
Citation: Lu, Z.; Yan, Y. Temperature

Control of Fuel Cell Based on

PEI-DDPG. Energies 2024, 17, 1728.

https://doi.org/10.3390/en17071728

Academic Editors: Lei Xing and

Željko Penga

Received: 7 March 2024

Revised: 28 March 2024

Accepted: 2 April 2024

Published: 4 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Temperature Control of Fuel Cell Based on PEI-DDPG
Zichen Lu * and Ying Yan

School of Automation, Nanjing University of Information Science & Technology, Nanjing 210044, China;
ying.yan@nuist.edu.cn
* Correspondence: 202183680022@nuist.edu.cn

Abstract: Proton exchange membrane fuel cells (PEMFCs) constitute nonlinear systems that are chal-
lenging to model accurately. Therefore, a controller with robustness and adaptability is imperative for
temperature control within the PEMFC stack. This paper introduces a data-driven controller utilizing
deep reinforcement learning for stack temperature control. Given the PEMFC system’s characteristics,
such as nonlinearity, uncertainty, and environmental conditions, we propose a novel deep reinforce-
ment learning algorithm—the deep deterministic policy gradient with priority experience playback
and importance sampling method (PEI-DDPG). Algorithm design incorporates technologies such as
priority experience playback, importance sampling, and optimized sample data storage structure,
enhancing the controller’s performance. Simulation results demonstrate the proposed algorithm’s
superior effectiveness in temperature control for PEMFC, leveraging the PEI-DDPG algorithm’s high
adaptability and robustness. The proposed algorithm’s effectiveness is additionally validated on the
RT-LAB experimental platform. The proposed PEI-DDPG algorithm reduces the average adjustment
time by 8.3%, 17.13%, and 24.56% and overshoots by 2.12 times, 4.16 times, and 4.32 times compared
to the TD3, GA-PID, and PID algorithms, respectively.

Keywords: PEI-DDPG; PEMFC; temperature control; importance sampling; deep reinforcement
learning; deep deterministic policy gradient; data-driven controller

1. Introduction

Under the current global decarbonization trend, the rapid development of hydrogen
energy needs to be combined with the large-scale development and utilization of renewable
energy sources, thus making the preparation of green hydrogen energy more and more
popular. For example, renewable energy sources, such as solar and wind, are unstable
and intermittent in the power generation process, making it challenging to apply these
valuable electrical energy sources continuously and stably. To solve this problem, the
utilization and stability of renewable energy sources can be significantly improved by
using energy storage and conversion systems. The production of green hydrogen from
waste photovoltaic and waste wind energy, which is then utilized in fuel cells to generate
electricity, can be an essential means of smoothing out fluctuations in renewable energy,
proton exchange membrane fuel cells (PEMFC) are increasingly gaining popularity in
fixed power stations, energy storage devices, transportable power sources, automobiles,
aviation, and various other applications due to their high energy conversion efficiency,
pollution-free emissions, low operating temperature, and rapid start–stop capabilities [1–3].
When hydrogen produces water through an electrochemical reaction, it releases thermal
energy. Dealing with this heat is an essential challenge in PEMFC applications [4–6].

Several scholars have proposed diverse methods to enhance the temperature control
of fuel cells. Traditional control algorithms comprise proportional–integral control [7],
feedback control [8], piecewise predictive negative feedback control [9], and adaptive linear
quadratic regulator feedback control [10]. Nevertheless, owing to the intrinsic nonlinearity
of PEMFC, these control algorithms exhibit limitations. Especially when the load changes

Energies 2024, 17, 1728. https://doi.org/10.3390/en17071728 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en17071728
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0009-0000-4229-1115
https://orcid.org/0000-0002-3609-0496
https://doi.org/10.3390/en17071728
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en17071728?type=check_update&version=1

Energies 2024, 17, 1728 2 of 19

dynamically and the system parameters are disturbed, a traditional control strategy will
decrease the controller’s robustness.

Consequently, researchers aim to develop an algorithm compatible with nonlinear
modes and introduce a series of novel control algorithms for regulating PEMFC temper-
ature. These algorithms encompass model predictive control (MPC) [11], fuzzy control,
neural network control (NNC), and compound control. Compared to traditional designs,
MPC stands out as a more fitting control algorithm. Several MPC algorithms regulate
PEMFC temperature, including the model predictive control algorithm and robust feedback
model predictive control [12]. However, despite the high control accuracy advantage of
the MPC algorithm, its effectiveness heavily relies on the precise modeling of PEMFC, a
challenging task in practical implementation.

Some fuzzy-based control algorithms, including fuzzy control [13], incremental fuzzy
control [14], and fuzzy incremental PID [15], are employed for PEMFC temperature reg-
ulation. Additionally, multi-input, multi-output fuzzy control is utilized [16]. However,
despite being model-free with strong adaptability, these fuzzy-based control algorithms
have overly simplistic fuzzy control rules. Consequently, their accuracy is insufficient
for achieving precise adaptive control. As a model-free algorithm, NNC finds extensive
application in fuel cell control, including artificial neural network control [17] and BP
neural network control [18]. Nevertheless, despite its simple control principle, the perfor-
mance of NNC exhibits substantial variations under different operating conditions. Due
to the low robustness of the control algorithm based on neural networks, its performance
exhibits significant variations under various operating conditions. In addition, due to the
substantial interference and coupling in a temperature control system, Sun L Tan Chao and
colleagues enhanced the temperature management of PEMFC by refining synovial film
control [19]. The results demonstrate that this approach significantly diminishes the tem-
perature difference between the input and output cooling water of the reactor, enhancing
the temperature control effectiveness.

However, many researchers currently choose to control circulating water pumps and
radiators directly as separate components. Therefore, in the face of nonlinear and robust
connection between a radiator and a circulating water pump, it is tough for researchers to
decouple the controller from the algorithm.

The deep deterministic policy gradient (DDPG) algorithm is a widely employed
deep reinforcement learning method in the control field [20]. It approximates the update
of a neural network’s weights by computing the gradient and estimating actions. This
renders the DDPG algorithm effective for model-free multiple-in multiple-out (MF-MIMO)
control [21]. Therefore, in PEMFC fuel cell temperature control, a controller is used to
control the pump and cooling fan in an integrated way. There is no need to decouple the
two controllers; through the configuration of the reward function to achieve joint control of
the pump and the fan, precise control of fuel cell temperature can be achieved. Nevertheless,
traditional DDPG algorithms suffer from slow convergence, poor stability [22], and the
inability to accurately steer the training of PEMFC thermal management systems with lags
and large inertia. We propose a deep deterministic policy gradient with priority experience
playback and importance sampling method (PEI-DDPG) control method. In addition, we
employ the Ornstein–Uhlenbeck (OU) stochastic process with inertial properties instead of
zero-mean Gaussian noise to enhance the bootstrapping of inertial system training [22]. To
further enhance the model’s robustness and training speed, we use a Sumtree data structure
to store empirically prioritized probability values. Additionally, a target smoothing strategy
is introduced. These optimization methods enhance the algorithm’s robustness and achieve
effective temperature control of the PEMFC.

The work of this paper is as follows: Section 2 introduces the electric stack voltage
of the fuel cell and the thermal management model of the fuel cell, Section 3 introduces
the temperature control theory based on the PEI-DDPG model, Section 4 introduces the
temperature control process of the fuel cell based on deep reinforcement learning, Section 5

Energies 2024, 17, 1728 3 of 19

performs simulation validation of the proposed model, and Section 6 performs validation
of the proposed model in this paper on RT-LAB.

2. Fuel Cell Temperature Control System

This section presents a model of the voltage and thermal management system of the
fuel cell.

2.1. Fuel Cell Stack

Three thermodynamic electromotive force activation losses equal the actual output
voltage of a PEMFC [23], and the voltage “M” of a single PEMFC can be written as follows:

M = E′ −Mr −Mt −My (1)

where E′ is the Nernst electric potential, Mr is the activation polarization voltage, Mt is the
ohmic polarization voltage, and My is the concentration difference polarization overvoltage.

2.2. Modeling of Thermal Processes in Fuel Cell

The heat balance of a stack can be expressed using the following equation [24]:

ρst(t + ts) =
∫

∂(t)− ∂cool(t)− ∂cond(t)− ∂radi(t)
Hp,st

dt (2)

The stack has a sizable heat capacity. Ignoring thermal radiation and heat conduction,
the temperature of the stack can be expressed as the cooling water’s exit temperature. From
this, we can obtain:

Yst,out(t + ts) =
∫

∂(t)− ∂cool(t)
Ap,st

dt (3)

The stack produces the following amount of heat:

Jst = Rcell Ist(1.25− ηst/Rcell) (4)

Since there will be some conversion of water vapor into a liquid state throughout the
reaction, the above formula is:

Jst = Rcell Ist(1.25− ηst/Rcell)Cst (5)

The heat that the cooling water removes is:

σcool = CcoolHp,w(Tst,out − Tst,in) (6)

2.3. Radiator Model

The following equation provides the quantity of heat dissipated by the radiator (Qa):

Ha = Wcυair
(
Tgi − Tev

)
(7)

After the cooling water has passed through the radiator, its temperature is

Tqa = Tqi −
Qa

CsNp,w
(8)

Parameter names in this section correspond to Table 1.

Energies 2024, 17, 1728 4 of 19

Table 1. Table of thermopile thermal model parameters.

Symbol Title Symbol Title

ρst(t + ts) (K) Time-delay stack temperature Tst,in (K) Stack inlet temperature
ηst (V) Stack voltage Cst Fitting coefficient

∂cond(t) (J) Heat dissipated by heat conduction ts (S) Delay time
∂cool(t) (L/min) Cooling water flow Ha (J) Radiator heat dissipation

Ap,st (J/K) Heat capacity of stack Tqi (K) Radiator inlet temperature
∂(t) (J) The stack-generated heat Cs (L/min) Radiator cooling water flow

Rcell Number of stacks Wc Scale factor
Ist (A) Stack current υair (L/min) Cooling air flow
σcool (J) Heat carried away by cooling water Tgi (K) Cooling water temperature in the radiator

Tst,out (K) Stack outlet temperature Tev (K) Environmental temperature
∂radi(t) (J) Heat dissipation of thermal radiation Tqa (K) Radiator outlet temperature

Np,w (J/(g·K)) Constant-pressure specific heat capacity of water My (V) Ohmic polarization voltage
E′ (V) Nernst electric potential Mt (V) Differential concentration polarization voltage
Mr (V) Activation polarization voltage M (V) Monolithic PEMFC voltage

3. Temperature Control of PEMFC Based on Deep Reinforcement Learning Algorithm

This section presents a deep reinforcement learning-based framework for fuel
cell temperature.

3.1. PEMFC Temperature Control Framework

Agents continually interact with the environment to determine the best control ap-
proach to maximize the expected return value in the deep reinforcement learning-based
temperature regulation of PEM fuel cells [25]. It consists of a PEM fuel cell system environ-
ment, agent, state set S representing the environment, state A representing agent action,
and reward R for an agent. The t-interaction process at a particular moment is shown
in Figure 1.

Energies 2024, 17, x FOR PEER REVIEW 5 of 21

state

control policy

proposed algorithm

pemfc system environment

reward

agent

policy updatetr
ts

ta
action

fan

pump

Figure 1. PEMFC temperature control system framework.

As depicted in Figure 1, at time t , the PEM fuel cell system environment presents

the observed system state ts S∈ to the agent. The agent determines the cooling system

action ta using the deep reinforcement learning algorithm and the system state ts . The
environment updates the state at the next time step based on the action and provides a

reward value tr to the agent.
In this study, the PEMFC system serves as the environmental context. The actuator,

consisting of a fan and water pump, constitutes the control variables. The control objective

is to maintain the inlet temperature of PEMFC st,inT at 338.15 K through the coordinated
operation of the radiator and circulating pump. Additionally, the desired change in the

temperature difference between the inlet and outlet of PEMFC, st,out st,inT T− , is set at 5 K.

3.2. State Space
The agent’s state space is ascertained:

pointpoint st,in

{
T },T

w w st,in st,out

1 2

wS = ,U ,P ,T ,T ,
e ,e , T,

i
Δ Δ

(9)

The state-space parameters encompass the operational current (wi) of the stack, the

operational voltage (wU) of the stack, the operational power (wP) of the stack, the inlet

temperature (st,inT) of the stack, the outlet temperature (st,outT) of the stack, the desired

variation in temperature between the intake and output (pointTΔ = 5), the target error in

the inlet temperature (pointst,inT = 0), the deviation between the temperature difference in

the inlet and outlet and the target value (1e), and the deviation between the inlet temper-

ature and the target value (2e).

3.3. Action Space

{ }CL airA W W= ， (10)

The PEMFC’s cooling air flow airW and cooling water flow CLW make up the action
space.

Figure 1. PEMFC temperature control system framework.

As depicted in Figure 1, at time t, the PEM fuel cell system environment presents
the observed system state st ∈ S to the agent. The agent determines the cooling system
action at using the deep reinforcement learning algorithm and the system state st. The
environment updates the state at the next time step based on the action and provides a
reward value rt to the agent.

In this study, the PEMFC system serves as the environmental context. The actuator,
consisting of a fan and water pump, constitutes the control variables. The control objective
is to maintain the inlet temperature of PEMFC Tst,in at 338.15 K through the coordinated
operation of the radiator and circulating pump. Additionally, the desired change in the
temperature difference between the inlet and outlet of PEMFC, Tst,out − Tst,in, is set at 5 K.

Energies 2024, 17, 1728 5 of 19

3.2. State Space

The agent’s state space is ascertained:

S = {iw, Uw, Pw, Tst,in, Tst,out,
e1, e2, ∆T, ∆Tpoint, Tst,inpoint

} (9)

The state-space parameters encompass the operational current (iw) of the stack, the
operational voltage (Uw) of the stack, the operational power (Pw) of the stack, the inlet
temperature (Tst,in) of the stack, the outlet temperature (Tst,out) of the stack, the desired
variation in temperature between the intake and output (∆Tpoint = 5), the target error in the
inlet temperature (Tst,inpoint = 0), the deviation between the temperature difference in the
inlet and outlet and the target value (e1), and the deviation between the inlet temperature
and the target value (e2).

3.3. Action Space

A = {WCL, Wair} (10)

The PEMFC’s cooling air flow Wair and cooling water flow WCL make up the action space.

3.4. Reward Function

Reward =

−0.0013K ∗ (e2

1 + e2
2) + c, e2

1 > 1, e2
2 > 1

1.08K + c, e2
1 ≤ 1, e2

2 ≤ 1

K ∗ (−0.0014e2
1 + 0.6) + c, e2

1 > 1, e2
2 ≤ 1

K ∗ (−0.0011e2
2 + 0.42) + c, e2

1 ≤ 1, e2
2 > 1

 (11)

The Reward representation is stated in the form Reward′ when the termination condi-
tion (is done) is met.

Reward′ = (Reward− 100× K) (12)

The scale factor, K, and c must be tested and adjusted during training; this paper takes
K = 0.13, and c takes a value of 1.51. The termination condition (is done) refers to when the
reward function e1, e2 exceeds a specific range and directly terminates the training.

3.5. Agent

The agent comprises deep reinforcement learning algorithms and their resultant control
strategies. Deep reinforcement learning is categorized into three types: strategy learning,
value learning, and actor–critic learning. The actor–critic approach amalgamates the merits
of strategy learning and value learning, proficiently addressing the challenge of continuous
action space, facilitating single-step updating, and enhancing learning efficiency. Because the
state space and action space in the PEMFC temperature control problem involve continuous
quantities, this paper uses the PEI-DDPG algorithm based on the actor–critic architecture.

4. PEI-DDPG Algorithm-Based PEMFC Temperature Regulation

This section describes the fuel cell temperature control process based on
PEI-DDPG modeling.

4.1. Deep Deterministic Policy Gradient

The deep deterministic policy gradient algorithm represents an enhancement and
advancement of the actor–critic algorithm. The actor–critic algorithm can filter out random
actions based on the learned strategy π within the continuous action space. However,
the random strategy encounters slow network convergence and requires training data.
Therefore, the random strategy gradient algorithm is replaced with the deterministic
policy gradient algorithm, effectively addressing the issue of slow network convergence.

Energies 2024, 17, 1728 6 of 19

Simultaneously, OffPolicy sampling is introduced to address the issue of unexplored
environments [26]. The actor network and the critic network are the two components of
the DDPG algorithm. Main-PolicyNet and Target-PolicyNet make up the policy network,
and Main-QNet and TargetQNet make up the value network. The specific structure is
illustrated in Figure 2.

Energies 2024, 17, x FOR PEER REVIEW 7 of 21

environment
noise optimizer

Main-Policynet

Target-Policynet

optimizer

Main-Qnet

Target-Qnet

replaybuffer

sample

N*(si,ai,ri,s(i+1))

actor critic

Figure 2. DDPG algorithm structure.

We define ()|s μμ θ and () |, QQ s a θ to represent the policy network function

and value network function, respectively, where μθ and
'
μθ denote the neural network

parameters of Main-PolicyNet and Target-PolicyNet, respectively, and Qθ and
'
Qθ de-

note the neural network parameters of Main-QNet and Target-QNet, respectively. μθ is

updated by the gradient method, as in Equation (13), Qθ is updated by minimizing the

loss function, as in Equation (14), and
'
μθ and

'
Qθ are updated using a soft method as

shown in Equation (15).

() ()(()
1

1 ,
j

N

j j Q js
j

J Q s s s
Nμ μμ

θ μ θ μμ θ
μ θ θ μ θ

=

 ∇ = ∇ ⋅∇ ∣
∣ ∣ ∣ (13)

()
()

1 1

2

1

,

1 ,

j j j j Q

N

j j j Q
j

y r Q s s

L y Q s a
N

μ μγ μ θ θ

θ

′ ′ ′ ′
+ +

=

 = + ⋅

 = −

∣ ∣

∣

(14)

(1-)
_ : , (0,1)

(1-)
Q Q Qsoft updata
μ μ μ

θ τ θ τ θ
τ

θ τ θ τ θ

′ ′

′ ′

 ← ⋅ + ∈ ← ⋅ +
(15)

In Equations (13) and (14), N represents the number of samples. In Equation (14),

jy is the output value of Target-QNet, and (),j j QQ s a θ∣ is the output value of Main-

QNet. jr signifies the expected return at moment j .

4.2. Priority Experience Playback
Policy optimization in reinforcement learning entails an approximate fitting process

for various types of neural networks. Nevertheless, as a supervised learning model, deep
neural networks demand independent and homogeneously distributed data. To address
the instability associated with the traditional policy gradient method when integrated
with neural networks, DDPG employs an empirical playback mechanism to eliminate cor-
relations within the training data.

Experience playback comprises two components: storage sampling and experience
sampling. In traditional empirical sampling, the agent utilizes incoming interactive data

Figure 2. DDPG algorithm structure.

We define µ
(
s
∣∣θµ

)
and Q

(
s, a

∣∣θQ
)

to represent the policy network function and value
network function, respectively, where θµ and θ′µ denote the neural network parameters
of Main-PolicyNet and Target-PolicyNet, respectively, and θQ and θ′Q denote the neural
network parameters of Main-QNet and Target-QNet, respectively. θµ is updated by the
gradient method, as in Equation (13), θQ is updated by minimizing the loss function, as in
Equation (14), and θ′µ and θ′Q are updated using a soft method as shown in Equation (15).

∇θµ
J =

1
N

N

∑
j=1
∇µ(sj |θµ)Q

[(
sj, µ

(
sj | θµ

)
| θQ

]
·∇θµ

µ
(
sj | θµ

)
(13)

yj = rj + γ ·Q′µ

[
sj+1, µ′

(
sj+1 | θ′µ

)
| θ′Q

]
L = 1

N

N
∑

j=1

[
yj −Q

(
sj, aj | θQ

)]2 (14)

so f t_updata :

{
θ′Q ← τ · θQ + (1− τ)θ′Q
θ′µ ← τ · θµ + (1− τ)θ′µ

, τ ∈ (0, 1) (15)

In Equations (13) and (14), N represents the number of samples. In Equation (14), yj is
the output value of Target-QNet, and Q

(
sj, aj | θQ

)
is the output value of Main-QNet. rj

signifies the expected return at moment j.

4.2. Priority Experience Playback

Policy optimization in reinforcement learning entails an approximate fitting process
for various types of neural networks. Nevertheless, as a supervised learning model, deep
neural networks demand independent and homogeneously distributed data. To address
the instability associated with the traditional policy gradient method when integrated
with neural networks, DDPG employs an empirical playback mechanism to eliminate
correlations within the training data.

Experience playback comprises two components: storage sampling and experience
sampling. In traditional empirical sampling, the agent utilizes incoming interactive data
for training. During experience playback, the agent acquires interactive data, such as
(S, A, R, S′). These data are not directly employed for neural network training but are

Energies 2024, 17, 1728 7 of 19

stored in the experience pool. Subsequently, batch experiences are extracted from the
experience pool for training. The batch sampling of experience data from the buffer is
termed experience playback. However, traditional empirical sampling and empirical
playback employ uniform and random sampling as inefficient methods to utilize data. The
proposed PER sampling strategy calculates the priority for each sample in the experience
pool, enhancing the likelihood of valuable training samples. The principle of PER is
illustrated in Figure 3.

Energies 2024, 17, x FOR PEER REVIEW 8 of 21

for training. During experience playback, the agent acquires interactive data, such as
'(, , ,)S A R S . These data are not directly employed for neural network training but are

stored in the experience pool. Subsequently, batch experiences are extracted from the ex-
perience pool for training. The batch sampling of experience data from the buffer is termed
experience playback. However, traditional empirical sampling and empirical playback em-
ploy uniform and random sampling as inefficient methods to utilize data. The proposed
PER sampling strategy calculates the priority for each sample in the experience pool, en-
hancing the likelihood of valuable training samples. The principle of PER is illustrated in
Figure 3.

main_Qnet and target_QNet Sample of
batch_size

TD-error for batch
samples and the loss

function
environment Priority sampling

Replay_buffer

Choose_action

Gradient

Update priority

New samples are
stored at the

highest priority
Figure 3. Schematic diagram of PER mechanism.

Because TD-error is usually used to update the action value function (,)Q s a in re-
inforcement learning, TD-error can implicitly reflect the learning effect of the agent from
experience. This paper selects the absolute value |δ| of TD-error as the index to evaluate
the experience value, as shown in Equation (16):

| | (, |)j j j j Qy Q s aδ θ= − (16)

where jy is as in Equation (14). The traditional DDPG algorithm employs random and
uniform sampling, leading to significant fluctuations in the value of δ . This results in
poor training outcomes. Therefore, the sequential order of empirical data sampling during
agent training becomes crucial in enhancing the algorithm’s performance. Consequently,
Equations (17) and (18) delineate the procedures for empirical sampling and priority prob-
ability:

()
a
j

a
k k

p
P j

p
=

(17)

| |j jp δ ε= + (18)

In Equation (17), when α equals 0, it represents uniform sampling. In Equation (18),

jp represents the priority probability of the thε empirical value, and ε ∈ (0, 1) is in-

troduced to prevent the unsampled jp from being 0. The larger | |δ is, the more posi-
tive the correction to the expected action value is, and the higher the corresponding prior-
ity probability is.

If each sample needs to be sorted according to the empirical probability, it will in-
crease the computational complexity. Therefore, the Sumtree data structure is employed
to store the empirical priority probability values. The specific structure is illustrated in
Figure 4, where the number of leaf nodes is denoted by “ capacity ”. Consequently, the

Figure 3. Schematic diagram of PER mechanism.

Because TD-error is usually used to update the action value function Q(s, a) in rein-
forcement learning, TD-error can implicitly reflect the learning effect of the agent from
experience. This paper selects the absolute value |δ| of TD-error as the index to evaluate
the experience value, as shown in Equation (16):∣∣δj

∣∣= yj −Q(sj, aj
∣∣θQ) (16)

where yj is as in Equation (14). The traditional DDPG algorithm employs random and
uniform sampling, leading to significant fluctuations in the value of δ. This results in
poor training outcomes. Therefore, the sequential order of empirical data sampling dur-
ing agent training becomes crucial in enhancing the algorithm’s performance. Conse-
quently, Equations (17) and (18) delineate the procedures for empirical sampling and
priority probability:

P(j) =
pa

j

∑ k pa
k

(17)

pj =
∣∣δj

∣∣+ε (18)

In Equation (17), when α equals 0, it represents uniform sampling. In Equation (18), pj
represents the priority probability of the εth empirical value, and ε ∈ (0, 1) is introduced to
prevent the unsampled pj from being 0. The larger |δ| is, the more positive the correction to
the expected action value is, and the higher the corresponding priority probability is.

If each sample needs to be sorted according to the empirical probability, it will increase
the computational complexity. Therefore, the Sumtree data structure is employed to store
the empirical priority probability values. The specific structure is illustrated in Figure 4,
where the number of leaf nodes is denoted by “capacity”. Consequently, the total capacity
of the Sumtree is 2× capacity− 1, and the samples are stored in the last layer of leaf nodes
within the tree structure. Priority probability: The probability value proot_k of each parent
node in the leaf nodes equals the sum of the priority probabilities of all child node samples.
Each leaf node corresponds to a unique index value, facilitating access to the corresponding
samples using this index. The sample storage structure is depicted in Figure 5.

Energies 2024, 17, 1728 8 of 19

Energies 2024, 17, x FOR PEER REVIEW 9 of 21

total capacity of the Sumtree is 2 1capacity× − , and the samples are stored in the last
layer of leaf nodes within the tree structure. Priority probability: The probability value

_root kp of each parent node in the leaf nodes equals the sum of the priority probabilities
of all child node samples. Each leaf node corresponds to a unique index value, facilitating
access to the corresponding samples using this index. The sample storage structure is de-
picted in Figure 5.

0

1 2

3 4 5 6

… … … …

capacity-1 capacity 2×capacity-3 2×capacity-2

leaf node

root node

…

Figure 4. Sumtree data structure.

(s,a,r,s_) (s,a,r,s_) (s,a,r,s_) …

0 1 2
Figure 5. Sample data storage structure.

When sampling, we divide the priority from 0 to
a

k kp into n intervals, as shown in

Equation (19), and randomly select a value 1 2 _(, , ,)x batch sizep p p p= ⋅⋅ ⋅ in each interval.
Then, the corresponding leaf node is searched downward from the root node, and the

sample data
'[, , ,]j j j j jdata s a r s= stored in the corresponding leaf node are extracted.

The search rule is as follows: assume that the randomly selected number is 1p , start the

comparison from the root node, and if 1 _ 0rootp p< , go to the right child node; if

1 _ 0rootp p> , go to the left child node, but
'
1 _ 0 1rootp p p= − , until you find the last leaf

node.

_

a
k kp

n
batch size

=
 (19)

4.3. Importance Sampling

In priority experience playback (PER), the absolute value of TD-error | |δ is used as
an index to evaluate whether the experience value is worth learning, and the experience
is prioritized according to the magnitude of | |δ . Experiences with high TD-error are fre-
quently employed for training, leading to an inevitable alteration in state access frequency
and causing oscillation or even dispersion in the neural network training process; thus,
importance sampling (IS) is introduced. Importance sampling (IS) is introduced to ensure
that samples have different probabilities of selection, guaranteeing that gradient descent
yields consistent convergence results while simultaneously suppressing oscillations in the

Figure 4. Sumtree data structure.

Energies 2024, 17, x FOR PEER REVIEW 9 of 21

total capacity of the Sumtree is 2 1capacity× − , and the samples are stored in the last
layer of leaf nodes within the tree structure. Priority probability: The probability value

_root kp of each parent node in the leaf nodes equals the sum of the priority probabilities
of all child node samples. Each leaf node corresponds to a unique index value, facilitating
access to the corresponding samples using this index. The sample storage structure is de-
picted in Figure 5.

0

1 2

3 4 5 6

… … … …

capacity-1 capacity 2×capacity-3 2×capacity-2

leaf node

root node

…

Figure 4. Sumtree data structure.

(s,a,r,s_) (s,a,r,s_) (s,a,r,s_) …

0 1 2
Figure 5. Sample data storage structure.

When sampling, we divide the priority from 0 to
a

k kp into n intervals, as shown in

Equation (19), and randomly select a value 1 2 _(, , ,)x batch sizep p p p= ⋅⋅ ⋅ in each interval.
Then, the corresponding leaf node is searched downward from the root node, and the

sample data
'[, , ,]j j j j jdata s a r s= stored in the corresponding leaf node are extracted.

The search rule is as follows: assume that the randomly selected number is 1p , start the

comparison from the root node, and if 1 _ 0rootp p< , go to the right child node; if

1 _ 0rootp p> , go to the left child node, but
'
1 _ 0 1rootp p p= − , until you find the last leaf

node.

_

a
k kp

n
batch size

=
 (19)

4.3. Importance Sampling

In priority experience playback (PER), the absolute value of TD-error | |δ is used as
an index to evaluate whether the experience value is worth learning, and the experience
is prioritized according to the magnitude of | |δ . Experiences with high TD-error are fre-
quently employed for training, leading to an inevitable alteration in state access frequency
and causing oscillation or even dispersion in the neural network training process; thus,
importance sampling (IS) is introduced. Importance sampling (IS) is introduced to ensure
that samples have different probabilities of selection, guaranteeing that gradient descent
yields consistent convergence results while simultaneously suppressing oscillations in the

Figure 5. Sample data storage structure.

When sampling, we divide the priority from 0 to k pa
k into n intervals, as shown in

Equation (19), and randomly select a value px = (p1, p2, · · ·, pbatch_size) in each interval.
Then, the corresponding leaf node is searched downward from the root node, and the sam-
ple data dataj = [sj, aj, rj, s′j] stored in the corresponding leaf node are extracted. The search
rule is as follows: assume that the randomly selected number is p1, start the comparison
from the root node, and if p1 < proot_0, go to the right child node; if p1 > proot_0, go to the
left child node, but p′1 = proot_0 − p1, until you find the last leaf node.

n =
∑ k pa

k
batch_size

(19)

4.3. Importance Sampling

In priority experience playback (PER), the absolute value of TD-error |δ| is used as
an index to evaluate whether the experience value is worth learning, and the experience
is prioritized according to the magnitude of |δ|. Experiences with high TD-error are fre-
quently employed for training, leading to an inevitable alteration in state access frequency
and causing oscillation or even dispersion in the neural network training process; thus,
importance sampling (IS) is introduced. Importance sampling (IS) is introduced to ensure
that samples have different probabilities of selection, guaranteeing that gradient descent
yields consistent convergence results while simultaneously suppressing oscillations in the
neural network training process. We define the importance sampling weight (ISW) as wi,
as represented in Equation (20).

wi = (
1
N
· 1

P(i)
)

σ

(20)

where N represents the capacity of the empirical pool, P(i) is defined as in Equation (17), and
σ is the weight coefficient controlling the degree of correction. As the training progresses,
the weight coefficient gradually increases linearly to 1. When σ equals 1, the impact of the
PER on the convergence of the result is entirely nullified. To enhance convergence stability,
Equation (20) undergoes normalization to yield Equation (21).

wj =
(N · P(j))−σ

max
i

(wi)
=

(N · P(j))−σ

max
i

(N · P(i))−σ = (
P(j)

min
i

P(i)
)
−σ

(21)

Energies 2024, 17, 1728 9 of 19

4.4. Exploration Noise of Ornstein–Uhlenbeck

Fuel cells have notable inertial working features. Hence, an Ornstein–Uhlenbeck (OU)
stochastic process—which is ideally suited for inertial systems—is used to describe the
exploration noise [27]. The noise produced by the OU process is shown as follows:

Nou(dAt) = β(A− At)dt + ρ1Wt (22)

where At stands for the action state at time t, A for the work sampling data mean, β for
the stochastic process learning rate, ρ1 for the OU random weight, and Wt for the Wiener
procedure to occur.

4.5. Delayed Strategy Updates

The actor network and the critic network in the conventional DDPG algorithm un-
dergo successive parameter updates, exhibiting a specific correlation. However, errors
in the critic network’s valuation can lead to suboptimal strategies. These less-than-ideal
approaches magnify mistakes in the strategy network’s parameter update, causing it to
update incorrectly and consequently training the critic network. This cyclic degradation
between the two networks eventually results in deteriorating performance. By adding a
target network, one can lessen the chance of overestimation-induced policy divergence,
minimize errors from multi-step updates, and improve reinforcement learning stability. To
do this, a strategy network that updates gradually offers the current Q value required to
calculate the target network’s value. The Q value of the original network, however, is only
used for strategy delay updates and action selection and parameter updates. This approach
not only minimizes unnecessary and redundant updates but also mitigates the cumulative
errors arising from multiple updates. Consequently, it helps to improve training stability
and convergence as well as deal with the overestimation problem. A policy delay of two is
assumed in the PEI-DDPG algorithm, meaning that the critic network receives two updates
before the policy is modified.

4.6. Target Strategy Smoothing

Error propagation and accumulation can lead to a particular failure scenario in which
an action’s estimated Q value can rise unnecessarily high within a small range. The method
may quickly exploit a peak that the Q-function learns to be erroneous for an action, resulting
in inaccurate actions. The research employs policy smoothing to mitigate this problem
by seeking to reduce error production and improve the objective function’s smoothness.
This is achieved by smoothing each dimension of analogous acts and adding noise to
the objective policy network. To reduce notable fluctuations, a clip-clipping function is
applied to the noise, limiting the maximum and minimum values of the output. In brief,
the following is a description of the objective function:{

yj = rj + γ ·Q′µ
[
sj+1, µ′

(
sj+1 | θ′µ

)
| θ′Q + ψ

]
ψ ∼ clip(N(0, ϑ),−c, c)

(23)

Variance is reduced by smoothing the goal strategy, increases strategy update speed,
boosts network stability, and speeds up learning by mitigating potential errors caused by
the selection of particular aberrant peaks.

The PEI-DDPG algorithm (Algorithm 1) flow is as follows:

Energies 2024, 17, 1728 10 of 19

Algorithm 1. PEI-DDPG.

1: initialize the parameters θQ and θµ of the value network Q(s, a|θQ) and the strategy network µ
(
s
∣∣θµ

)
, and the replay_buffer

capacity

2: initialize the neural network parameters θ′Q and θ′µ of the target network
3: initialize sampling probability P(j) and parameters α and σ of IS weight, update frequency of target_Qnet neural network
parameters updata_step, sampling batch bath_size
4: for i = 1 to episode
5: initialize state S as the first state s of the current state set
6: for t = 1 to MAX_STEPS
7: select new action according to new policy
8: get rt and st+1, store experience (st , at , rt , st+1) in replay_ buffer, and set pt = max

i<t
pi

9: if i ≥ updata_step and t%updata_every == 0
10: for j to updata_every
11: the sample obeys the empirical sampling probability Equation (17) p(j)
12: calculate ISW: wj according to Equation (21), and calculate sample priority probability pj according to Equation (18)
13: end for
14: If t mod policy_delay = 0, update critic network, update actor network
15: end if
16: end if
17: end if

The PEI-DDPG-based PEMFC temperature control flowchart is shown in Figure 6
Energies 2024, 17, x FOR PEER REVIEW 12 of 21

Figure 6. PEI-DDPG Algorithm Structure Diagram.

5. Simulation Analysis
In this section, the simulation results of the PEI-DDPG model are analyzed under two

operating conditions.

5.1. Simulation Conditions
Computer hardware specs for the simulation used in this paper include a 4.90 GHz

12th Gen Intel(R) Core(TM) i7-13620H CPU and 32 GB RAM. The simulation model that
was used is the fuel cell temperature control system that was covered in the previous sec-
tion. Table 2 enumerates all of the key features of this system. The fuel cell temperature
control system was implemented on the Simulink platform (version 2023a); MATLAB ver-
sion 2023a was used for the simulation. The PEI-DDPG method’s performance was com-
pared in the simulation to a number of algorithms, such as TD3 [28] (twin delayed deep
deterministic policy gradient), genetic algorithm-PID [29], fuzzy PID [30], DDPG, and
PID.

Table 2. PEMFC parameters.

Parameters Symbols Values
Number of single cells N 125

Partial pressure of hydrogen
2HP

 1.2 [atm]

Oxygen partial pressure
2OP

 1.2 [atm]

Anode channel volume aV 0.0076 [m3]

Cathode channel volume cV 0.014 [m3]

Hydrogen flow rate
2HW
 60 [L min−1]

Active area activeA 270 [cm2]

Ambient temperature envT 298 [K]

Heat capacity of the stack st stm c 45.35 [kj·k−1]

Specific heat of water pc 4.1496 [J·g−1·k−1]

Thickness of the membrane Mt 0.077 [mm]

Figure 6. PEI-DDPG Algorithm Structure Diagram.

5. Simulation Analysis

In this section, the simulation results of the PEI-DDPG model are analyzed under two
operating conditions.

5.1. Simulation Conditions

Computer hardware specs for the simulation used in this paper include a 4.90 GHz
12th Gen Intel(R) Core(TM) i7-13620H CPU and 32 GB RAM. The simulation model that
was used is the fuel cell temperature control system that was covered in the previous section.
Table 2 enumerates all of the key features of this system. The fuel cell temperature control
system was implemented on the Simulink platform (version 2023a); MATLAB version 2023a
was used for the simulation. The PEI-DDPG method’s performance was compared in the
simulation to a number of algorithms, such as TD3 [28] (twin delayed deep deterministic
policy gradient), genetic algorithm-PID [29], fuzzy PID [30], DDPG, and PID.

Energies 2024, 17, 1728 11 of 19

Table 2. PEMFC parameters.

Parameters Symbols Values

Number of single cells N 125
Partial pressure of hydrogen PH2 1.2 [atm]

Oxygen partial pressure PO2 1.2 [atm]
Anode channel volume Va 0.0076 [m3]

Cathode channel volume Vc 0.014 [m3]
Hydrogen flow rate WH2 60 [L min−1]

Active area Aactive 270 [cm2]
Ambient temperature Tenv 298 [K]

Heat capacity of the stack mstcst 45.35 [kj·k−1]
Specific heat of water cp 4.1496 [J·g−1·k−1]

Thickness of the membrane tM 0.077 [mm]
Maximum current density imax 2.15 [A·cm−2]

Relative Humidity RM 71%
Back Pressure BP 1400 Kpa

5.2. Evaluation of Many Deep Reinforcement Learning Methods in Comparison

The simulations involved the selection of six different algorithms for comparison,
among which PEI-DDPG, twin delayed deep deterministic policy gradient, and delayed
deep deterministic policy gradient were categorized as deep reinforcement learning algo-
rithms. To assess the performance of these algorithms, they were configured with identical
parameters for both the training and testing phases, and their average reward values during
training were subjected to comparison. Figure 7 compares average reward values for the
three deep reinforcement learning methods.

Energies 2024, 17, x FOR PEER REVIEW 13 of 21

Maximum current density maxi 2.15 [A·cm−2]

Relative Humidity MR 71%

Back Pressure PB 1400 Kpa

5.2. Evaluation of Many Deep Reinforcement Learning Methods in Comparison
The simulations involved the selection of six different algorithms for comparison,

among which PEI-DDPG, twin delayed deep deterministic policy gradient, and delayed
deep deterministic policy gradient were categorized as deep reinforcement learning algo-
rithms. To assess the performance of these algorithms, they were configured with identical
parameters for both the training and testing phases, and their average reward values dur-
ing training were subjected to comparison. Figure 7 compares average reward values for
the three deep reinforcement learning methods.

Figure 7. Comparison of average reward values.

Analysis of Figure 7 reveals that the PEI-DDPG algorithm demonstrates a more seam-
less and rapid learning process, achieving a higher maximum reward value compared to
the DDPG and twin delayed deep deterministic policy gradient algorithms. In contrast,
the DDPG and twin delayed deep deterministic policy gradient algorithms necessitate an
extended learning period and manifest greater variability in their reward values. The PEI-
DDPG algorithm integrates various technical enhancements, leading to improved explo-
ration quality and accelerated convergence rates. The simulation results substantiate the
efficacy of the PEI-DDPG algorithm in addressing the fuel cell temperature control chal-
lenge.

5.3. Temperature Control While Stepping up the Load Current Continuously
The performance and training effectiveness of the PEI-DDPG algorithm are intri-

cately linked to the architecture of the deep neural network, specifically the number of
layers and neurons in each layer. In this specific instance, both the critic and actor net-
works are structured with three hidden layers, comprising 64, 32, and 16 neurons in each
layer. The hyperparameters employed for the PEI-DDPG algorithm are detailed in Table 3.

Table 3. Temperature control system of PEMFC with PEI-DDPG hyperparameter setup.

Parameters Data
Policy_delay 2

Experience pool playback capacity 2,000,000
Noise attenuation factor 0.000011

Actor learning rate 0.00057

Figure 7. Comparison of average reward values.

Analysis of Figure 7 reveals that the PEI-DDPG algorithm demonstrates a more
seamless and rapid learning process, achieving a higher maximum reward value com-
pared to the DDPG and twin delayed deep deterministic policy gradient algorithms. In
contrast, the DDPG and twin delayed deep deterministic policy gradient algorithms ne-
cessitate an extended learning period and manifest greater variability in their reward
values. The PEI-DDPG algorithm integrates various technical enhancements, leading to
improved exploration quality and accelerated convergence rates. The simulation results
substantiate the efficacy of the PEI-DDPG algorithm in addressing the fuel cell temperature
control challenge.

5.3. Temperature Control While Stepping Up the Load Current Continuously

The performance and training effectiveness of the PEI-DDPG algorithm are intricately
linked to the architecture of the deep neural network, specifically the number of layers

Energies 2024, 17, 1728 12 of 19

and neurons in each layer. In this specific instance, both the critic and actor networks are
structured with three hidden layers, comprising 64, 32, and 16 neurons in each layer. The
hyperparameters employed for the PEI-DDPG algorithm are detailed in Table 3.

Table 3. Temperature control system of PEMFC with PEI-DDPG hyperparameter setup.

Parameters Data

Policy_delay 2
Experience pool playback capacity 2,000,000

Noise attenuation factor 0.000011
Actor learning rate 0.00057
Depreciation factor 0.97

Noise variance 0.16
Soft update factor 0.0014
Critic learning rate 0.00012

Experience pool playback training batches 64

Following training, the simulation outcomes were contrasted with the outcomes of
the DDPG, TD3, proportional–integral–derivative, genetic algorithm-PID, and fuzzy PID
algorithms. The PEI-DDPG method’s performance was compared in the simulation to a
number of algorithms, such as the twin delayed deep deterministic policy gradient, fuzzy
PID, DDPG, and PID algorithms. The simulation results are illustrated in Figure 8. Panel
(a) depicts the current changes in steps within the range of 100–170 A. The cooling water’s
flow rate and heat transfer are shown in panels (e) and (d), respectively, while panel (f)
displays the radiator flow-rate curve. At 1000 and 2600 s, the load increases, which prompts
the PEI-DDPG controller to swiftly boost the water-pump flow and further dissipate heat
from the stack. Similarly, when the load drops at 1800 and 3400 s, the PEI-DDPG controller
quickly lowers the water pump’s flow rate, removing less heat from the stack. By efficiently
controlling cooling liquid and airflow, the PEI-DDPG controller outperforms competing
algorithms in terms of dynamic performance and response times.

Regarding intake water temperature regulation, Figure 8b shows the outcomes of the
DDPG, TD3, PEI-DDPG, genetic algorithm-PID, fuzzy PID, and PID algorithms. The PEI-
DDPG algorithm shows significant improvements over the PID, DDPG, genetic algorithm-
PID, fuzzy PID, and TD3 algorithms, with average control time reductions of 55.6 s,
108.4 s, 194.2 s, 257.9 s, and 288.7 s, respectively. In comparison to the genetic algorithm-PID
algorithm and the TD3 method, the overshoot in the inlet temperature controlled by the
deep deterministic policy gradient with priority experience playback and importance sam-
pling method controller is decreased by 1.712 K and 0.263 K, respectively. The overshoot
for the twin delayed deep deterministic policy gradient algorithm is about 0.3 K, but the
overshoot for the genetic algorithm-PID method is limited to 0.5 K. Figure 8e,f, at 2180
and 3100 s, demonstrates how quickly and consistently the suggested method responds to
variations in load. In order to maintain the inlet temperature and temperature differential
consistently around the reference value, the algorithm skillfully and reliably modifies the
pump flow rate as well as the radiator flow rate.

The PEI-DDPG controller exhibits a distinct advantage over other controllers in man-
aging the radiator power and cooling water flow rate to reduce overshoot and offset of Tst,in
and ∆T under varying load conditions. It demonstrates quicker response times in restoring
Tst,in to the reference value. Moreover, the PEI-DDPG algorithm efficiently handles the
strong coupling between Tst,in and ∆T, leading to enhanced control performance of both
variables compared to traditional PID algorithms. The incorporation of various technical
improvements into the PEI-DDPG algorithm has resulted in superior control effects when
compared to TD3 or DDPG algorithms.

Energies 2024, 17, 1728 13 of 19

Energies 2024, 17, x FOR PEER REVIEW 15 of 21

Figure 8. Case 1 simulation results.

5.4. Temperature Control under Parameter Variation
The regulation of fuel cell temperature under steady-state 120 A load circumstances,

with changes in anode inlet pressure, cathode inlet pressure, and water content, is covered
in this section. We trained the PEI-DDPG with the same parameters as used in the previ-
ous section: training time, step size, and network architecture. The study’s hyperparame-
ters are shown in Table 4.

Table 4. Fuel cell temperature control system DDPG hyperparameter settings.

Parameters Data
Experience pool playback capacity 2,000,000

Noise attenuation factor 0.000012
Actor learning rate 0.00052
Depreciation factor 0.93

Noise variance 0.17
Soft update factor 0.0015
Critic learning rate 0.00011

Experience pool playback training batches 64

In this instance, the fuel cell current was stabilized at 120 A, as depicted in Figure 9a.
The testing signal duration was set to 1000 s. At the 2000 s mark, there was an increase in

Figure 8. Case 1 simulation results.

In comparison to alternative algorithms, the PEI-DDPG algorithm provides swifter
response times and more precise control, leading to reduced overshoot. Following each
parameter change, the DDPG controller effectively stabilizes ∆T at 5 K and Tst,in at approx-
imately 338 K, thereby ensuring the operational reliability of the PEMFC.

5.4. Temperature Control under Parameter Variation

The regulation of fuel cell temperature under steady-state 120 A load circumstances,
with changes in anode inlet pressure, cathode inlet pressure, and water content, is covered
in this section. We trained the PEI-DDPG with the same parameters as used in the previous
section: training time, step size, and network architecture. The study’s hyperparameters
are shown in Table 4.

Table 4. Fuel cell temperature control system DDPG hyperparameter settings.

Parameters Data

Experience pool playback capacity 2,000,000
Noise attenuation factor 0.000012

Actor learning rate 0.00052
Depreciation factor 0.93

Noise variance 0.17
Soft update factor 0.0015
Critic learning rate 0.00011

Experience pool playback training batches 64

Energies 2024, 17, 1728 14 of 19

In this instance, the fuel cell current was stabilized at 120 A, as depicted in Figure 9a.
The testing signal duration was set to 1000 s. At the 2000 s mark, there was an increase
in anode pressure from 1.3 atm to 2.4 atm. Simultaneously, at 3000 s, the water content of
the proton exchange membrane rose from 14 to 20. Furthermore, at the 2000 s mark, the
cathode pressure experienced a decrease from 1.3 atm to 0.4 atm.

Energies 2024, 17, x FOR PEER REVIEW 16 of 21

anode pressure from 1.3 atm to 2.4 atm. Simultaneously, at 3000 s, the water content of the
proton exchange membrane rose from 14 to 20. Furthermore, at the 2000 s mark, the cath-
ode pressure experienced a decrease from 1.3 atm to 0.4 atm.

Figure 9. Simulation outcomes for Case 2.

At the 1000 s mark, there was an increase in anode pressure to 2.4 atm. Figure 9e,f
demonstrates the immediate response of the PEI-DDPG controller, adjusting the water
pump and heat dissipation flow rate. This adjustment maintained the temperature differ-
ence and inlet temperature close to the reference value. At the 2000 s mark, there was a
decrease in cathode pressure, followed by an increase in water content at 3000 s, leading
to the same conclusion. Consequently, this illustrates the superior control performance of
the PEI-DDPG controller. As depicted in Figure 9d–f, when fuel cell parameters are
changed, the PEI-DDPG algorithm outperforms other algorithms in terms of dynamic re-
action and regulatory performance for managing the cooling airflow and circulation
pump. This results in increased heat removal, leading to a more reasonable operating

range for st,inT and TΔ . Furthermore, as shown in Figure 9b, the PEI-DDPG algorithm-

controlled st,inT shows minimal overshoot when the model parameters are varied and
can be promptly adjusted to the reference value. These results suggest that the PEI-DDPG
algorithm exhibits greater robustness against diverse parameter variations than other con-
trollers and consistently delivers superior control performance.

Figure 9. Simulation outcomes for Case 2.

At the 1000 s mark, there was an increase in anode pressure to 2.4 atm. Figure 9e,f
demonstrates the immediate response of the PEI-DDPG controller, adjusting the water
pump and heat dissipation flow rate. This adjustment maintained the temperature differ-
ence and inlet temperature close to the reference value. At the 2000 s mark, there was a
decrease in cathode pressure, followed by an increase in water content at 3000 s, leading to
the same conclusion. Consequently, this illustrates the superior control performance of the
PEI-DDPG controller. As depicted in Figure 9d–f, when fuel cell parameters are changed,
the PEI-DDPG algorithm outperforms other algorithms in terms of dynamic reaction and
regulatory performance for managing the cooling airflow and circulation pump. This re-
sults in increased heat removal, leading to a more reasonable operating range for Tst,in and
∆T. Furthermore, as shown in Figure 9b, the PEI-DDPG algorithm-controlled Tst,in shows
minimal overshoot when the model parameters are varied and can be promptly adjusted
to the reference value. These results suggest that the PEI-DDPG algorithm exhibits greater
robustness against diverse parameter variations than other controllers and consistently
delivers superior control performance.

When comparing the results of the inlet temperature, Tst,in, it is evident that the
genetic algorithm-PID algorithm exhibits an overshoot up to 4.375 times greater than that

Energies 2024, 17, 1728 15 of 19

of the deep deterministic policy gradient with priority experience playback and importance
sampling method’s algorithm. Moreover, due to the high coupling between Tst,in and ∆T,
the PEI-DDPG joint controller significantly enhances the control performance of Tst,in. When
comparing the results of ∆T, it can be illustrated that the proportional–integral–derivative
algorithm’s overshoot is twice that of the PEI-DDPG algorithm. In terms of controlling
∆T, the DDPG, TD3, and PEI-DDPG systems exhibit more efficient control than deep
reinforcement learning algorithms. Despite being a joint control method for the thermal
management system of PEMFC, PEI-DDPG improves significantly on its predecessor
algorithms. It is better equipped to handle the system characteristics of PEMFC, rendering
it more effective in controlling the thermal management system of PEMFC.

As illustrated in Figure 9b–f, the PEI-DDPG joint control algorithm demonstrates
the most efficient control performance, albeit with a slight overshoot compared to other
algorithms. It can effectively and rapidly regulate the temperature difference within a range
of approximately 5 K, thereby ensuring the fuel cell’s operational reliability. Furthermore,
it was observed that the PEI-DDPG controller exhibits superior robustness compared to
other controllers.

6. Experimental Verification

The experimental platform for hardware-in-the-loop testing, as illustrated in Figure 10,
comprises an RT-LAB real-time simulator, a DSP controller, and a monitoring computer. The
proposed system implemented is a hardware-in-the-loop (HIL) system using OPAL-RT’s
OP5600 real-time digital simulator (RTDS). The ADC of the OP5600 machine has a range of
0–10 V, so the sensed signals are scaled at this acceptable range. The step size of the simulation
is set to 10 microseconds. The real-time simulation on RT-LAB consists of two subsystems: SM
central and SC monitoring. The SC primary subsystem contains the FC power conditioning
unit and SC monitoring system, which are accountable for transmitting the control signal to
the SM primary subsystem [31]. Also, it collects the observation in the central system and
displays it in an oscilloscope to realize the real-time analysis. The experimental platform
for hardware-in-the-loop testing, as illustrated in Figure 10, comprises an RT-LAB real-time
simulator, a DSP controller, and a monitoring computer. In Figure 11, the fuel cell system
undergoes conversion into C code, processed by the FPGA in the real-time simulator to
generate corresponding analog signals. Subsequently, these analog signals are transmitted
to the DSP controller for A/D sampling, leading to the formation of a digital signal. The
control algorithm processes the digital signal to generate the control signal. Subsequently,
the control signal undergoes conversion back to an analog signal through D/A conversion
and is fed into the real-time simulator for real-time hardware-in-the-loop testing.

Energies 2024, 17, x FOR PEER REVIEW 17 of 21

When comparing the results of the inlet temperature, st,inT , it is evident that the ge-
netic algorithm-PID algorithm exhibits an overshoot up to 4.375 times greater than that of
the deep deterministic policy gradient with priority experience playback and importance

sampling method’s algorithm. Moreover, due to the high coupling between st,inT and
TΔ , the PEI-DDPG joint controller significantly enhances the control performance of

st,inT . When comparing the results of ∆T, it can be illustrated that the proportional–inte-
gral–derivative algorithm’s overshoot is twice that of the PEI-DDPG algorithm. In terms
of controlling ∆T, the DDPG, TD3, and PEI-DDPG systems exhibit more efficient control
than deep reinforcement learning algorithms. Despite being a joint control method for the
thermal management system of PEMFC, PEI-DDPG improves significantly on its prede-
cessor algorithms. It is better equipped to handle the system characteristics of PEMFC,
rendering it more effective in controlling the thermal management system of PEMFC.

As illustrated in Figure 9b–f, the PEI-DDPG joint control algorithm demonstrates the
most efficient control performance, albeit with a slight overshoot compared to other algo-
rithms. It can effectively and rapidly regulate the temperature difference within a range
of approximately 5 K, thereby ensuring the fuel cell’s operational reliability. Furthermore,
it was observed that the PEI-DDPG controller exhibits superior robustness compared to
other controllers.

6. Experimental Verification
The experimental platform for hardware-in-the-loop testing, as illustrated in Figure

10, comprises an RT-LAB real-time simulator, a DSP controller, and a monitoring com-
puter. The proposed system implemented is a hardware-in-the-loop (HIL) system using
OPAL-RT’s OP5600 real-time digital simulator (RTDS). The ADC of the OP5600 machine
has a range of 0–10 V, so the sensed signals are scaled at this acceptable range. The step
size of the simulation is set to 10 microseconds. The real-time simulation on RT-LAB con-
sists of two subsystems: SM central and SC monitoring. The SC primary subsystem con-
tains the FC power conditioning unit and SC monitoring system, which are accountable
for transmitting the control signal to the SM primary subsystem [31]. Also, it collects the
observation in the central system and displays it in an oscilloscope to realize the real-time
analysis. The experimental platform for hardware-in-the-loop testing, as illustrated in Fig-
ure 10, comprises an RT-LAB real-time simulator, a DSP controller, and a monitoring com-
puter. In Figure 11, the fuel cell system undergoes conversion into C code, processed by
the FPGA in the real-time simulator to generate corresponding analog signals. Subse-
quently, these analog signals are transmitted to the DSP controller for A/D sampling, lead-
ing to the formation of a digital signal. The control algorithm processes the digital signal
to generate the control signal. Subsequently, the control signal undergoes conversion back
to an analog signal through D/A conversion and is fed into the real-time simulator for
real-time hardware-in-the-loop testing.

RT-LAB
Simulator(OP5600)

Figure 10. Platform for hardware-in-the-loop experiments. Figure 10. Platform for hardware-in-the-loop experiments.

Energies 2024, 17, 1728 16 of 19Energies 2024, 17, x FOR PEER REVIEW 18 of 21

Figure 11. Schematic diagram of the experimental flow.

In Figure 11, the fuel cell system undergoes conversion into C code, processed by the
FPGA in the real-time simulator to generate corresponding analog signals. Subsequently,
these analog signals are transmitted to the DSP controller for A/D sampling, leading to the
formation of a digital signal. The control algorithm processes the digital signal to generate
the control signal. Subsequently, the control signal undergoes conversion back to an ana-
log signal through D/A conversion and is fed into the real-time simulator for real-time
hardware-in-the-loop testing.

The control algorithm is programmed into the DSP chip of the RTU-BOX204 through
a computer. It is crucial to note that the model parameters remain consistent with the sim-
ulation process outlined in the previous section during the entire testing process. To assess
the hardware-in-the-loop system, experimental results were acquired by applying the
load signal illustrated in Figure 8a. The curves depicting the inlet temperature and tem-
perature difference are shown in Figure 12 and Figure 13, respectively. The findings sug-
gest that the PEI-DDPG controller demonstrates an excellent dynamic response with min-
imal overshoot. The PEI-DDPG controller showcases the optimal control effect, aligning
with the simulation results.

Figure 12. Inlet temperature trial results graph.

Figure 11. Schematic diagram of the experimental flow.

In Figure 11, the fuel cell system undergoes conversion into C code, processed by the
FPGA in the real-time simulator to generate corresponding analog signals. Subsequently,
these analog signals are transmitted to the DSP controller for A/D sampling, leading to
the formation of a digital signal. The control algorithm processes the digital signal to
generate the control signal. Subsequently, the control signal undergoes conversion back
to an analog signal through D/A conversion and is fed into the real-time simulator for
real-time hardware-in-the-loop testing.

The control algorithm is programmed into the DSP chip of the RTU-BOX204 through
a computer. It is crucial to note that the model parameters remain consistent with the
simulation process outlined in the previous section during the entire testing process. To
assess the hardware-in-the-loop system, experimental results were acquired by applying
the load signal illustrated in Figure 8a. The curves depicting the inlet temperature and
temperature difference are shown in Figures 12 and 13, respectively. The findings suggest
that the PEI-DDPG controller demonstrates an excellent dynamic response with minimal
overshoot. The PEI-DDPG controller showcases the optimal control effect, aligning with
the simulation results.

Energies 2024, 17, x FOR PEER REVIEW 18 of 21

Figure 11. Schematic diagram of the experimental flow.

In Figure 11, the fuel cell system undergoes conversion into C code, processed by the
FPGA in the real-time simulator to generate corresponding analog signals. Subsequently,
these analog signals are transmitted to the DSP controller for A/D sampling, leading to the
formation of a digital signal. The control algorithm processes the digital signal to generate
the control signal. Subsequently, the control signal undergoes conversion back to an ana-
log signal through D/A conversion and is fed into the real-time simulator for real-time
hardware-in-the-loop testing.

The control algorithm is programmed into the DSP chip of the RTU-BOX204 through
a computer. It is crucial to note that the model parameters remain consistent with the sim-
ulation process outlined in the previous section during the entire testing process. To assess
the hardware-in-the-loop system, experimental results were acquired by applying the
load signal illustrated in Figure 8a. The curves depicting the inlet temperature and tem-
perature difference are shown in Figure 12 and Figure 13, respectively. The findings sug-
gest that the PEI-DDPG controller demonstrates an excellent dynamic response with min-
imal overshoot. The PEI-DDPG controller showcases the optimal control effect, aligning
with the simulation results.

Figure 12. Inlet temperature trial results graph. Figure 12. Inlet temperature trial results graph.

Energies 2024, 17, 1728 17 of 19
Energies 2024, 17, x FOR PEER REVIEW 19 of 21

Figure 13. Results of the temperature difference experiment.

7. Conclusions
With the use of a newly built fuel cell model and a deep reinforcement learning algo-

rithm, this research presents a unique fuel cell temperature management approach called
PEI-DDPG. This research investigates a PEMFC heat management system and presents a
deep reinforcement learning-based temperature control algorithm (PEI-DDPG). By en-
hancing the initial algorithmic features, this technique improves the PEMFC thermal man-
agement system in many ways. It does this by substituting an agent that controls the ra-
diator airflow rate and the pump’s cooling water flow rate, which were previously regu-
lated separately, for the traditional control framework. The suggested temperature control
method is assessed using continuous step changes in this current study. The findings of
this study suggest that the PEI-DDPG controller outperforms other algorithms, such as
the PID, genetic algorithm-PID, fuzzy PID, twin delayed deep deterministic policy gradi-
ent, and DDPG algorithms, in terms of resilience and control performance. From the ex-
perimental results, the proposed PEI-DDPG algorithm reduces the average adjustment
time by 8.3%, 17.13%, and 24.56% and overshoots by 2.12 times, 4.16 times, and 4.32 times
compared to the TD3, GA-PID, and PID algorithms, respectively. Experts’ advice is much
appreciated. The suggested control scheme is evaluated in a variety of parameter circum-
stances, and the findings show that PEI-DDPG outperforms other comparative algorithms
in terms of control and adaptability. Because of the algorithm’s adaptability and resilience,
the PEMFC temperature is consistently controlled.

Although our PEI-DDPG temperature control strategy has been validated on simu-
lation and hardware-in-the-loop testbeds, more complex real-world conditions, such as
ambient temperature and humidity variations, equipment aging, etc., will be considered
in future studies, and validation tests will be conducted on a PEMFC device to test and
improve the adaptability and robustness of our algorithms for a wider range of more com-
plex situations.

Author Contributions: Software, Y.Y.; Writing—review and editing, Z.L. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported in part by National Natural Science Foundation of China, under
Grant 52077105 and No. 51607095.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

Figure 13. Results of the temperature difference experiment.

7. Conclusions

With the use of a newly built fuel cell model and a deep reinforcement learning
algorithm, this research presents a unique fuel cell temperature management approach
called PEI-DDPG. This research investigates a PEMFC heat management system and
presents a deep reinforcement learning-based temperature control algorithm (PEI-DDPG).
By enhancing the initial algorithmic features, this technique improves the PEMFC thermal
management system in many ways. It does this by substituting an agent that controls
the radiator airflow rate and the pump’s cooling water flow rate, which were previously
regulated separately, for the traditional control framework. The suggested temperature
control method is assessed using continuous step changes in this current study. The find-
ings of this study suggest that the PEI-DDPG controller outperforms other algorithms,
such as the PID, genetic algorithm-PID, fuzzy PID, twin delayed deep deterministic policy
gradient, and DDPG algorithms, in terms of resilience and control performance. From
the experimental results, the proposed PEI-DDPG algorithm reduces the average adjust-
ment time by 8.3%, 17.13%, and 24.56% and overshoots by 2.12 times, 4.16 times, and
4.32 times compared to the TD3, GA-PID, and PID algorithms, respectively. Experts’ advice
is much appreciated. The suggested control scheme is evaluated in a variety of parameter
circumstances, and the findings show that PEI-DDPG outperforms other comparative
algorithms in terms of control and adaptability. Because of the algorithm’s adaptability and
resilience, the PEMFC temperature is consistently controlled.

Although our PEI-DDPG temperature control strategy has been validated on simu-
lation and hardware-in-the-loop testbeds, more complex real-world conditions, such as
ambient temperature and humidity variations, equipment aging, etc., will be considered
in future studies, and validation tests will be conducted on a PEMFC device to test and
improve the adaptability and robustness of our algorithms for a wider range of more
complex situations.

Author Contributions: Software, Y.Y.; Writing—review and editing, Z.L. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported in part by National Natural Science Foundation of China, under
Grant 52077105 and No. 51607095.

Energies 2024, 17, 1728 18 of 19

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

Full Name Abridgement
Proton exchange membrane fuel cells PEMFCs
Deep deterministic policy gradient with priority experience playback
and importance sampling method

PEI-DDPG

Model predictive control MPC
Neural network control NNC
Importance sampling IS
Twin delayed deep deterministic policy gradient TD3
Genetic algorithm-PID GA-PID
Deep deterministic policy gradient DDPGP
Model-free multiple-in multiple-out MF-MIMO
Ornstein–Uhlenbeck OU
Priority experience playback PER
Importance sampling weight ISW
Proportional–integral–derivative PID
Fuzzy proportional–integral–derivative Fuzzy-PID

References
1. Liu, J.; Li, Q.; Yang, H.; Han, Y.; Jiang, S.; Chen, W. Sequence fault diagnosis for PEMFC water management subsystem using

deep learning with t-SNE. IEEE Access 2019, 7, 92009–92019. [CrossRef]
2. Sun, C.; Huan, Z. Review of the development of first-generation redox flow batteries: Iron-chromium system. ChemSusChem 2022,

15, 178. [CrossRef] [PubMed]
3. Zhao, H.; Pan, S.; Ma, L.; Wu, Y.; Guo, X.; Liu, J. Research on joint control of water pump and radiator of PEMFC based on

TCO-DDPG. Int. J. Hydrogen Energy 2023, 48, 38569–38583. [CrossRef]
4. Chen, F.; Pei, Y.; Jiao, J.; Chi, X.; Hou, Z. Energy flow and thermal voltage analysis of water-cooled PEMFC stack under normal

operating conditions. Energy 2023, 275, 127254. [CrossRef]
5. Cindrella, L.; Kannan, A.M.; Lin, J.F.; Saminathan, K.; Ho, Y.; Lin, C.W.; Wertz, J. Gas diffusion layer for proton exchange

membrane fuel cells. J. Power Sources 2009, 194, 146–160. [CrossRef]
6. Meloni, E.; Iervolino, G.; Ruocco, C.; Renda, S.; Festa, G.; Martino, M.; Palma, V. Electrified hydrogen production from methane

for PEM fuel cells feeding: A review. Energies 2022, 15, 3588. [CrossRef]
7. Lin-Kwong-Chon, C.; Damour, C.; Benne, M.; Kadjo, J.-J.A.; Grondin-Pérez, B. Adaptive neural control of PEMFC system based

on data-driven and reinforcement learning approaches. Control Eng. Pract. 2022, 120, 105022. [CrossRef]
8. Yu, Y.; Chen, M.; Zaman, S.; Xing, S.; Wang, M.; Wang, H. Thermal management system for liquid-cooling PEMFC stack: From

primary configuration to system control strategy. eTransportation 2022, 12, 100165. [CrossRef]
9. Gu, S.; Wang, J.; You, X.; Zhuang, Y. Investigating the Parameter-Driven Cathode Gas Diffusion of PEMFCs with a Piecewise

Linearization Model. Energies 2023, 16, 3770. [CrossRef]
10. Kim, B.M.; Yoo, S.J. Approximation-based adaptive control of constrained uncertain thermal management systems with nonlinear

coolant circuit dynamics of PEMFCs. IEEE Access 2020, 8, 83483–83494. [CrossRef]
11. Wang, Y.; Li, H.; Feng, H.; Han, K.; He, S.; Gao, M. Simulation study on the PEMFC oxygen starvation based on the coupling

algorithm of model predictive control and PID. Energy Convers. Manag. 2021, 249, 114851. [CrossRef]
12. Quan, S.; Wang, Y.-X.; Xiao, X.; He, H.; Sun, F. Feedback linearization-based MIMO model predictive control with defined

pseudo-reference for hydrogen regulation of automotive fuel cells. Appl. Energy 2021, 293, 116919. [CrossRef]
13. Aly, M.; Rezk, H. An improved fuzzy logic control-based MPPT method to enhance the performance of PEM fuel cell system.

Neural Comput. Appl. 2022, 34, 4555–4566. [CrossRef]
14. Wang, Y.; Wang, Y.; Wang, D.; Chai, T. Observer-based composite adaptive type-2 fuzzy control for PEMFC air supply systems.

IEEE Trans. Fuzzy Syst. 2020, 30, 515–529. [CrossRef]
15. Silaa, M.Y.; Barambones, O.; Bencherif, A. A Novel Adaptive PID Controller Design for a PEM Fuel Cell Using Stochastic Gradient

Descent with Momentum Enhanced by Whale Optimizer. Electronics 2022, 11, 2610. [CrossRef]
16. Chen, X.; Xu, J.; Fang, Y.; Li, W.; Ding, Y.; Wan, Z.; Wang, X.; Tu, Z. Temperature and humidity management of PEM fuel cell

power system using multi-input and multi-output fuzzy method. Appl. Therm. Eng. 2022, 203, 117865. [CrossRef]
17. Liso, V.; Nielsen, M.P.; Kær, S.K.; Mortensen, H.H. Thermal modeling and temperature control of a PEM fuel cell system for

forklift applications. Int. J. Hydrogen Energy 2014, 39, 8410–8420. [CrossRef]

https://doi.org/10.1109/ACCESS.2019.2927092
https://doi.org/10.1002/cssc.202101798
https://www.ncbi.nlm.nih.gov/pubmed/34724346
https://doi.org/10.1016/j.ijhydene.2023.05.020
https://doi.org/10.1016/j.energy.2023.127254
https://doi.org/10.1016/j.jpowsour.2009.04.005
https://doi.org/10.3390/en15103588
https://doi.org/10.1016/j.conengprac.2021.105022
https://doi.org/10.1016/j.etran.2022.100165
https://doi.org/10.3390/en16093770
https://doi.org/10.1109/ACCESS.2020.2992047
https://doi.org/10.1016/j.enconman.2021.114851
https://doi.org/10.1016/j.apenergy.2021.116919
https://doi.org/10.1007/s00521-021-06611-5
https://doi.org/10.1109/TFUZZ.2020.3041297
https://doi.org/10.3390/electronics11162610
https://doi.org/10.1016/j.applthermaleng.2021.117865
https://doi.org/10.1016/j.ijhydene.2014.03.175

Energies 2024, 17, 1728 19 of 19

18. Tan, J.; Hu, H.; Liu, S.; Chen, C.; Xuan, D. Optimization of PEMFC system operating conditions based on neural network and
PSO to achieve the best system performance. Int. J. Hydrogen Energy 2022, 47, 35790–35809. [CrossRef]

19. Sun, L.; Jin, Y.; You, F. Active disturbance rejection temperature control of open-cathode proton exchange membrane fuel cell.
Appl. Energy 2020, 261, 114381. [CrossRef]

20. Wang, D.; Hu, M. Deep deterministic policy gradient with compatible critic network. IEEE Trans. Neural Netw. Learn. Syst. 2021,
34, 4332–4344. [CrossRef]

21. Omer Abbaker, A.; Wang, H.; Tian, Y. Robust model-free adaptive interval type-2 fuzzy sliding mode control for PEMFC system
using disturbance observer. Int. J. Fuzzy Syst. 2020, 22, 2188–2203. [CrossRef]

22. Matheron, G.; Perrin, N.; Sigaud, O. The problem with DDPG: Understanding failures in deterministic environments with sparse
rewards. arXiv 2019, arXiv:1911.11679.

23. Di Dio, V.; La Cascia, D.; Liga, R.; Miceli, R. Integrated mathematical model of proton exchange membrane fuel cell stack (PEMFC)
with automotive synchronous electrical power drive. In 2008 18th International Conference on Electrical Machines, Vilamoura,
Portugal, 6–9 September 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 1–6.

24. Yu, S.; Jung, D. Thermal management strategy for a proton exchange membrane fuel cell system with a large active cell area.
Renew. Energy 2008, 33, 2540–2548. [CrossRef]

25. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]

26. Irpan, A.; Rao, K.; Bousmalis, K.; Harris, C.; Ibarz, J.; Levine, S. Off-policy evaluation via off-policy classification. In Proceedings
of the Advances in Neural Information Processing Systems (NeurIPS 2019), Vancouver, BC, Canada, 8–14 December 2019;
Volume 32.

27. Huang, G.; Jansen, H.M.; Mandjes, M.; Spreij, P.; De Turck, K. Markov-modulated ornstein–uhlenbeck processes. Adv. Appl.
Probab. 2016, 48, 235–254. [CrossRef]

28. Zhang, F.; Li, J.; Li, Z. A TD3-based multi-agent deep reinforcement learning method in mixed cooperation-competition
environment. Neurocomputing 2020, 411, 206–215. [CrossRef]

29. Khather, S.I.; Almaged, M.; Abdullah, A.I. Fractional order based on genetic algorithm PID controller for controlling the speed of
DC motors. Int. J. Eng. Technol. 2018, 7, 5386–5392.

30. Najariyan, M.; Zhao, Y. Granular fuzzy PID controller. Expert Syst. Appl. 2021, 167, 114182. [CrossRef]
31. Dixit, T.V.; Bankupalli, P.T.; Yadav, A.; Gupta, S. Fuel cell power conditioning unit for standalone application with real time

validation. Int. J. Hydrogen Energy 2018, 43, 14629–14637. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.ijhydene.2022.08.154
https://doi.org/10.1016/j.apenergy.2019.114381
https://doi.org/10.1109/TNNLS.2021.3117790
https://doi.org/10.1007/s40815-020-00916-8
https://doi.org/10.1016/j.renene.2008.02.015
https://doi.org/10.1038/nature14236
https://www.ncbi.nlm.nih.gov/pubmed/25719670
https://doi.org/10.1017/apr.2015.15
https://doi.org/10.1016/j.neucom.2020.05.097
https://doi.org/10.1016/j.eswa.2020.114182
https://doi.org/10.1016/j.ijhydene.2018.05.155

	Introduction
	Fuel Cell Temperature Control System
	Fuel Cell Stack
	Modeling of Thermal Processes in Fuel Cell
	Radiator Model

	Temperature Control of PEMFC Based on Deep Reinforcement Learning Algorithm
	PEMFC Temperature Control Framework
	State Space
	Action Space
	Reward Function
	Agent

	PEI-DDPG Algorithm-Based PEMFC Temperature Regulation
	Deep Deterministic Policy Gradient
	Priority Experience Playback
	Importance Sampling
	Exploration Noise of Ornstein–Uhlenbeck
	Delayed Strategy Updates
	Target Strategy Smoothing

	Simulation Analysis
	Simulation Conditions
	Evaluation of Many Deep Reinforcement Learning Methods in Comparison
	Temperature Control While Stepping Up the Load Current Continuously
	Temperature Control under Parameter Variation

	Experimental Verification
	Conclusions
	References

