollinearity, as observed in the CCUSCap case. On the other hand, the lack of
multicollinearity in the CO2E case means OLS provides better performance. This is because
regularization bias may not be necessary in the absence of multicollinearity, and OLS is
capable of reducing both bias and variance, thereby exhibiting the smallest variance.

Table 4. Model selection.

Model
CCUSCap CO2E

AIC BIC AIC BIC

OLS 1303.9109 1332.8882 832.0914 861.0687
Lasso 845.0513 852.7786 1050.6142 1066.0688
Ridge 973.6168 1002.5942 1013.4992 1042.4765
Elastic Net 794.1751 801.9024 1056.1488 1073.5352

4.2. The Impact of Carbon Emission and Related Factors on CCUS Technology

Based on the findings presented in Table 5, several noteworthy insights emerge regard-
ing CCUSCap.

Table 5. Elastic Net regression results for CCUS capacity estimation.

Variable Elastic Net

Proj 6.0560
Techlv -
Govpol -
CO2E -
Gdppc -
Unemp -

Trad -
FDI 1.5704

Indprod -
CoalP -
OilP −0.3398
NgP -
ECFF -
ECRE -

Constant -
Note: “-” denotes the variable is not selected by the model. Standard errors are shown in parentheses.

Firstly, positive impacts on CCUSCap are observed in the case of Proj and FDI. Specifi-
cally, a 1% increase in Proj is associated with a substantial 6.0560% increase in CCUSCap,
highlighting the significant role of project expansion in enhancing the country’s CCUS
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capabilities for carbon reduction. This underscores the importance of investment in projects
aimed at carbon capture and storage technologies as a means to address carbon emissions
effectively. Additionally, FDI exhibits a positive effect, with a 1% increase in FDI leading to
a noticeable 1.5704% increase in CCUSCap. This can be attributed to the decarbonization
efforts in hard-to-abate sectors such as cement manufacturing, chemical production, and
steelmaking, which lack alternative low-carbon technology options apart from CCUS. In
response to this challenge, these sectors are driven to invest more in CCUS technologies,
facilitated by the net inflows of FDI and the increasing number of CCUS projects. Notably,
the US government’s provision of performance-based tax credits for carbon capture projects
further incentivizes such investments [72].

Conversely, a negative effect on CCUSCap is detected in OilP. A 1% rise in oil prices is
associated with a 0.3398% reduction in CCUSCap. This finding contrasts with expectations,
as higher oil prices typically stimulate investment in CCUS technologies, particularly
due to their relevance in enhancing oil recovery processes. One plausible rationale is
that despite the presence of higher oil prices, economic uncertainty or market volatility
may be prompting companies to exercise caution and withhold long-term investments
in technologies like CCUS. This hesitance could arise from concerns regarding future
economic conditions or regulatory uncertainties, leading companies to prioritize short-term
stability over long-term sustainability initiatives. Thus, while higher oil prices typically
signal opportunities for CCUS investment, prevailing economic dynamics may be exerting
a counteracting influence, contributing to the observed negative correlation between oil
prices and CCUSCap. In terms of magnitude, among these three variables, it is evident
that Proj plays a pivotal role in increasing CCUSCap. An intriguing finding pertains to the
limited impact of Techlv. Surprisingly, the level of CCUS technology, as measured by the
count of CCUS technology-related patents, does not demonstrate any significant influence
on the CCUS capacity. This suggests that increasing technological advancements in CCUS
may not necessarily lead to a corresponding increase in the CCUS capacity, despite Techlv
promoting carbon emission efficiency.

Unexpectedly, Govpol did not drive the increase in the US’s CCUS capacity over
50 years, as earlier policy instruments implicitly and partly covered CCUS until the enact-
ment of the 45Q tax credit under the Energy Improvement and Extension Act in 2008 [9].
Although the 45Q tax credit underwent major reform in 2018, the US still lacks a legislature-
based climate strategy at the federal level [8]. Additionally, we cannot statistically deduce
the relationship between CO2E and CCUSCap, given the disparity between CO2E and
CCUS expansion over five decades. During this time, CCUS was primarily used for
enhanced oil and gas recovery instead of the carbon reduction option [73].

Within the economic indicators, only FDI shows a significant effect on the CCUS
capacity, while Gdppc, Unemp, Trad, and Indprod do not exhibit any notable impact on
the CCUS capacity. Similarly, among energy factors, only OilP demonstrates a discernible
influence on the CCUS capability, while variables such as CoalP, NgP, ECFF, and ECRE do
not show significant effects in our study on the CCUS capacity. This observation can be
attributed to various factors such as a high failure rate, insufficient financial investment,
limited market opportunities, and regulatory constraints surrounding CCUS projects,
which hinder their widespread adoption [23–25]. Despite the United States’ extensive
history of injecting CO2 into the subsurface for over half a century, its primary challenge
lies more in policy and economic realms rather than technological constraints [9]. Therefore,
the successful implementation of CCUS necessitates the establishment of robust legal
and regulatory frameworks to ensure the effective management of CCUS operations and
the safe storage of CO2 [74]. Ultimately, achieving decarbonization goals will require
ensuring that green alternatives are economically viable for businesses, encouraging their
voluntary adoption of more affordable fossil fuels [75]. Nonetheless, CCUS remains a
crucial technology for reducing emissions, and our findings underscore the importance
of promoting CCUS projects to enhance the CCUS capacity. This observation aligns with
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expert opinions advocating for the acceleration of CCUS alongside the development of
renewable energy options [30].

4.3. The Impact of CCUS Technology and Related Factors on Carbon Emission

The estimation results are summarized in Table 6. Positive impacts on carbon emissions
are observed for several factors, including Govpol, Gdppc, NgP, and ECFF. Specifically, a
1% increase in these factors leads to a growth in carbon emissions by 0.0063%, 0.0952%,
0.0131%, and 0.9999%, respectively. These findings underscore the significant influence of
key factors driving the growth in carbon emissions in the US.

Notably, ECFF, Gdppc, and NgP emerge as pivotal contributors to the rise in carbon
emissions. These results are consistent with prior research, which has also emphasized the
positive effect of non-renewable energy consumption, energy prices, and GDP per capita
on carbon emissions [76,77].

Table 6. Results of CO2 emission estimation using OLS.

Variable OLS

CCUSCap 0.0055 (0.0050)
Proj 0.0011 (0.0075)

Techlv 0.0018 (0.0021)
Govpol 0.0063 * (0.0037)
Gdppc 0.0952 ** (0.0341)
Unemp −0.0012 (0.0061)

Trad 0.0221 (0.0281)
FDI −0.0021 (0.0019)

Indprod −0.0255 (0.0447)
CoalP −0. 0032 (0.0036)
OilP −0.0026 (0.0044)
NgP 0.0131 *** (0.0036)
ECFF 0.9999 *** (0.0412)
ECRE −0.0265 * (0.0142)

Constant −0.6058 *** (0.1716)
Note: Significance at 0.01, 0.05, and 0.1 level indicated by ***, **, and *, respectively. Standard errors are shown in
parentheses.

Remarkably, Govpol shows a positive correlation with CO2E, indicating that govern-
ment policy on CCUS does not effectively reduce carbon emissions. This finding reinforces
the notion that policy and economic factors, rather than technological ones, are the primary
barriers to emission reduction [9]. On the contrary, a negative impact on carbon emissions is
observed for ECRE. A 1% rise in ECRE leads to a reduction in carbon emissions by 0.0265%.
These results align with previous research that has investigated the impact of ECFF and
ECRE on greenhouse gas emissions [36,37]. The findings underscore that increasing the
use of renewable energy sources would contribute to a decrease in CO2 emissions.

Due to the higher p-values of CCUSCap, Proj, Techlv, Unemp, Trad, FDI, Indprod,
CoalP, and OilP, they are not assumed to have significant impacts on carbon emissions, as
indicated by our findings in Table 6. It is interesting to note that, despite being a carbon
reduction technology, CCUSCap should theoretically have a negative relationship with
CO2E. However, this expected relationship has not been observed [26]. This suggests that
CCUSCap alone may not be sufficient to effectively reduce CO2 emissions, possibly due to
its relatively small contribution—less than 0.5% of the overall US CO2 emissions, as depicted
in Figure 3. Furthermore, Techlv and Proj also exhibit non-significant relationships with
CO2E. When considering all the CCUS indicators—CCUSCap, Proj, Techlv, and Govpol—to
CO2E, the overall effectiveness of CCUS in carbon reduction is questionable. This highlights
the existing barriers to CCUS adoption in the US.
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Overall, we observed that renewable energy can reduce carbon emissions while CCUS
is not well-developed enough to contain carbon emissions as its capacity is very limited.
However, CCUS has the potential to abate carbon emissions when it is widely applied, and
its costs are lower than in the case of renewable energy [77].

4.4. Robustness Checks

To ensure the robustness of our results from the previous section, we re-estimated
our models using the Generalized Method of Moments (GMM) estimation. The GMM
is a flexible estimation method commonly employed in econometrics, especially when
the underlying distribution of the data is unknown or challenging to specify. In the
context of our models, the GMM proves particularly valuable in addressing issues such
as endogeneity, serial correlation, or heteroscedasticity. Furthermore, we recognize that
in estimating Equations (8) and (9) separately, there may be potential interdependencies
between the equations that are overlooked. To address this concern and enhance the
robustness of our results, we employ GMM estimation along with Seemingly Unrelated
Regression (SUR) estimation. This approach allows us to simultaneously estimate both
equations, thus capturing any potential interdependencies between them and providing
more reliable results, as in Table 7.

Table 7. Robustness analysis.

SUR GMM

CCUSCap CO2E CCUSCap COE2

CCUSCap 0.0055 (0.0048) 0.0054 * (0.0029)
CO2E 5.8352 (5.3742) 5.1253 (3.8895)
Proj 1.1689 *** (0.1515) 0.0011 (0.0072) 1.1939 *** (0.2237) 0.0014 (0.0056)

Techlv 0.0064 (0.0689) 0.0018 (0.0019) 0.0065 (0.0668) 0.0022 (0.0014)
Govpol −0.0129 (0.1272) 0.0063 * (0.0035) −0.0131 (0.0589) 0.0069 ** (0.0031)
Gdppc −0.1166 (1.2637) 0.0952 ** (0.0314) −0.1192 (1.0950) 0.1077 *** (0.0262)
Unemp −0.1013 (0.2017) −0.0012 (0.0062) −0.1014 (0.1824) 0.0044 (0.0069)

Trad 2.1202 * (0.8593) 0.0221 (0.0269) 2.1392 ** (1.0700) 0.022 (0.0172)
FDI 0.0565 (0.0623) −0.0021 (0.0019) 0.0521 (0.0391) −0.0010 (0.0019)

Indprod −2.3183 (1.4221) −0.0255 (0.042) −2.3293 (1.5012) −0.0281 (0.0391)
CoalP −0.0882 (0.1198) −0.0023 (0.0036) −0.0792 (0.0846) −0.0049 (0.0030)
OilP −0.3701 ** (0.1299) −0.0032 (0.0041) −0.3934 * (0.1939) −0.0026 (0.0025)
NgP 0.0201 (0.1353) 0.0131 *** (0.0034) 0.0204 (0.1057) 0.0123 *** (0.0025)
ECFF −5.6612 (5.6514) 0.9999 *** (0.0404) −5.6384 (4.1727) 1.0195 *** (0.0377)
ECRE −0.4462 (0.4822) −0.0265 * (0.0136) −0.4463 (0.3892) −0.0270 ** (0.0115)

Constant 5.7847 (6.7422) −0.6058 *** (0.1543) 5.7840 (6.0982) −0.7034 *** (0.1453)

Note: Significance at 0.01, 0.05, and 0.1 level indicated by ***, **, and *, respectively. Standard errors are shown
in parentheses.
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Based on the results obtained from the GMM and SUR estimations, it is evident that the
estimated coefficients and their significance align with the findings of our main estimations
presented in Tables 5 and 6. This consistency underscores the robustness of our results
from the previous section.

Additionally, as we have not found evidence of a relationship between CCUS tech-
nology and carbon emissions, we further validate this result by employing the Granger
causality test [78]. The results of this test are reported in Table 8. Notably, the findings
indicate that we do not observe a significant impact of the CCUS capacity on CO2 emis-
sions, and vice versa. This reaffirms the results obtained from the main model, providing
additional support for our conclusions.

Table 8. Granger causality test.

Hypothesis Wald Statistic

CO2E does not cause CCUSCap 2.5208
CCUSCap does not cause CO2E 1.7738

5. Conclusions

This study aims to explore the relationship between the Carbon Capture, Utilization,
and Storage (CCUS) capacity and carbon emissions in the US from 1972 to 2022. Employing
four distinct statistical methods and considering thirteen relevant predictors, we endeavor
to deepen our empirical understanding of this complex relationship. To enhance the scope
of our investigation, we introduce two novel variables, CCUSCap and Proj, which provide
additional insights into the dynamics at play. Notably, our analysis reveals that the Elastic
Net model proves most effective in elucidating the CCUS capacity, whereas the OLS model
is better suited for understanding carbon emissions. Our findings are robust and further
validated through GMM and SUR estimations, providing confidence in the reliability of
our results. Through this study, we contribute to the existing body of knowledge in the
field of CCUS and carbon emissions, shedding light on the key factors driving or hindering
progress in these critical areas of environmental concern.

The findings regarding the CCUS capacity equation suggest that while OilP has a
negative impact on the US’s CCUS capacity, Proj and FDI show significant positive correla-
tions. Specifically, Proj emerges as one of the most influential factors among the variables
analyzed, demonstrating a substantial positive effect on raising CCUSCap. Interestingly,
the analysis also reveals that technological advancements in CCUS may not always trans-
late into an increased CCUS capacity. The 50-year increase in the US CCUS capacity was
unexpectedly not driven by Govpol. Moreover, the widening gap between CO2E and
CCUS over five decades, coupled with CCUS’s predominant use in enhanced oil and
gas recovery rather than carbon reduction, makes it difficult to statistically determine
the relationship between CO2E and CCUSCap. Nevertheless, our results underscore the
importance of prioritizing Proj to enhance CCUSCap. This aligns with the perspectives of
CCUS experts who emphasize the necessity of accelerating both renewable energy sources
and CCUS technologies.

In the case of the carbon emissions equation, our analysis reveals that an increase in
ECRE leads to a reduction in carbon emissions in the US. Conversely, Govpol, Gdppc, NgP,
and ECFF are associated with increases in carbon emissions. CCUSCap is theoretically
expected to have a negative correlation with CO2E as a carbon reduction technology; our
study does not observe this relationship. This suggests that CCUSCap alone may not be
sufficient to effectively reduce CO2 emissions. This discrepancy could be attributed to the
significant disparity between the amount of CO2 captured and the total CO2 emissions,
where the captured CO2 accounts for less than 0.5% of the total US CO2 emissions. Consid-
ering all the CCUS indicators—CCUSCap, Proj, Techlv, and Govpol—in conjunction with
CO2E, the overall effectiveness of CCUS in reducing carbon emissions appears uncertain.
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However, if CCUS becomes more widely adopted and cost-effective compared to renewable
energy sources, it could potentially play a significant role in reducing carbon emissions.

Despite more than 50 years of injecting CO2 underground in the US, the real challenge
lies in policy and economic considerations rather than technological limitations. To ensure
the effective management of CCUS operations and the safe storage of CO2, it is imperative to
develop legal and regulatory frameworks. Decarbonization efforts will be most successful
when green alternatives become economically viable for businesses, encouraging the
voluntary adoption of fossil fuels. It is important to recognize that CCUS is not a standalone
solution but rather a complementary approach to carbon emission reduction. To achieve
net zero goals, a combination of strategies, including renewable energy adoption, energy
efficiency improvements, and behavioral changes, will be necessary.

Our study has several limitations that warrant consideration. Firstly, we solely em-
ployed the linear regression model, neglecting the potential impacts of thresholds. Future
research could explore threshold regression techniques to better capture nonlinear rela-
tionships in the data. Secondly, our focus was limited to the United States, which may
restrict the generalizability of our findings to other countries. Extending the analysis to
include countries with advanced CCUS technology could provide a more comprehensive
understanding of the factors influencing the CCUS capacity and carbon emissions on a
global scale.
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