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Abstract: In this work, a previously developed three-feature Artificial Neural Network (ANN) model
with dimensional inputs is directly applied to predict the cell size of hydrocarbon/ammonia/nitrous
oxide mixtures and compare these to experimental data. This model uses as inputs three ZND pa-
rameters (MCJ, ∆I, and

.
σmax), which are mainly calculated using Konnov’s and Mével’s mechanisms.

A similar prediction is obtained with the two mechanisms for the biogas–O2, H2–O2, H2–N2O, and
NH3–O2 mixtures, indicating that the model is not only limited to Konnov’s chemical kinetic mecha-
nism which was used for its training. The overall good agreement between the ANN predictions and
the actual experimental values for the aforementioned mixtures, which are not used in the original
training of the ANN model, is promising and shows its potential for application and extension to
other mixtures and initial conditions, provided that the chemical kinetic parameters describing the
ideal reaction zone structure could be computed. The model is then used to compare experimental
cell size data from two detonation tube facilities, and also different chemical kinetic mechanisms for
NH3-N2O mixtures. In the end, the original ANN model is expanded with the inclusion of additional
cell size data, showing a slightly lower mean error for the predicted cell sizes if the data for the
mixtures considered in this study are taken into account for the training of the new ANN model.

Keywords: gaseous detonations; cell size; machine learning; ANN; ammonia; biogas

1. Introduction

A detonation is a self-sustained, supersonic, combustion-driven compression wave
across which a significant pressure and temperature change occurs [1]. Detonation research
is generally focused on the safety of engineering applications and industrial processes
in the chemical and energy sectors [2,3], and also on the development of hypersonic
propulsion systems [4–6]. In recent years, there has been a strong focus, especially in the
transportation and aerospace industry, to explore greener aviation fuels, that are either
carbon-neutral, like biogas [7–9], or carbon-free, like hydrogen (H2) [10] and ammonia
(NH3) or its blend [11–15], which can also be used as a carrier of green hydrogen. While
hydrogen/nitrogen/ammonia/air mixtures have been shown to have similar combustion
characteristics as gasoline, they are also susceptible to auto-ignition or detonation phenom-
ena. Likewise, nitrous oxide (N2O) has been used in a variety of industrial applications
and is considered as a relatively safer oxidizer to store and carry on board in a rocket motor
engine. Like with oxygen, N2O mixed with other gaseous fuels can result in an explosion
risk potential and the occurrence of detonation [16]. Compared to other combustible mix-
tures, characteristic detonation cell size values for fuel–N2O mixtures are relatively scarce.
Most of them focused on H2/CH4/NH3/N2O-derived mixtures [17–19].

To quantify the sensitivity of a detonation or to scale different dynamic parameters,
the cell size λ is commonly used as a characteristic length [20]. This is obtained by tracking
the triple point trajectory of a detonation, which can be experimentally achieved by placing
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an aluminum foil covered with soot under a propagating detonation. Sample soot foils can
be seen in Figure 1.
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Figure 1. Sample soot foils for stoichiometric C2H2/N2O detonation at an initial pressure of 5 kPa (a),
8 kPa (b), and 12 kPa (c).

The cell size λ is commonly related to the chemical induction length scale ∆I of the
steady 1D ZND detonation model. Although this model is simplified and does not account
for the multidimensional and unsteady nature of detonations, it can still describe the
coupling between gas dynamics and chemical reactions. Considering that this structure can
be calculated and obtained easily, it seems logical to relate the cell size to a parameter of this
model, and specifically the induction length ∆I, typically with a constant proportionality
factor (λ = A · ∆I) [21], or a variable factor that is a function of the stability parameter
(λ = A(χ)·∆I = ∑N

k=0
(
akχ−k + bkχk)·∆I

)
[22]. These correlations, however, are not ideal,

as the first is limited only to the specific mixtures used to create it, while the second,
although improved, is still an empirical correlation.

An alternative approach to obtain these correlations is to use machine learning tech-
niques and neural networks. In recent years, these have been successfully used in com-
bustion [23] and, in particular, different detonation studies, such as to reconstruct the
detonation front [24,25] or identify the wave modes in a Rotating Detonation Engine
(RDE) [26]. Indeed, a better predictive model [27] has been developed based on machine
learning, and more specifically by creating Artificial Neural Networks (ANNs), suitable for
a wide range of combustible mixtures and initial conditions. Developing ANN models to
predict detonation cell sizes has also been used in other studies [28,29], but in both cases, it
was limited only to the few mixtures that were used to create these models. In contrast, our
recently developed model [27] was trained on a wide range of mixtures and conditions,
using chemical kinetic parameters as input features, meaning that it could technically be
used for any mixture and initial condition, as long as the reaction zone structure described
by the required chemical kinetic parameters could be computed. This study will try to
explore this argument by looking at reactive mixtures and conditions beyond those that
were used for its training. To this end, the three-feature Artificial Neural Network (ANN)
model using Konnov’s chemical kinetic mechanism with dimensional inputs reported
in [27] is first applied as a “black box” tool to predict cell sizes for the present mixtures,
which were not considered in its original development, with required inputs determined
using other mechanisms. In the end, we re-train the ANN model, following the same
procedure outlined in [27], with the additional data used in this work.

The structure of this study is as follows: In Section 2, for completeness, we briefly
present the general structure and training process of the ANN model developed in [27],
as well as the experimental setup information and the chemical kinetics used to obtain
the chemical kinetic parameters that are used as inputs by the model. In Section 3, we
first compare the cell size predictions of the three-feature ANN model to the actual experi-
mental results for different reactive mixtures. We then use the model to evaluate chemical
kinetics and detonation tube facilities. We close Section 3 by re-training our model using as
additional data most of the experimental data that are presented in this work. Finally, we
conclude this paper with a discussion in Section 4.
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2. Materials and Methods

The previously developed [27] 3-feature optimal Artificial Neural Network (ANN)
was used to predict the detonation cell sizes of gaseous detonations. For complete details
about this ANN model formulation and validation, please see [27]. For a brief illustration,
Figure 2 shows the structure of this model, which uses 3 input features to calculate the
detonation cell size. These input features were determined from a parametric study to
be ZND induction length (∆I), the detonation Mach number (MCJ), and the maximum
thermicity (

.
σmax). These are parameters relevant to describing the detonation reaction

zone structure and are indirectly related to the stability parameter χ [30]. Obtaining these
parameters requires thermodynamic equilibrium and chemical kinetic computations, which
were performed using either the CHEMKIN II package [31] or the Detonation Toolkit [32].
For these calculations, Konnov’s v0.4 mechanism [33] and Mével’s mechanism [34] were
mainly used. Konnov’s mechanism was used in our previous work [27] to develop the ANN
that is used here. For NH3-N2O mixtures, additional mechanisms were deemed necessary,
more specifically the mechanisms by Zhang et al. [35], Miller and Bowman [36], Otomo
et al. [37], and Han et al. [38], all calibrated for the combustion of NH3-N2O mixtures.
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Figure 2. Artificial Neural Network structure [27].

The ANN model was used to predict the cell sizes for different mixtures, and compare
them with the corresponding experimental cell sizes. These experimental cell sizes were
mainly sourced from studies in the literature [7,17,18,34,39,40]. In addition to those, deto-
nation cell sizes from two series of experiments for a stoichiometric C2H2-N2O mixture at
different pressures were obtained as part of this study, and subsequently compared against
the ANN predictions. These were obtained for the same conditions from two independent
detonation tube facilities, one located at Concordia University and the other at Shanghai
Jiao Tong University (courtesy of B. Zhang). The first is a 26.4 mm-diameter circular deto-
nation tube with a length of 0.59 m, while the second is a tube with a square cross-section
of 38.1 mm by 63.5 mm and a length of 2.5 m. Sample results of these experiments can be
seen in Figure 1.

Finally, the model was updated and further expanded by including most of the
experimental cell size data that were considered in this study. These were added to the
previously used dataset from the Caltech detonation database [41] of a wide range of
mixtures and initial conditions. The same process that was developed previously and is
shown in Figure 3 was used to retrain and test the model with the updated dataset [27].
In brief, this process required first the division of the overall available dataset into three
subsets, the training (60%), validation (20%), and testing (20%) datasets. The model was
created and trained using the training dataset, with the intent of minimizing the loss
function for the training dataset, while constantly monitoring the loss for the validation
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data to avoid overfitting. The loss function, which compares the predicted to the actual
detonation cell sizes, is given as:

Loss =
1
N

N

∑
1


(

λpred − λact

)
λact

·100%

2

(1)
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Figure 3. Flowchart of the model creation process [27].

Once this process was complete, meaning that the structure and parameters of the
ANN model were determined, the model was evaluated using the testing data, which were
kept separate from the model creation process.

3. Results
3.1. Biogas-Oxygen Mixtures (CH4-CO2-O2)

In this study, the prediction limits and capabilities of the original ANN model [27] were
further tested. This was accomplished using different combinations of reactive mixtures
and initial conditions and different chemical kinetics, beyond those used during the training
process of the ANN.

As a first step of this process, the experimental cell sizes of biogas–oxygen mixtures [7]
were chosen to be compared with the ANN predictions. This fuel–oxidizer combination
(CH4-O2) had been used in the ANN’s training process, but was now highly diluted with
CO2 at different initial conditions. For these mixtures, the chemical kinetic parameters
were obtained using the Konnov’s-v.0.4 chemical kinetic mechanism, the same that had
been used to create the original ANN model. The predicted and experimental cell sizes for
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these mixtures at different CO2 concentrations and different initial pressures are portrayed
in Figure 4.
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reacting with O2 [7].

As can be seen, good prediction accuracy can be achieved for most mixtures and initial
pressures, with the exception of lower initial pressures of the first mixture (a) which has
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a high concentration of CO2. The maximum difference among all the results shown in
Figure 4 is 117%, close to about a factor of two. It is worth noting that for lower initial
pressure conditions, the experimental data independence to measurement and the unstable
cellular detonation behavior become significant. For lower pressure or off-stoichiometric
conditions, the cellular detonation structure is irregular with a broad cell size distribution.
It can easily be seen from [41] that the experimental measurement can be subjective and can
often vary by a factor of two from one study to another, for instance, for nitrogen-diluted
mixtures [42]. Taking into account the limited number of experimental data available
only from one particular study for these mixtures, the irregularity of cellular patterns and
the subjectivity of the cell size measurement from smoked foil, the present ANN model
still provides a reasonably good prediction over a wide range of conditions for blended
biogas-based mixtures.

3.2. Hydrogen–Nitrous Oxide Mixtures (H2-N2O)

The next step of the validation process is dual. Firstly, it aims to test whether the model
can accurately predict the cell size of fuels used in its training process but with a different
oxidizer. Secondly, it seeks to determine whether the model is limited only to Konnov’s-v0.4
mechanism, which was used during its training process, or if any mechanism can be used
to calculate the ZND parameters, provided that the mechanism is suitable for the specific
mixtures and conditions that are studied. For this purpose, H2-N2O mixtures were chosen
to be studied, with and without argon dilution, at different pressures and equivalent ratios,
and compared to the experimentally obtained cell sizes [17,18,34]. The mechanisms used to
obtain the chemical kinetic parameters were Konnov’s-v.04 and Mével’s mechanism. The
predicted cell sizes for both mechanisms, along with the experimental values can be seen in
Figures 5 and 6. For reference, the predictions obtained using the simplified approach of
Ng [22] are also included.
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Figure 6. Cell size prediction from the ANN and Ng model, using the Konnov and Mével mechanisms,
compared to the experimental values for H2-N2O mixtures at different equivalence ratios (a) [17,18]
and H2 + N2O mixtures (ϕ = 1) at different pressures (b) [18].

Overall, the ANN model can predict well the cell size of the argon-diluted H2-N2O
mixtures, with a better prediction outcome for the 40% Ar diluted mixture. The predictions
for undiluted H2-N2O mixtures are mixed, with good prediction error for certain initial
pressures (P0 = 20, 40 and 70.9 kPa) and worse but still acceptable for the rest. These results
thus further support the hypothesis that the ANN model could be used to predict the
cell size of mixtures outside those used during training. Similar predictions are obtained
when using these two mechanisms, with a slightly larger difference for the argon-diluted
mixtures. This outcome indicates that any mechanism could be used to compute the input
features of the ANN model, provided that the mechanism is suitable for the specific mixture
and initial conditions.

3.3. Ammonia–Oxygen Mixtures (NH3-O2)

The final step of testing and validating the ANN requires using a mixture not related to
the ANN creation process. As a result, the detonation cell sizes of stoichiometric ammonia
(NH3)–O2 and NH3-O2-N2 mixtures were predicted using the ANN model and compared
to the experimental values [17,18,40]. It is worth noting that NH3 is less reactive than
other commonly studied hydrocarbon fuels, and the detonability of NH3-based mixtures is
limited with respect to the mixture’s equivalence ratio. In the study by Jing et al. [43], no
self-sustained detonation could be observed above ϕ = 2.2.

Once again, two mechanisms were used (Konnov’s and Mével’s) to compute the
required chemical kinetic parameters. Figure 7 shows the calculated ZND induction
lengths for both mechanisms for undiluted NH3-O2 reactive mixtures and Figure 8 shows
the comparison between the predicted and experimentally measured cell sizes for these
mixtures. The predictions for the NH3-O2 mixtures with N2 dilution follow in Figure 9.
The predictions obtained using the simplified approach of Ng’s [22] are also shown in both
figures for reference.
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O2 mixtures (ϕ = 1) at different pressures (a) and NH3-O2 mixtures at initial pressure 71.5 kPa and
different equivalence ratios (b).
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Figure 8. Comparison between experimentally measured cell sizes [40], Ng model and ANN pre-
dictions using Mével’s and Konnov’s mechanisms, for NH3 + 0.75 O2 mixtures (ϕ = 1) at different
pressures (a) and NH3-O2 mixtures at initial pressure 71.5 kPa and different equivalence ratios (b).

Once again, the ANN model is proven to give a good prediction accuracy overall,
for both mechanisms. This outcome, along with the previous results, strongly supports
our hypothesis that the ANN can predict with a high level of confidence the cell size of
gaseous detonations for mixtures and conditions beyond those used during its creation
process. This is a particularly significant outcome, as experimental cell size measurements
are generally limited in number, and in certain cases are very difficult to obtain. It should be
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noted that although the model has been proven so far accurate for a wide range of mixtures
and conditions, the underlying limitations are still to be explored.
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Figure 9. Comparison between experimentally measured cell sizes, Ng model and ANN predictions
using Mével’s and Konnov’s mechanisms, for NH3 + 0.75 O2 mixtures (ϕ = 1) at different N2 dilutions
at 65–80 kPa (a) [17]; and at 101 kPa (b) [18].

3.4. Acetylene-Nitrous Oxide Mixtures (C2H–N2O)

As seen previously, the model has been further validated for mixtures outside those
used in its training process. Therefore, it could now be used as a tool to predict detonation
cell sizes for specific mixtures and conditions in order to evaluate the actual experimental
values. This could help identify errors in experimental setups or at least prompt further in-
vestigation when the measured values differ significantly from the expected ones, obtained
from the ANN model. Given the limited amount of experimental cell size data, this could
be particularly useful in newly studied mixtures. To that end, the model is used to predict
the cell sizes for stoichiometric C2H2-N2O mixtures at different initial pressures. These
predictions are compared to experimental cell sizes from two different setups, one located
at Concordia University and the second at Shanghai Jiao Tong University. The results can
be seen in Figure 10.

The results show a close agreement of the ANN model with the experimental results
from Shanghai Jiao Tong University, while for Concordia University it deviates, although
still capturing the overall trend. Again, the cell size ratio of approximately two between
the two facilities, although significant, is not uncommon in detonation studies, as can be
observed from the experimental cell sizes found in the detonation database. The lower
measured cell sizes of Concordia’s setup could possibly be attributed to the smaller size
of the detonation tube, and thus a bigger influence of the boundary to the detonation
propagation, and the large cell size variability at low pressures. Another factor could be the
different geometries of the tubes, which have been shown to be impactful to the cell size [44].
Finally, the difference can also be due to the purity of the fuel from commercial cylinders,
where acetylene gas is typically dissolved in acetone which may have an influence on the
acetylene combustion characteristics [45].

Nevertheless, it is therefore shown that the ANN could indeed be a valuable tool
in evaluating experimental cell sizes when similar measurements are not available for
comparison in the literature.



Energies 2024, 17, 1747 10 of 19

Energies 2024, 17, x FOR PEER REVIEW 10 of 20 
 

 

3.4. Acetylene-Nitrous Oxide Mixtures (C2H–N2O) 

As seen previously, the model has been further validated for mixtures outside those 

used in its training process. Therefore, it could now be used as a tool to predict detonation 

cell sizes for specific mixtures and conditions in order to evaluate the actual experimental 

values. This could help identify errors in experimental setups or at least prompt further 

investigation when the measured values differ significantly from the expected ones, ob-

tained from the ANN model. Given the limited amount of experimental cell size data, this 

could be particularly useful in newly studied mixtures. To that end, the model is used to 

predict the cell sizes for stoichiometric C2H2-N2O mixtures at different initial pressures. 

These predictions are compared to experimental cell sizes from two different setups, one 

located at Concordia University and the second at Shanghai Jiao Tong University. The 

results can be seen in Figure 10. 

0

10

20

30

40

50

0 10 20 30 40 50

C
2
H

2
 + 5 N

2
O

Experimental results—Concordia
Experimental results—Shanghai
ANN prediction

C
el

l 
si

ze
 [

m
m

]

Initial pressure [kPa]
 

Figure 10. Cell size prediction using Konnov’s mechanism for C2H2 + 5 N2O mixtures (ϕ = 1) at 

different initial pressures, compared to experimental results from Concordia University and Shang-

hai Jiao Tong University. 

The results show a close agreement of the ANN model with the experimental results 

from Shanghai Jiao Tong University, while for Concordia University it deviates, although 

still capturing the overall trend. Again, the cell size ratio of approximately two between 

the two facilities, although significant, is not uncommon in detonation studies, as can be 

observed from the experimental cell sizes found in the detonation database. The lower 

measured cell sizes of Concordia’s setup could possibly be a�ributed to the smaller size 

of the detonation tube, and thus a bigger influence of the boundary to the detonation 

propagation, and the large cell size variability at low pressures. Another factor could be 

the different geometries of the tubes, which have been shown to be impactful to the cell 

size [44]. Finally, the difference can also be due to the purity of the fuel from commercial 

cylinders, where acetylene gas is typically dissolved in acetone which may have an influ-

ence on the acetylene combustion characteristics [45].  

Nevertheless, it is therefore shown that the ANN could indeed be a valuable tool in 

evaluating experimental cell sizes when similar measurements are not available for com-

parison in the literature. 

3.5. Ammonia-Nitrous Oxide Mixtures (NH3-N2O) 

Finally, the cell sizes of NH3-N2O mixtures are chosen to be predicted by the ANN 

model. Unlike the previous mixtures, the NH3-N2O mixtures are challenging and require 

Figure 10. Cell size prediction using Konnov’s mechanism for C2H2 + 5 N2O mixtures (ϕ = 1) at
different initial pressures, compared to experimental results from Concordia University and Shanghai
Jiao Tong University.

3.5. Ammonia-Nitrous Oxide Mixtures (NH3-N2O)

Finally, the cell sizes of NH3-N2O mixtures are chosen to be predicted by the ANN
model. Unlike the previous mixtures, the NH3-N2O mixtures are challenging and require
a careful approach in order to predict their cell size. The reason is that their detonation
characteristics and calculated ZND parameters (MCJ, ∆I,

.
σmax) of such mixtures can vary

significantly based on the chosen chemical kinetics. This can be demonstrated from the
difference in the calculated induction length between Konnov’s and Mével’s mechanisms
for the same initial conditions, seen in Figure 11, along with two additional mechanisms,
suitable for these reactive mixtures.
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Figure 11. Calculated ZND induction lengths using the Mével, Konnov v0.4, Miller–Bowman, and
Zhang mechanisms for NH3 + 3N2O mixtures (ϕ = 0.5) at different pressures (a), and for NH3-N2O
mixtures at different equivalence ratios and initial pressure 71.5 kPa (b).
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Contrary to the NH3-O2 mixtures, there are significant differences between the Konnov
and Mével mechanisms, with the ZND induction length of Mével being almost four times
the ∆I calculated using Konnov’s mechanism. Considering that ∆I is one of the three input
features of the ANN, it is apparent that this significant variation will lead to very different
cell size predictions for the two mechanisms, thus necessitating the use of additional
mechanisms that are specifically calibrated for these mixtures. These significant differences
between the two mechanisms also bring a unique opportunity for the ANN: to determine
which chemical kinetic mechanisms that are tuned for NH3-N2O combustion are suitable
to be used for detonation studies of these specific mixtures at these initial conditions.
Hence, two additional mechanisms are considered. The first was developed by Miller and
Bowman and was shown to be the most suitable one for such mixtures in a previous study
by Kaneshige et al. [18], while the second mechanism was recently developed by Zhang
et al. [35]. The induction lengths for both can be seen in Figure 11. Additional mechanisms,
calibrated for NH3-N2O mixtures, were considered, specifically those by Han et al. [38] and
by Otomo et al. [37]. Using these last two mechanisms, a much higher induction length, and
thus predicted cell size, was obtained, and therefore they are not portrayed in the figures.
The predictions for the four mechanisms that were used along with the actual experimental
results can be seen in Figures 12 and 13. In addition, for reference, the predictions using
Ng’s model coupled with the mechanism by Miller and Bowman [22] are also included in
these plots.
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Figure 13. Ng model with the Miller–Bowman mechanism and ANN cell size predictions for NH3 + 

1.5N2O mixtures (ϕ = 1) using the Mével, Konnov v.0.4, Miller–Bowman, and Zhang mechanisms, 

compared to the experimental values [18], as a function of nitrogen (a) and air dilution (b). 
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Figure 12. Ng model with the Miller–Bowman mechanism and ANN cell size predictions using
the Mével, Konnov v0.4, Miller–Bowman, and Zhang mechanisms, compared to the experimental
values [40], for NH3 + 3 N2O mixtures (ϕ = 0.5) as a function of pressure (a), and for NH3-N2O
mixtures as a function of equivalence ratio at initial pressure 71.5 kPa (b).

Overall, all mechanisms seem to give an acceptable prediction for the mixtures and
conditions that are considered here. Konnov’s mechanism seems to be the only one leading
to an under-prediction of the cell size, while the rest lead to an over-prediction. As expected,
based on the difference in induction length, there are significant cell size differences between
Konnov’s and Mével’s mechanisms. Out of all mechanisms, the Miller–Bowman one has
the lowest prediction error, at an average of about 30%. The ANN therefore recognizes
that this is the best mechanism to be used for numerical studies of NH3-N2O detonations
at these conditions. It should be noted though that the Miller–Bowman mechanism was
found to be only suitable for NH3-N2O mixtures, as it was unable to correctly predict the
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cell sizes for the NH3-O2 mixtures. These findings could also explain why the previously
created model by Ng [46], which relies on ∆I to predict cell size, is over-predicting the cell
sizes in the study of Weng et al. [40]. As shown in Figure 11, Zhang’s mechanism has a
higher induction length compared to the mechanism by Miller and Bowman.
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Another observation is that the discrepancies between the experimental data and
predictions for off-stoichiometric conditions are more significant, but still within a factor
of two. As mentioned before, NH3-based mixtures are more unstable and have narrower
detonability limits. The experimental data are obtained from one study [40] with a tube
diameter of 78 mm. As discussed before, such discrepancies can stem from the uncertainty
due to the unstable nature of the cellular detonation and the challenge of determining the
unique cell size at near-limit conditions. For those cases, more experiments from different
facilities, as shown in Figure 10, would be desirable to further validate the predictions.

In general, considering all the data used for the model development, Ng’s model gives
a mean error of 46.3% as reported in [22], which is higher than that of the ANN model (i.e.,
22.3%, as shown in [27]). For the results of Figures 12 and 13, Ng’s model still provides a
good prediction with an average error of 20.7%, while the ANN model gives a relatively
good value of 30.4%. It is worth noting that if the two outliers from the 23 data points are
neglected, the average error for the ANN model would significantly improve to 20.6%.

3.6. ANN Model Expansion and Improvement

The ANN model, as mentioned previously, was developed using 388 cell size val-
ues, with the assumption that it could be further expanded and potentially improved
by including more cell size data as they become available, preferably from mixtures that
were not previously considered. To test that assumption, 102 additional data rows were
included, with the mixture specifics shown in Table 1. These correspond to the majority of
the experimental cell sizes that were presented previously in this section. Figure 14 also
shows in red the range of the original data used in [27] and in black the new additional
data considered in the previous sections. Specifically, the original model used inputs from
a range of [2.29, 7.60], [8.96 × 10−5, 1.875 × 101] (cm), and [3.25 × 104, 5.19 × 108] (1/s)
for the detonation Mach number (MCJ), the ZND induction length (∆I), and the maximum
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thermicity (
.
σmax), respectively, and the additional data are within [4.79, 6.61], [4.93 × 10−3,

4.50 × 10−1] (cm), and [2.90 × 105, 2.81 × 107] (1/s). This highlights, for the comparison
presented before, that the input conditions are within the training set which already covers
a wide range in the original ANN construction.

Table 1. Mixture compositions and initial conditions for all additional cell size data considered in the
new model.

Mixture Initial Condition Variation Reference

50% CH4–50% CO2/O2
55% CH4–45% CO2/O2
60% CH4–40% CO2/O2
65% CH4–35% CO2/O2
70% CH4–30% CO2/O2

T0 = 293 K; ϕ = 1 P0 = 60 kPa–160 kPa Siatkowski et al. [7]

NH3/O2 T0 = 295 K; ϕ = 1 P0 = 42.6 kPa–100.1 kPa Weng et al. [40]
NH3/O2 T0 = 295 K; P = 71.5 kPa ϕ = 0.6–1.5 Weng et al. [40]

NH3/O2/N2 T0 = 293 K; ϕ = 1 P0 = 66.9–81.1 kPa Akbar et al. [17]
NH3/O2/N2 T0 = 295 K; P = 101 kPa 0–40% N2 Kaneshige et al. [18]
H2/N2O/Ar T0 = 295 K; P = 10 kPa ϕ = 0.3–2.5 Mével [34]

H2/N2O T0 = 295 K; P = 70.9 kPa ϕ = 0.05–6 Akbar et al. [17]
H2/N2O T0 = 295 K; ϕ = 1 P0 = 10–100 kPa Kaneshige et al. [18]
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Figure 14. The range of the three input features to construct the ANN model: (red) original data used
in [27] and (black) additional data shown in Table 1.

Using these additional data points, we updated the neural network, following the
same training, validation, and testing process that had been used for our initial model [27]
and is illustrated in Figure 3. The updated model, trained on the new dataset, had again four
hidden layers, but now with 480, 248, 80 and 34 neurons on each layer, and approximately
144 thousand trainable parameters. The prediction analysis of this model for each one of
the training, validation, and testing datasets can be seen in Table 2 and Figure 15.

As can be seen, this updated model shows an improved performance compared to the
initial model, as the mean error % for the testing data, which determines the performance
of the network, has dropped by 1.5% to 20.7%. The standard deviation has also decreased
by 1.5%, while 75% of the data still has an error lower than 30.3%. Similar improvement
can be seen for the training data, while there is an error increase of 1% for the validation
data. Therefore, the ANN model has clearly improved by introducing more experimental
raw data from different mixtures to the training process of the model. This clearly supports
our hypothesis that the model can be further improved by using more data to retrain it. An
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additional comparison is performed for the two models using the initial and final datasets,
with the results seen in Table 3.

Table 2. Error analysis of updated model using the training, validation, and testing data.

Training Data Validation Data Testing Data

Count 294 98 98
Mean error % 14.5 22.4 20.7

Std 13.3 22.1 16.4
Minimum 0.042 0.068 0.349

25% 5.17 5.92 7.62
50% 10.3 15.5 18.9
75% 20.3 32.3 30.3

Maximum 67.3 120 88.5

As expected, there is a clear improvement in the mean error % with the second model.
Regarding the first model, the error difference between the two datasets again supports
using the ANN to predict cell sizes of mixtures and conditions outside those used during
their training process. As for the updated model, it is shown to maintain an almost identical
mean error % for both datasets.
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Table 3. Mean error % comparison of the initial and updated models for the two datasets.

Initial Model Updated Model

Initial dataset 0.193 0.176
Final dataset 0.242 0.173

The mean standard deviations and the mean errors shown in Tables 2 and 3 express the
variability of predictions by the ANN model and provide an indication of the uncertainty
in the estimate of the mean. To further illustrate the errors or uncertainties in the model
estimates in a different range of conditions, Figure 16 shows the Bland–Altman plots [47],
where the illustrations are a combination of the predicted cell sizes from the ANN model



Energies 2024, 17, 1747 15 of 19

and the actual (experimental) cell sizes. In the X-axis, the average of the two is given, and
in the Y-axis is the difference (i.e., prediction–actual).

From these plots, a higher prediction accuracy is shown in the cell size region of
0–200 mm for all three datasets (almost all within the confidence level of the average
difference). A larger scattering is indeed expected at the larger cell size range as these
are usually related to conditions near limits (e.g., low initial pressure, off-stoichiometric
conditions, or as a result of physical boundary effects), where measurement data are scarce
and cell patterns are highly irregular, from which the characteristic dominant cell size is
difficult to measure.
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4. Concluding Remarks

In this study, a previously developed ANN model was used to predict the cell size
of gaseous detonations for a wide range of reactive mixtures at different initial conditions.
The reactive mixtures comprised biogas, acetylene, hydrogen, and ammonia fuels oxidized
with air, O2, and N2O. The predicted cell sizes were compared to the corresponding
experimental cell size measurements, showing for most mixtures and conditions a good
agreement between experiments and ANN predictions. This outcome is promising, as
these are mixtures and conditions beyond those used for the model’s training reported
in [27]. These results thus support the potential use and extension of this three-feature ANN
model for other reactive mixtures, provided that the chemical kinetic parameters could be
accurately computed. This tool is particularly useful as there are certain reactive mixtures
or specific conditions that make experimental measurements challenging, thus leading to
very limited or even non-existent experimental cell size data in the literature. Naturally,
the accuracy of the model is highly linked to the input parameters, which are functions of
the thermo-chemical data and chemical kinetic mechanism. A larger error in the prediction
is also expected for mixtures in which the detonation structure is highly unstable with
irregular cellular patterns. The ANN may require further training and validation with
more experimental data for those mixtures to pinpoint the underlying limitations of the
model, and also revisiting the ANN formulation with more advanced concepts, e.g., [48,49],
to address the model uncertainty and sensitivity.

Aside from the model’s validation, this study had two further useful outcomes. The
first was recognizing the potential use of the model to evaluate experimental setups and
identify those that produce cell sizes that deviate from the expected values, so that they
can be rectified, or at least explain these deviations, as is the case with different tube
geometries. For stoichiometric C2H2-N2O, which has limited experimental data in the
literature, it was found that one of the two setups had lower experimental values compared
to the ANN model predictions, with possible explanations involving the experimental
uncertainty, impurities in the C2H2, the smaller tube dimensions, and the difference in
the geometry of the cross-section. The other outcome is that the model could be used to
identify which chemical kinetic mechanisms should be considered for detonation studies
of reactive mixtures that still present challenges, such as the NH3-N2O mixture. For
that mixture, different mechanisms predicted different ZND characteristics. According
to the ANN model, the Miller–Bowman mechanism was found to be the best option for
these mixtures. Nonetheless, the large discrepancies between different chemical kinetic
mechanisms suggest that further studies are needed to revisit the reaction pathway for this
specific NH3-N2O mixture even at detonation conditions.

Finally, it was shown that the ANN model can be updated and improved when
additional experimental data are used to retrain the model. In addition, although the
ANN model indirectly considers the unstable nature of the detonation structure by having
the three input features that affect the detonation instability, it still remains a type of
correlation for the cell size output. In future works, physics-inspired or phenomenological
models such as [50], which include physical mechanisms for detonation cell generations
could be considered and coupled with a similar ANN framework for the required input
prediction (e.g., kernel size) for model closure. Methods such as those used in assessing
chemical kinetic mechanisms could help in evaluating prediction uncertainty and model
limitations [51,52].
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Symbols and Abbreviations

Symbol
A Proportionality factor
ak, bk Correlation constants
N Number of data points
Po Initial pressure
∆I Induction length
χ Stability parameter
λ Detonation cell size
ϕ Equivalence ratio
.
σmax Maximum thermicity
Abbreviation Table
ANN Artificial Neural Network
CJ Chapman–Jouguet
RDE Rotating Detonation Engine
ZND Zel’dovich–von Neumann–Döring
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