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Abstract: Electricity consumption in buildings is one of the major causes of energy usage and
knowledge of this can help building owners and users increase energy efficiency and conservation
efforts. For Pacific Island countries, building electricity demand data is not readily accessible or
available for constructing models to predict electricity demand. This paper starts to fill this gap
by studying the case of schools in Fiji. The aim of the paper is to assess the factors affecting
electricity demand for grid-connected Fijian schools and use this assessment to build mathematical
models (multiple linear regression (MLR) and artificial neural network (ANN)) to predict electricity
consumption. The average grid-connected electricity demand in kWh/year was 1411 for early
childhood education schools, 5403 for primary schools, and 23,895 for secondary schools. For
predicting electricity demand (ED) for all grid-connected schools, the stepwise MLR model shows
that taking logarithm transformations on both the dependent variable and independent variables
(number of students, lights, and air conditioning systems) yields statistically significant independent
variables with an R2 value of 73.3% and RMSE of 0.2248. To improve the predicting performance,
ANN models were constructed on both the natural form of variables and transformed variables. The
optimum ANN model had an R2 value of 95.3% and an RMSE of 59.4 kWh/year. The findings of this
study can assist schools in putting measures in place to reduce their electricity demand, associated
costs, and carbon footprint, as well as help government ministries make better-informed policies.

Keywords: electricity demand; multiple linear regression; artificial neural network; schools; training
and testing

1. Introduction

Climate change is an existential threat to planet Earth, and countries, individually
and collectively, are putting various measures in place to combat and adapt to it. One
such measure is demand-side energy management, which requires knowledge of building
energy use. Such knowledge can help benchmark the energy demand of buildings [1]
which leads to growth in energy efficiency and conservation efforts and informs policy
makers [2]. As a result, these actions can reduce greenhouse gas (GHG) emissions from
buildings [3]. According to Guo [4], the building industry is anticipated to be crucial in the
energy transition, reducing climate change globally, and achieving sustainable development
goals. Hence, as a first case, this study focuses on assessing school electricity consumption
and predicting electricity demand to understand the factors that influence the usage.

Energy management for schools is much needed as, apart from the above-mentioned
reasons, it will also encourage behavioral change in the younger generation to conserve
energy and use it efficiently. Earlier studies related to energy consumption in schools
have focused on the statistical analysis of secondary data and these studies are based in
countries that are not in the Pacific region, such as European countries, the United States of
America, Japan, Hong Kong, Malaysia, South Korea, and others [5]. Primary energy use
data in schools and day care centers in southern Finland studied by Airaksinen [6] showed
that when special attention is paid during design and construction phase of buildings, it
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promotes energy efficiency. High schools in Hong Kong were studied using a two-stage
regression-based approach that informed researchers of crucial factors that influence the
energy utilization index of schools [7]. Senior and junior high schools and elementary
schools in Taiwan were studied by Wang [8] and they found that air conditioning and
lighting heavily influenced the electricity consumption of schools. These studies also report
that energy consumption in schools is dominated by electricity for lights and cooling and
gas for space heating.

Chung and Yeung [7] studied the energy performance of secondary schools in Hong
Kong and they comprehensively discussed the energy utilization index (EUI) of various
schools based either on the electricity consumed or heating energy requirements in different
countries. Chung and Yeung [9] found that the average energy consumption and energy
use intensity per school are 530 MWh and 105.61 kWh/m2/year, respectively. Canadian
schools’ median total energy consumption (257 kWh/m2/year) was 29% higher than other
Canadian benchmarks (200 kWh/m2/year) and the school building age had a statistically
significant effect on their energy consumption, with newer schools consuming less gas but
more electricity than older and middle-aged ones [10]. Energy consumption in Europe
varies from 10 to 30 kWh/m2 annually [11].

Further, the cumulative sum (CUSUM) method was used by Stuart et al. [12] to study
half-hourly electricity data for a secondary school in the UK to identify shifts in electricity
consumption patterns for buildings while Samuels and Booysen [13] used controlled human
behavioral experiments in South African schools to reduce electricity consumption, its
costs, and dependence on fossil fuels. Similarly, to save electricity, school children can
participate in energy-saving contests, nudging family members to save electricity in their
homes [14]. Therefore, students can be seen as agents of behavioral change that can aid in
energy saving not only in schools but at homes as well. Apart from behavioral changes,
schools can also employ energy audits to provide insights into how the energy-specific
usage index could be an essential tool for explaining the electricity consumption of schools
and thus lead to energy saving [15]. A detailed energy audit framework was proposed by
Corrado et al. [16] using school buildings in Italy and technical and financial solutions were
proposed as part of its audit. A simpler lighting energy audit was carried out by Shailesh
et al. [17] for classrooms in an academic institute and recommended using energy-efficient
technologies and controls to improve lighting and efficiency.

Knowledge of the current electricity demand of a school building can also help create
models for predicting electricity demand and assessing factors that most affect electricity
demand, which leads to the benchmarking of building energy use similar to the work
performed by Borgstein and Lamberts [18] for bank buildings. Recently, a top-down energy
benchmarking methodology based on the actual energy consumption within a cluster of
governmental office buildings was used by Vaisi et al. [19] and provides reference points
for measuring and rewarding buildings with good performance while buildings with
poor performance can be prioritized for improvement. Machine learning can also be used
to develop energy benchmarking and efficiency scales in buildings [20]. School building
energy consumption is dependent on the floor area, number of floors, number of classrooms,
number of window-type air conditioners, light system, percentage of lighting control [7],
number of classes [21], location, total roof area, building age, number of students, and
type of school [22]. Different techniques can be used for modeling and predicting building
energy use, such as statistical regressions, autoregressive models, support vector machines
(SVM), artificial neural networks (ANN), ensembled models, and combined models [23].
The energy audit data can be used to build linear regression models to predict energy
or electricity demand for schools and determine how different factors affect electricity
consumption or gas consumption in schools [15]. Researchers can also use secondary data
sources from the relevant education departments [8] such as building, utility company,
and national statistics to carry out regression analyses on electricity or gas consumption
in buildings [24]. However, without doing a detailed energy audit, some researchers use
targeted surveys to collect the necessary data for regression analyses. For instance, Almeida
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et al. [25] proposed a methodology for estimating the water and energy consumption in
university buildings while Nematchoua et al. [26] designed a questionnaire to collect energy
consumption data in different types of buildings (residential and commercial) in 12 cities in
Madagascar. Furthermore, Ma et al. [27] collected energy consumption data from on-site
surveys of 17 schools in Tianjin, China and found that a variety of energy sources such as
electricity, natural gas, municipal heating, coal, gasoline, diesel oil, tap water, reclaimed
water, and alcohol-based fuels were consumed by the 17 schools, while 15 states in Brazil
joined a survey to provide necessary data from 5321 schools that were used to build a
regression model for annual energy consumption [28].

Autoregressive models and statistical regression are popular conventional methods
for building energy consumption monitoring and forecasting and provide a good balance
between implementation simplicity and forecasting accuracy [23]. Wu et al. [29] adopted a
linear regression model to determine the impact of different functional areas on the total
energy consumption of multifunctional building types, while Chung and Yeung conducted
a two-stage regression analysis [7]; first backward, forward, and stepwise (Ordinary Least
Square) regression analyses and then, if a regression model with better goodness-of-fit was
necessary, convex nonparametric least squares (CNLS) regression analyses were conducted.
Using correlation analysis and multiple linear regression (MLR) analysis, it was found that
the total energy consumption, energy utilization index, and energy usage per person were
positively correlated with campus area, total floor area, and the number of students [8].

In addition, Mohammed et al. [22] concluded that their regression model demonstrated
an accuracy of more than 95% after a comparison to data collected from actual school
facilities in Saudi Arabia. To determine the effect of building age, school type, number
of occupants, occupant density, and floor area on energy consumption, three multiple
regression models were developed by Ouf and Issa [10]. These models aimed to determine
how much of the variation in average annual electricity, gas, and total energy consumption
in Manitoba’s school buildings was due to these factors.

However, for some datasets, MLR can be rigid; for example, it can only be used when
a set of assumptions are met and when there is a linear relationship between independent
variables and the dependent variable. In such cases, an artificial neural network (ANN)
gives more flexibility in predicting electricity demand. The advantage of the ANN method
is that it does not assume a linear relationship between dependent and independent vari-
ables; instead, it can model non-linear relationships by partitioning the data set into a
training set and testing the model [30]. The hourly electricity consumption for a university
campus in Japan was predicted using an ANN and the R2 between the actual measure-
ment and the ANN model’s prediction was found to range between 0.96 and 0.99 at the
training stage, and between 0.95 and 0.99 at testing stage [31]. Similarly, Alshibani [32]
used an ANN to predict the energy consumption of schools in Saudi Arabia. Researchers
have also used different methods to compare model performance for predicting electric-
ity consumption. For instance, Jeong et al. [30] used seasonal autoregressive integrated
moving average (SARIMA) and an ANN to predict electricity consumption in three dif-
ferent schools using IBM Statistical Package for the Social Sciences (SPSS) 21.0 software
while Nsangou et al. [33] used quantile regression and an ANN to understand the factors
affecting household electricity consumption. Likewise, energy consumption prediction
for office buildings was performed using three methods in SPSS (ANN, SVM (Support
vector regression), and ARIMA) and the researchers recommended using ANN and SVM
methods for energy consumption prediction [34]. In addition, Panklib [35] used MLR and
an ANN to predict the annual electricity consumption in Thailand. These researchers used
various parameters such as mean absolute error (MAE), mean absolute percentage error
(MAPE), root mean square error (RSME), and coefficient of determination (R2) for assessing
the performance of predictive models. On the other hand, Chen et al. [36] have predicted
office building electricity demand using the ANN method by splitting the time horizons
into two occupancy-based periods (no occupancy times and full occupancy times).
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Building Energy Use in Fiji

In Fiji, around 40–50% of all electricity generated is from industrial diesel oil and
heavy fuel oil, while the remaining is from hydropower, biomass, solar, and wind [37].
The most recent research in Fiji focuses on the supply side of energy, not the demand
side. For instance, Joseph and Prasad [38] assessed the municipal solid waste for electricity
generation in Fiji and the Pacific while Prasad and Raturi [39] studied various technologies
for meeting the electricity demand in Fiji. The lack of energy consumption data for buildings
in Fiji is highlighted in [40], which is one of the main reasons for the lack of research on
building energy demand. Fiji’s National Adaptation Plan [41] identifies energy data
collection as a priority while Fiji’s nationally determined contributions (NDCs) also target
energy efficiency measures to reduce 10% of the business-as-usual greenhouse gas emissions
by 2030 economy-wide, including electricity demand-side sub-sectors [42]. According to
global studies, the usual energy sources consumed in schools are electricity for meeting
cooling loads and other electrical loads and gas for meeting the space heating demand. For
Fiji and other Pacific Island countries, it should be noted that schools do not need space
heating due to their relatively close proximity to the equator; hence, electricity is the major
form of energy consumption in schools.

The literature review reveals that energy consumption data of different sectors of the
economy in Fiji is not the latest. Siwatibau [43] carried out an energy survey of selected
households (1011 electrified and 301 unelectrified), 76 industrial companies, 77 commercial
companies, and 10 large office buildings in Suva, the capital city of Fiji. However, it is noted
that this research was performed almost 35 years ago, and schools were not included in
this research. Another study conducted an energy survey assessment of rural households
in Fiji in 2003 and focused attention on rural electrification [24] but did not study school
energy usage. Prasad and Raturi [44] have used multiple linear regression (MLR) models to
forecast Fiji’s electricity demand for non-domestic and domestic customers, where schools
were not explicitly covered.

It is to be noted that electricity is one of the major costs for operating schools. Ac-
cording to 2020 statistics, there are 871 early childhood education (ECE) schools in Fiji,
736 primary schools and 171 secondary schools [45]. Like other small island nations, Fiji
has some schools connected to the national electricity grid and some off-grid, meaning not
connected to the national grid, and thus have distributed generation either from diesel
generators or other renewable energy sources such as solar. For Fiji, it is hypothesized that
the main form of energy consumption is electricity in schools (as seen from Siwatibau’s [43]
research), with a negligible need for space heating energy. However, no studies assess
electricity consumption for schools in Fiji or the factors that affect electricity consumption
and models for predicting electricity demand. Even though electricity consumption in
schools is small compared to the national electricity consumption, carrying out an electricity
demand assessment study in schools and sharing the findings will help raise awareness
of electricity monitoring, set benchmarks, predict electricity usage, and improve energy
efficiency and conservation efforts.

According to the aforementioned literature engagement, studies do not exist for
electricity prediction for island nations such as those in the Pacific where electricity is
the major form of energy consumption of buildings with a minimal or negligible energy
requirement for space heating. In addition, there are no studies that have successfully
predicted the electricity consumption of educational facilities in Fiji. Hence, the primary
aim of the current study is to gain a better understanding of factors affecting electricity
demand for grid-connected Fijian schools and use it to build mathematical models to
predict electricity consumption in schools using MLR and ANNs. The main research
question of the study is: What factors affect electricity demand in Fijian schools and how do
mathematical models such as MLR and ANN perform when predicting electricity demand?
Hence, the specific objectives of this paper are as follows: (i) assess (identify, quantify,
and report) electricity demand in different clusters of grid-connected schools around Fiji,
(ii) construct MLR and ANN models for predicting electricity demand in grid-connected
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schools and determine the factors that most affect electricity consumption, and (iii) compare
the performance of MLR and ANN methods for predicting electricity consumption. The
novelty of this work is that it will add to the literature on electricity use in small developing
island nations that do not require space heating in buildings. Also, it will contribute to
the body of knowledge on schools’ electricity demand in Fiji and assist work on building
energy performance assessment, planning, and policymaking. In addition, this study also
compares conventional MLR and ANN prediction models and their performance using
two performance indices: R2 and RMSE.

The next section of the paper discusses the methodology used for the present work,
followed by Section 3, which presents and discusses the questionnaire survey results.
Section 3 also presents the descriptive statistics of the annual electricity demand for different
clusters of schools and building characteristics. It further presents and discusses the results
of the MLR and ANN models, and tests the performance of these models. Section 4
discusses the limitations and implications of the present work. Finally, in Section 5, some
conclusions are made.

2. Materials and Methods

This research adopted a mixed method approach of both qualitative and quantitative
methods. The Ministry of Education, Heritage, and Arts (MEHA) in Fiji was contacted
to seek their approval in carrying out the research, which included making a written
application to the Policy Unit of the Corporate Services division of the MEHA.

2.1. Questionnaire Design

A questionnaire survey was designed to collect data on the current green initiatives
undertaken by the schools, their year of establishment, the number of students, teachers, and
ancillary staff, building characteristics (such as total internal floor area, number of buildings,
stories, types of building, and number of classrooms) similar to data collected by Rinaldi
et al. [46], electricity use profile (annual electricity consumption data and its costs), number
of different electrical appliances used in schools (air conditioners, computers, fans, lights,
etc.), and information on any other energy source. Both open-ended and multiple-choice
questions were used. The sample of questions can be found in Supplementary Data S1.

The principles provided by Groves et al. [47] were used to ensure that the survey was
not biased. Questions were clear and followed a logical order, and ambiguous language was
avoided. Human research ethics approval was also sought from the author’s university’s
Human Research Ethics Committee (HREC), and participants were made aware of the
voluntary nature of participation and ways in which data will be stored, analyzed, and
disseminated. As this research was about energy data and building characteristics, it did
not involve questions on a sensitive nature, such as culturally sensitive issues, or cause
physical, psychological, or social discomfort.

2.2. Running the Questionnaire Survey

Once MEHA’s approval for conducting the research was sought, a key person at
MEHA was liaised with to decide how best to reach schools around Fiji. The study used a
random sampling design similar to Zhou et al. [48]. There was a second wave of COVID-19
in Fiji at the beginning of 2022, so the author conducted an online questionnaire survey. An
MS Office form was used to design the questionnaire, and the survey took place between
February 2022 and June 2022. To reach the maximum number of schools and obtain a
good response rate, divisional officers (central, western, northern, and eastern) and district
officers in each division, as shown in Figure 1a, were contacted via email and phone contact
details given by the Policy unit in MEHA. Schools in Fiji are in rural and urban communities,
and for some rural community schools internet access is not stable, so 3 versions of the
questionnaire were prepared: (i) an online form, (ii) an MS Word copy, and (iii) a pdf copy
of the form. This made it easy for schools to participate in the survey. This is also similar
to the multi-mode survey that Al Qadi et al. [49] used in their study. Once district officers
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were contacted, the 3 modes of the questionnaire were explained, and district officers were
requested to email all the school heads in their districts. Reminders (emails and numerous
phone calls) were also made to district officers and divisional officers to remind schools to
participate in the survey. Email attachments with filled forms and online responses were
received. The responses attached to emails were later transferred to the online form so that
all responses were collated and stored in one place.
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Figure 1. (a) Framework used to reach schools around Fiji and (b) classification of Fijian schools into
different clusters.

2.3. Data Screening and Analysis

By the end of June 2022, 173 responses were collected from schools around Fiji, as
shown in Figure 2. From the data collected, the information was filtered and cleaned using
MS Excel (Office 365). Missing values were not taken into data analysis and removed
using the listwise function in IBM SPSS 27 software. Hong et al. [24] cleaned and filtered
their data to be used in ANN models, while the different types of missing data and how
to deal with missing data has been explained by Bennett [50], where removal of cases
was one of the ways of dealing with missing values. From the wide range of data that
were collected to analyze, the schools were clustered as seen in Figure 1b. Because of
dispersed islands in Fiji, schools have different power sources—grid-connected schools and
off-grid schools. Most schools have grid-connected electricity provided by the only power
utility company in Fiji (Energy Fiji Limited (EFL)) while others have off-grid electricity,
which is either provided by solar photovoltaics or solar lights (PV), a school’s own diesel
generator (Sch_DG), or a community diesel generator (Com_DG). The schools were further
categorized into ECE, primary, and secondary schools and categorized as small-, medium-,
or large-sized depending on their numbers of students as defined by the MEHA. Descriptive
statistics for electricity demand, electricity cost, and school building characteristics were
determined similarly to other researchers. For instance, average energy consumption was
provided as a function of occupancy level in Carpino et al. [51], and Troup et al. [52] used
the median value of total EUI to highlight that the median increases with an increasing
building envelope that corresponds to cooling loads. Im et al. [53] presented data using
central tendency (mean, mode, median), variability using box plots, and standard deviation,
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and Wang et al. [54] used frequency analysis, average, median, and coefficient of variance
to present data.
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The electricity utilization index (EUIelec) was determined using Equations (1) and (2)
as shown in Chung and Yeung [9].

EUIelec =
Electricity Demand (kWh)

f loor area (m2)
(1)

EUIelec =
Electricity demand (kWh)

student number
(2)

2.4. Regression Analysis

Linear regression models using multiple independent variables were used to predict
the electricity demand of grid-connected schools using IBM SPSS 27, similar to the work of
many other researchers, as discussed in Section 1. MLR models examine the relationship
between the independent and dependent variables and help identify which independent
variables account for the most variance in the outcome variable [55]. Regression methods
are simple to use, need fewer computing resources than other statistical techniques, and
have acceptable prediction accuracy [49], but they are unable to deal with non-linear rela-
tionships [56]. Of all the schools that responded to the survey, 154 (89%) were connected to
the grid. Box plots was used to identify the outliers. Altogether, 15 outliers were identified
for the grid-connected schools. Upon scrutinizing the outlier data, it was found that the
two most extreme outliers were schools that had some students with hostel accommodation
and the boarders’ electricity bill was included in the school’s electricity bill. For these two
outliers, record numbers 149 and 101 were deleted from the entry and not included in the
regression analysis. For the mild outliers, it was seen that these were mostly large and
medium schools that had high electricity consumption compared to the rest of the schools.
It was decided to keep these values. Another school (record number 24) was taken out
after running the regression model and obtaining a large maximum Cook’s distance for
this school record, indicating an outlier.
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After removal of outliers, electricity demand (ED) is taken as the dependent variable
while age of schools (Age), number of classrooms (CN), floor area (FA), number of buildings
(BN), number of air conditioners (AC), number of students (SN), number of lights (LGT),
and number of teachers (TN) were considered as independent variables. To select variables
in multiple linear regression, Pearson’s correlation coefficient shown in Table 1 was scru-
tinized. It was seen that the age of the school and number of buildings in the school had
poor Pearson’s correlation coefficients of 0.003 and 0.216, respectively. Then, considering
collinearity, the number of classrooms had a strong correlation with the number of students
(0.884) and the number of teachers had strong correlation with the number of students
(0.828). Hence, the number of lights, number of air conditioners, number of students, and
floor area were considered as independent variables.

Table 1. Pearson’s correlation coefficient of different variables.

ED Age SN FA CN BN LGT AC TN

ED 1.000 0.003 0.735 0.601 0.708 0.216 0.793 0.746 0.854
Age 0.003 1.000 0.050 −0.076 −0.037 −0.175 −0.106 −0.070 −0.068
SN 0.735 0.050 1.000 0.509 0.884 0.196 0.672 0.643 0.828
FA 0.601 −0.076 0.509 1.000 0.573 0.150 0.495 0.543 0.534
CN 0.708 −0.037 0.884 0.573 1.000 0.220 0.657 0.697 0.853
BN 0.216 −0.175 0.196 0.150 0.220 1.000 0.218 0.138 0.304
LGT 0.793 −0.106 0.672 0.495 0.657 0.218 1.000 0.699 0.755
AC 0.746 −0.070 0.643 0.543 0.697 0.138 0.699 1.000 0.763
TN 0.854 −0.068 0.828 0.534 0.853 0.304 0.755 0.763 1.000

Out of the 151 data points, regression modeling took only 75 data points because of
missing values for some variables for different schools. These missing values were mainly
for electricity demand, floor area, number of lights, and number of air conditioners because
some schools did not respond to this question in the questionnaire. In past studies, it
has been seen that there are a range of data points that researchers have used to build
predictive models. For instance, Alshibani [32] used 352 datapoints to construct neural
network models where the optimum model had an R2 value of 97.7%, while Veiga et al. [57]
used 48,000 samples to construct predictive models for building energy use and obtained
R2 values between 84% and 97% for different models. Interestingly, for a study to predict
Thailand’s annual electricity consumption, Panklib et al. [35] used 17 datapoints to train its
MLR and ANN model and used 3 data points for model testing, where they got R2 value of
96% and 99% for MLR and ANN, respectively. Hence, for this current study, it is inferred
that 75 datapoints are sufficient to yield statically significant predictive models. It should
also be noted that Fiji is a small island country that has 907 primary and secondary schools
in total, where the majority of ECE schools are attached to primary schools, and their
electricity cost is included in the primary school’s electricity bill. Hence, using 75 schools
data for analysis out the 907 schools yields an 11% margin of error with a 95% confidence
interval using the formula provided at [58].

Finally, 55 data points (73% of the 75 data points) were used for constructing regression
models while 20 data points were used in testing the model performance. The training-to-
testing ratios vary, and Veiga et al. [57] reports 80% of the datapoints being used for training
the model while 20% of the datapoints were for testing. However, they do not provide
information on how the testing datapoints were selected. Alsibani [32] randomly selected
60% of the data points for training the model, 20% for selection, and 20% for testing, while
Yuan et al. [31] used 70% for training and 30% for validation and testing that were also
randomly selected. For the current study, the training and testing datapoints were based on
random selection, where in both (training and testing) datasets representations of different
classifications (primary and secondary of different student numbers) of school are present.
The training dataset had 3 large-, 20 medium-, and 11 small-sized primary schools and
5 large-, 7 medium-, and 9 small-sized secondary schools. The testing dataset had 2 large-,
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3 medium-, and 5 small-sized primary schools and 2 large-, 4 medium-, and 4 small-sized
secondary schools.

The general form of the MLR is given by Equation (3). Log forms of variables were
used because it provided a better linear relationship as seen in Section 3.2.

logED = β0 + β1 logSN + β2 logFA + β3 logAC + β4 logLGT + ε (3)

where indicators are as follows:
β0 is the constant of the equation;
β1 is the coefficient of the logarithm of number of students (logSN);
β2 is the coefficient for the logarithm of floor area (logFA);
β3 is the coefficient for the logarithm of the total number of air conditioners (logAC);
β4 is the coefficient for the logarithm of number of lights (logLGT);
ε is the error term of the equation;
logED is the logarithm of electricity demand (ED).
The number of classrooms is not taken as an independent variable in Equation (3)

because it is collinear with the number of students. Therefore, the dependent variable is
logED while the independent variables (IVs) are logFA, logSN, logLGT, and logAC.

The predictive power of a multiple regression model can be assessed using the R2

value, which measures how close the data are fitted to the fitted regression line [59]. In
addition, p-value was used to determine if the independent variable has a statistically
significant effect on the dependent variable. This study’s significance level was set at 0.05,
similar to what Rinaldi et al. [46] had chosen in their research. If the p-value was less than
or equal to 0.05, then the independent variable is statistically significant and if the p-value
was more than 0.05, then that independent variable was dismissed.

For any regression modeling, certain assumptions (sample size, normal distribution,
absence of outlier, linear relationship, absence of multi-collinearity, and presence of ho-
moscedasticity) are made [60] and these were checked during linear regression modeling,
which is shown in Supplementary Data S2.

2.5. ANN Model

In the analysis of the ANN model in IBM SPSS Statistics 27, Multilayer Sensor (MLP—
Multilayer Perceptron, which is most popular amongst the different ANN architectures
present [61]) was used. This study used a multilayer feedforward network to establish the
neural network using a backpropagation algorithm, similar to Zeng et al.’s [62] work. The
data set was partitioned in a manner where 70% of the data points were chosen as training
data points while the remaining 30% were testing data points. There were 3 layers in the
neural network; the first was the input layer that had the input variables, the second was
the hidden layer that was used to train and test the data sets, and the third was the output
layer that had the output variable. As an example, the structure of ANN model 12.1 is
shown in Figure 3. The “Hyperbolic tangent Function” was used as the activation function
of the artificial nerve cells in the input layer, and the “Identity Function” was used in the
output layer. Jeong [30] explains in detail the equations that relate the input layer, hidden
layer, and output layer.
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2.6. Testing Model Performance

Root mean square error (RMSE) and coefficient of determination (R2) were used to
estimate the performance of MLR and ANN predictive models using Equations (4) and (5),
respectively [31,36].

RMSE =

√
∑N

i=1
(
EDpre,i − EDobs,i

)2

N
(4)

R2 = 1 −
∑N

i=1
(
EDobs,i − EDpre,i

)2

∑N
i=1

(
EDobs,i − EDavg

)2 (5)

where i is the ith school, N is the nth school, EDobs is the annual electricity consumption of
a particular school, EDpre is the predicted annual electricity consumption from a predictive
model, and EDavg is the average of the observed annual electricity consumption of all
schools.

The overall methodology of the study is summarized in Figure 4.
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3. Results
3.1. Descriptive Statistics of the Sampled Schools

A total of 173 responses were received from schools, of which 5 were from standalone
ECE, 109 were from primary schools, and 59 were from secondary schools. All the ECE
schools were small, while primary and secondary schools were categorized as small,
medium, or large. The categorization depended on the number of students for the schools.
In terms of the electricity provider, 154 of the sampled schools were grid-connected while
the remaining schools were off-grid. This paper will focus on grid-connected schools.
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3.1.1. Electricity Consumption of Schools Connected to the Grid

Electricity Fiji Limited (EFL) supplied the primary electricity to a total of 154 school
respondents. Out of the 154 schools, there were 4 standalone ECE, 52 secondary, and
98 primary schools. Out of all the primary school respondents, 59 schools reported that
ECE was included in their electricity bill, indicating that these primary schools have ECE
facilities attached in their school premises.

Box plots of different parameters are shown in Figure 5. Box plots provide information
about the distribution of a variable. The middle line of the box represents the median, the
lower part of the box represents the lower quartile (Q1), and the upper part of the box is the
upper quartile (Q3). The mean is represented by the “x” plot in the box. The interquartile
range can be found from the difference between Q3 and Q1. The whisker above the box
represents the maximum value and the whisker at the bottom represents the lowest value.
The circled dots in the box plots represent the potential outliers in the data. In schools that
participated in the survey, the average number of students in large schools ranged from 800
to 1100, while medium schools ranged from 300 to 700 students and small schools from 100
to 250 students as seen in Figure 5a. Even though numbers of students for secondary and
primary schools are comparable, the average annual electricity consumption and its costs
are high for secondary in comparison with primary as seen in Figure 5b,c. The electricity
demand for ECE schools ranged from 1200 to 1816 kWh/year and primary school electricity
demand ranged from 353 to 18,000 kWh/year, while for secondary schools it was 1765 to
72,000 kWh/year. The average annual electricity consumption for secondary schools is
around 3–4 times more than primary schools in different categories, and a similar trend is
seen for electricity cost in Figure 5d. This could be attributed to the use of air conditioning
systems in the specialized rooms.
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As seen from Figure 5e,f, the electricity utilization index (EUIelec) for standalone ECE
schools ranged from 1.26 to 37.50 kWh/m2/year or 10.53 to 18.92 kWh/student/year. For
primary schools, it ranged from 0.83 to 68.25 kWh/m2/year or 4.43 to 60.47 kWh/student/year.
Secondary schools had a much higher EUIelec; it ranged from 0.54–118.15 kWh/m2/year
and 4.17–11.47 kWh/student/year. Overall, schools in Fiji have on average 10.52 kWh/m2

or 29.92 kWh/student, while the electrical energy consumption in European schools ranged
from 7 to 66 kWh/m2 according to the literature [5]. Elementary schools in Korea have
energy consumption ranging from 820 to 1080 kWh/student [5]. For schools in China,
the average electricity utilization index was 36.07 kWh/m2/year [27]. Overall, for Fijian
schools, the average EUIelec of different schools is below 15 kWh/m2 except for medium-
sized secondary schools. However, large-sized secondary schools have an average of
12.62 kWh/m2 while ECE has 14.09 kWh/m2 of electricity consumption. For two secondary
schools, the EUIelec ranges between 80 and 120 kWh/m2. For the electricity consumption
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per capita, it is seen that Fijian secondary schools have a relatively higher (2–3 times more)
EUIelec compared to primary and ECE schools.

3.1.2. Building Characteristics for Fijian Schools

From the schools that participated in the survey, the average floor area of secondary
schools (2780 m2) is relatively bigger than other clusters of schools. The average floor area of
large grid-connected secondary schools (6100 m2) is almost twice that of large grid-connected
primary schools and medium grid-connected secondary schools. It is seen that medium
and large secondary schools have a high number of air conditioning systems in use. The
data for the exact number of fans in schools was not collected; instead, a range of fans was
collected. Almost 62% of schools responded that they had more than ten fans. On average,
most grid-connected schools had double-story buildings while ECE schools had a single story
and a few small- and medium-sized primary schools had single-story buildings.

3.2. MLR Models for Predicting Electricity Demand for Grid-Connected Schools

The relationship between the dependent variable, electricity demand (ED), and inde-
pendent variables was plotted to determine the linear relationship. A linear relationship
was observed but the majority of the data points were clustered in one corner of the graph
as seen from sample graphs for electricity consumption plotted against student numbers
and floor area as shown in Figure 6a,b. Logarithmic relations between the dependent and
independent variables were explored to obtain a clearer linear relationship between the
variables, similar to Sharp [63]. As a result, from Figure 6c–f it is now evident that there is a
stronger linear relationship between the logarithm of electricity demand and the logarithms
of four independent variables. Other assumptions for regression modeling are shown in
Supplementary Data S2.
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Figure 6. Scatter plot of electricity demand against different independent variables. (a,b) are
plots of electricity consumption against student numbers and floor area respectively, (c–f) are log
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area, number of lights and number of air-conditioning systems respectively.

Three methods of linear regression were carried out, Enter, Stepwise, and Backward,
to construct regression models for predicting electricity demand for grid-connected schools.
The “Enter” method is where the user, through their judgment, selects the IVs to build the
regression model. In the Backward method, the algorithm in SPSS first selects all the IVs
in predicting logED and then successively removes non-significant IVs. In the Stepwise
method, the IVs are chosen based on a series of automated steps, where at every step
the candidate variables are evaluated, one by one, typically using the t statistics for the
coefficients of the variables being considered [64].

In view of the R2 values in Table 2, for the “Enter” method, 50–70% of the variation in
the outcome variable is explained by the regression models (6, 9, 10, and 11), while for the
Stepwise and Backward methods, 73.3% of the variation is explained by the model. In the
Stepwise regression, the R2 value increases as more independent variables (IV) are added
to the model. From the ANOVA column, results indicate that the models were a significant
predictor of the outcome variable, logED, as the p-value is 0.000, which is less than 0.05.

Table 2. Model summary for estimating electricity demand for all grid-connected schools.

Method Number of
Cases Input Variables, IVs Model Summary ANOVA

Equation
Number R2 Durbin–

Watson ε
F—Ratio

Regression df
Residual df

p-Value

Enter 55
IVs: logLGT,

logSN, logAC,
and logFA

(6) 0.733 1.666 0.23903
34.366

4
50

0.000

Backward 55
IVs: logLGT,
logSN, and

logAC
(7) 0.733 1.676 0.23697

46.579
3

51
0.000

Stepwise 55 IV: logLGT (8a) 0.624 0.27571
87.908

1
53

0.000

55 IVs: logLGT,
logSN (8b) 0.705 0.24659

62.076
2

52
0.000

55
IVs: logLGT,
logSN, and

logAC
(8c) 0.733 1.676 0.23697

46.579
3

51
0.000

Enter 55 IV: logSN (9) 0.504 1.840 0.31665
53.825

1
53

0.000
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Table 2. Cont.

Method Number of
Cases Input Variables, IVs Model Summary ANOVA

55 IVs: logSN and
logFA (10) 0.587 1.736 0.29166

36.959
2

52
0.000

55
IVs: logSN,
logFA, and

logLGT
(11) 0.706 1.502 0.24843

40.848
3

51
0.000

Equation (6) has all four IVs included, but it can be seen from Table 3 that the logFA
coefficient is not statistically significant as the p-value is 0.725, which is more than 0.05. So,
it is best to drop this IV from the regression model. Hence, in Equations (7) and (8a–c),
logFA is not considered in the regression model using the Backward and Stepwise methods.
Equations (7) and (8c) are the same because Stepwise regression includes Forward and
Backward regression. These equations have the highest R2 value compared to all the built
regression equations.

Table 3. Regression coefficients for predicting electricity demand for grid-connected schools.

Equation Max Cook’s
Distance β0 β1 (logSN) β2 (logFA) β3 (logAC) β4 (logLGT)

Enter

Unstandardized (6) 1.609 0.423 0.045 0.272 0.571
t-stat 5.116 2.929 0.353 2.256 3.447

p-value 0.000 0.005 0.725 0.028 0.001
Standardized coefficient Beta 0.263 0.113 0.236 0.390

Cook’s distance 0.191

Backward

Unstandardized (7) 1.646 0.443 0.275 0.600
t-stat 5.616 3.364 2.303 4.232

p-value 0.000 0.001 0.025 0.000
Standardized coefficient Beta 0.316 0.226 0.447

Cook’s distance 0.233

Stepwise

Unstandardized (8a) 2.096 1.060
t-stat 10.639 9.376

p-value 0.000 0.000
Standardized coefficient Beta 0.790

Unstandardized (8b) 1.328 0.506 0.762
t-stat 4.937 3.776 5.949

p-value 0.000 0.000 0.000
Standardized coefficient Beta 0.361 0.568

Unstandardized (8c) 1.646 0.443 0.275 0.600
t-stat 5.616 3.364 2.303 4.232

p-value 0.000 0.001 0.025 0.000
Standardized coefficient Beta 0.316 0.226 0.447

Cook’s distance 0.233

Enter

Unstandardized (9) 1.397 0.996
t-stat 4.047 7.337

p-value 0.000 0.000
Standardized coefficient Beta 0.710

Cook’s distance 0.167

Enter

Unstandardized (10) 1.056 0.626 0.410
t-stat 3.154 3.695 3.236

p-value 0.003 0.001 0.002
Standardized coefficient Beta 0.446 0.391

Cook’s distance 0.170

Enter

Unstandardized (11) 1.279 0.477 0.063 0.719
t-stat 4.420 3.223 0.479 4.546

p-value 0.000 0.002 0.634 0.000
Standardized coefficient Beta 0.340 0.060 0.536

Cook’s distance 0.142
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Overall, Tables 2 and 3 provide regression models for estimating the electricity demand
where the models explain around 50–73% of the variation. To achieve better R2 values,
ANN models are explored in the next sub-section.

3.3. ANN Models for Predicting Electricity Demand and Performance Testing

The different parameters collected from various grid-connected schools were taken
as inputs and the electricity demand was taken as the output variable in the ANN model.
The data was divided into sets for training the neural network and testing the ANN model.
For the ANN method, different combinations of input variables were trialed in an attempt
to obtain better model predictions. For models 12.1–12.6, logarithm transformations of
variables were used, similar to MLR, but school types (ST) and school categories (SC) which
were nominal data type were also used as independent variables. For the same data set
(75 datapoints), the original forms of variables were taken and modeled again which is
shown in models 13.1–13.4. There was an improvement in the R2 value for models 12 to 13,
but in model 13 the RMSE is high. So, it was decided to consider all the 151 datapoints in an
ANN model from which 100 data points were taken in models 14.1–14.15. All the variables
were selected in 14.2 after which variables were gradually dropped to see the R2 value. In
addition, the dependent variables were taken in two forms; one was logED and the other
form was in its original form, annual electricity demand (ED). Because the MLR method
has a set of assumptions to be met, the dependent and input variables were transformed
into logarithm forms. However, an ANN has the ability to learn or train itself and use
either linear or non-linear structures to predict; it does not have any pre-conditions that
have to be met before the modeling. Hence, for ANN models, different forms of input and
output variables are taken as shown in Table 4 which is discussed in the next sub-section.
For log transformations of variables, 75 datapoints were taken and for the original form
of variables, 100 data points were considered in the ANN model as seen in Table 4. For
log transformation, the number of datapoints is less because some schools do not have AC
or have one air conditioning system and this makes less datapoints for log-transformed
variables. The highlighted models are the optimum ANN models for predicting electricity
demand by considering their R2 and RMSE. It was ensured that optimum models have
high R2 values while their corresponding RSMEs are low.

Table 4. ANN models with different input variables and two forms of output variable.

Model Model
No.

Total
Data

Points
Inputs Neurons in

Hidden Layer
Output

Variable R2 RMSE

MLR 75 logSN, logAC, logLGT logED 0.7522 0.2248

ANN 12.1 75 logSN, logAC, logLGT 4 logED 0.7440 0.2285
ANN 12.2 75 logSN, logAC, logLGT, logFA 3 logED 0.7541 0.2240
ANN 12.3 75 ST, SC, logLGT, logFA, logAC, logSN, Age 3 logED 0.7195 0.2392
ANN 12.4 75 ST , SC, logLGT, logFA, logAC, logSN 2 logED 0.8400 0.1807
ANN 12.5 75 ST, SC, logLGT, logAC, logSN, Age 5 logED 0.8228 0.1902
ANN 12.6 75 ST, SC, logLGT, logAC, logSN 4 logED 0.7769 0.2133
ANN 13.1 75 ST , SC, LGT, FA, AC, SN, Age 3 ED 0.8398 6203.7
ANN 13.2 75 ST, SC, LGT, FA, AC, SN 3 ED 0.8180 6612.2
ANN 13.3 75 ST, SC, LGT, AC, SN 4 ED 0.8026 6886.2
ANN 13.4 75 ST, SC, LGT, AC, SN, Age 3 ED 0.8365 6266.9

ANN 14.1 100 ST, SC, LGT, FA, AC, SN, Age, TN, FN, CN, BN 5 ED 0.8905 280.51

ANN 14.2 100 ST, SC, LGT, FA, AC, SN, Age, TN, FN, CN, BN,
BT 4 ED 0.9350 150.33

ANN 14.3 100 ST, SC, LGT, FA, AC, Age, TN, FN, CN, BN, BT 2 ED 0.9147 105.73
ANN 14.4 100 SC, LGT, FA, AC, SN, Age, TN, BT, FN, CN, BN 3 ED 0.8856 170.37
ANN 14.5 100 ST, SC, LGT, FA, AC, SN, Age, TN, BT, FN, CN 2 ED 0.9196 86.231
ANN 14.6 100 ST, SC, LGT, FA, AC, Age, TN, FN, CN, BN 2 ED 0.9467 36.769
ANN 14.7 100 ST, SC, LGT, FA, Age, TN, FN, CN, BN 5 ED 0.9526 109.26
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Table 4. Cont.

Model Model
No.

Total
Data

Points
Inputs Neurons in

Hidden Layer
Output

Variable R2 RMSE

ANN 14.8 100 ST, SC, LGT, FA, AC, SN, TN, BT, FN, CN, BN 6 ED 0.9282 233.00
ANN 14.9 100 ST , SC, LGT, FA, TN, FN, CN, BN 4 ED 0.9528 59.358
ANN 14.10 100 ST, SC, LGT, FA, Age, TN, FN, CN 4 ED 0.9261 4.1990
ANN 14.11 100 ST, SC, LGT, FA, AC, Age, TN, FN, CN 2 ED 0.9541 447.56
ANN 14.12 100 LGT, FA, SN, AC 4 ED 0.8576 356.17
ANN 14.13 100 LGT, FA, AC, SN, Age, TN, FN, CN, BN, BT 3 ED 0.9412 124.55
ANN 14.14 100 LGT, FA, AC, SN, Age, TN, FN, CN 4 ED 0.9215 326.66
ANN 14.15 100 ST, SC, LGT, FA, AC, SN, Age, TN, FN, CN 3 ED 0.9000 66.799

Note: ST—school type, SC—school category, Age—school age, TN—number of teachers, CN—number of class-
rooms, FN—number of floors, BN—number of buildings, BT—type of building. The highlighted models are the
optimum ANN model.

3.3.1. Testing Performance of MLR and ANN Models

Table 4 presents the inputs, the number of neurons in one hidden layer, and the
performance parameters (R2 and RMSE) of each model. From the definition of R2 which is
1 minus the relative error, it can be seen that when many input variables are taken, the R2

value improves; that is, the relative error of the prediction model decreases. For the MLR
model, R2 ranged from 50 to 70% as seen in the previous section. For ANN models, it can
be seen that when the output variable is logED and the same range of data points is taken
as in the MLR analysis data set, then the R2 value improves and goes up to 84% (model
12.4), which is an improvement compared to the MLR method. However, when using the
same dataset but the output variable is not transformed, that is, taking the output variable
as ED, the best ANN model still measures an R2 value around 84% (model 13.1) as seen in
Table 4. So, it can be inferred that in ANN models whether one uses a transformed output
or the output in its original form, the model performance is the same. To further improve
the predictions, all the data that was obtained during the data collection method was taken
into the ANN model and the schools that had missing values were excluded from the
modeling. However, the extreme values and the outliers were included in the modeling.

Therefore, considering the set of ANN models (14.1 to 14.15), the R2 value ranges
from 85.8 to 95.4% which is a significant improvement from the MLR predictions, but
it was still not able to reach close to 99%. Yuan et al. [31] reported an R2 value ranging
from 95 to 99% for ANN models used for predicting hourly electricity consumption at a
university campus while the authors of [35] reported an R2 value of 96% from the MLR
model and 99% for the ANN model for predicting annual electricity consumption in
Thailand. The R2 and RSME were 89% and 11.69 kWh/m2, respectively, for the regression
model and 99% and 2.61 kWh/m2, respectively, for the ANN model in the study conducted
by Quevedo et al. [20] on energy consumption at a university building. Similarly, in Veiga
et al. [57], for MLR models the R2 ranged from 84% to 90% and RSME ranged from 8.4
to 10.95 kWh/m2/year for bank buildings in Brazil while ANN models had an R2 value
ranging from 88% to 97% and RSME ranging from 4.34 to 9.46 kWh/m2/year. In Yuan
et al. [31], the RSME was reported to range from 6.5 to 48.9 kWh while, in the current study,
the RSME for models 14.1 to 14.15 using ANN was 4.2 to 356 kWh as shown in Table 4. The
difference in the current study’s R2 and RSME compared to other published literature is a
slight decrease in R2 values and increase in the RSME values, which could be due to the
number of datapoints taken during modeling and the independent variables taken during
model construction.

According to Mohammed et al. [22] and Islam et al. [65], plotting predicted values
against the actual data would show the correlation between the predicted and the actual
values. The closer the R2 value is to 1, the better the regression model. By plotting the graph
shown in Figure 7 of predicted against observed values for the models selected in Table 4,
it is seen that ANN models predict better than MLR models, and when input parameters
increase, the ANN model predicts better.
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Figure 7. An example of observed and predicted values for MLR and ANN models.

Similarly, it is seen that for the most optimum predictions, the R2 value is the largest
while the RMSE is the smallest. RMSE has the unit of the output variable and measures how
far predictions deviate from measured or observed values using Euclidean distance [66].
The smaller the RMSE value, the better the model is at predicting the output variable.
Comparing the models for predicting logED, the RMSE of MLR is 0.2248 while for models
using ANN the RMSE is relatively less, with the lowest RMSE of 0.1807 as seen in Table 4. In
addition, comparing the models for predicting ED where different numbers of data points
were taken, it is seen that for modeling with 75 data points, RMSE is significantly higher
while for modeling with 100 data points, the model yields relatively less RMSE. This could
also be because a higher number of input variables are considered in the larger dataset.

Further, it is seen that the lowest RSME is for model 14.10, which has eight independent
variables; the highest R2 is for model 14.11, but this model obtained a relatively higher
RMSE in comparison to model 14.10. To strike a balance between the two performance
indices, model 14.9 could be a better predictor model, as it has both a higher R2 (95.3%—
second highest) and a relatively lower (59.4 kWh/year—second lowest) RMSE.

3.3.2. Importance of IVs That Affect School Electricity Demand

Sensitivity analysis was performed to study which independent variable impacted
the outcome variable the most in the MLR model. Equation (8c) was used to calculate
the predicted electricity demand from student number (SN), number of lights (LGT), and
number of air conditioners (AC). The mean values of the three IVs were taken and the
mean of each IV was varied (while keeping the other two IVs constant) in steps of 5% from
above and below the mean until there was a 30% change. The % change in the electricity
demand was noted. From Figure 8a, it is seen that the number of lights in the schools had
the steepest line, indicating that it had the most impact on the electricity demand. This was
followed by the student number and number of air conditioning units in the schools. This
means that the more lights a school has, the greater it will affect the electricity demand.
The same thing is also inferred from Table 3 when we look at the standardized coefficient
beta. It is seen that for Equation (8c), logLGT has the highest standardized coefficient beta,
followed by logSN and then logAC. For instance, electricity demand increases by 12% when
the number of lights increases by 20% and the electricity demand increases by 9% when the
student number increases by 20%. Also, for a 20% increase in the number of AC units, the
electricity demand increases by 5.5%.
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Figure 8. (a) Sensitivity analysis for MLR model and (b) example of an importance graph for
ANN model.

In addition, the ANN models in SPSS also presented the importance of different
input variables for each model. As an example, Figure 8b shows how important different
independent or input variables are to predict the output variable—in this case, the annual
electricity demand in kWh. It is seen that the number of lights and number of teachers
have relatively high importance in predicting the annual electricity demand.

4. Discussions
4.1. Implications of the Current Study

The regression model built shows that the number of lights, students, and air con-
ditioning systems have a significant impact on the electricity demand of schools in Fiji.
Similar results were also shown in the study by Litardo et al. [67], where they found that
cooling degree days and number of occupants affected the annual energy consumption
of university classrooms. In addition, Yuan et al. [68] found that occupancy densities of
classrooms affected the electricity consumption of air conditioners, while building age was
also a significant factor affecting energy usage for [22]. The results imply that schools need
to look at the way they use lights and air conditioning systems. Also, from ANN models,
building type (whether concrete, wooden, or both), type of school (whether primary or
secondary), and category of school (whether small, medium, or large) also affect the elec-
tricity demand. Schools should effectively monitor their electricity consumption and keep
records of their monthly bills and kWh consumption. There should be more awareness in
schools of how to conserve electricity, as it comprises one of the major operating costs of
schools; the annual electricity bill for a primary school can go as high as FJD6000, while for
secondary schools it can go as high as FJD21,000.

There needs to be a dedicated energy manager or coordinator at individual schools
who can coordinate electricity monitoring, keeping of records, raising awareness of conser-
vation, and implementing low-cost measures to reduce electricity consumption, especially
from lights and air conditioning systems. There can be labels to switch off lights and air
conditioning systems when the room is empty or if the weather is favorable. For instance,
using natural ventilation is recommended by Dimoudi and Kostarela [69] to promote en-
ergy saving and establishing comfortable conditions within buildings. Schools can consider
replacing inefficient lights with more efficient ones such as replacing compact fluorescent
tube lights with LED tube lights. If schools have enough financial resources, they can
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even consider replacing their existing luminaires with reflector-type luminaires which
could reduce the need for higher power ratings of lights. In addition, Lourenco et al. [70]
recommend use of natural lighting in buildings as an energy management strategy. For
air conditioning systems, schools can ensure that the rooms are properly insulated, that
is, there are no broken windows (missing louvres) or gaps around door edges from which
cool air can escape, thereby making the air conditioning system consume more electricity.
Schools can also consider servicing their existing air conditioning systems regularly to
ensure they operate efficiently.

The Ministry of Education can use the findings of this study to design policies and
incentives that promote energy efficiency and conservation in schools. It must be realized
that to adapt to climate change, to be resilient to climate change, and to mitigate greenhouse
gases, there needs to be a behavioral change in end-users. However, behavioral change
is a long and slow process. And for it to happen, it should start from the grassroots level,
that is, with the younger generation who are future leaders and end-users. A similar
view is also shared by Pietrapertosa et al. [71], who highlight and study how the behavior
of young students can be influenced by awareness programs through gamification and
poster-making competitions. Customized energy management programs needs to be
implemented so that there is continuous effort to improve energy performance of schools
in the long-term [72]. With the findings of the current study, the Ministry of Education
can make it compulsory for schools to create a goal/target for energy reduction through
an initial baseline survey. This can be followed up by schools monitoring their electricity
consumption, keeping records, and reporting their monthly consumptions annually to the
Ministry. This will ensure that all schools can participate in taking individual action in their
schools when compared to the currently fewer schools monitoring and raising awareness
of conservation. This may result in students taking part in energy reduction initiatives
and thus changing their behavior and influencing their peers, family, and relatives. The
Ministry of Education, with the Department of Energy, can also provide incentives such as
grants for schools, especially those not financially secure, to implement energy efficiency.
Also, there can be rewards from the Ministry to schools that share the best practices in
reducing their electricity bills and show proof of reduction.

The findings of this study can also inform relevant departments and organizations
that are involved in preparing building codes and standards. There can be a section in
these documents that set standards on the energy performance of buildings and on how to
design energy-efficient buildings that consider lighting and cooling energy demand. For
example, lighting design can consider natural lighting, while designing for cooling energy
demand can consider designing the orientation of windows that capture natural ventilation
during summer and capture heat during winter season.

The Pacific region including Fiji has developed a framework for energy security
and resilience for the region that highlights action plans for achieving energy security
while minimizing global emissions [73]. Fiji also has updated its nationally determined
contributions for emission reductions where energy efficiency is one of the key areas for
achieving the targets [42]. This study contributes to data and knowledge on the energy
demand for school buildings in Fiji which provides the initial steps for similar work to
be carried out for other buildings, such as office spaces, manufacturing industries, public
rental homes, apartments, etc. In addition, this work can be replicated by other schools in
the Pacific to collect similar data and inform stakeholders on the energy consumption in
schools and factors that greatly impact its usage.

4.2. Study Scope, Limitations of Present Study, and Recommendations for Future Study

This study built MLR and ANN models based on the data collected through the online
questionnaire survey to predict the electricity demand of Fijian schools. The imputation
method was not used for filling the missing values in datasets; instead, these cases were
removed during the modeling process. Future research can use the imputation method for
filling missing values and then constructing prediction models using deep-learning-based
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approaches and also other non-linear forms of regression modeling. The major limitation
of the MLR method is that it is not able to predict non-linear relationships and a set of
assumptions must be met to use the MLR model. Hence, the ANN method was used in this
study, which can model non-linear relationships between various independent variables
and a dependent variable [74]. However, one limitation of the ANN method is that it is a
black box where the user does not have any explicit equation to predict the output, that is,
it is unable to explain why and how the solution was found [75]. Only through training
with data sets and testing the model is the user able to learn the performance of the model.

In addition, due to missing data from some school responses, prediction models for
different school clusters, such as one model for primary school, one for secondary school or
small primary schools, etc., were not constructed. Instead, for any school (whether it be ECE,
primary, or secondary) or any category (small, medium, or large), MLR and ANN models
were built. During the analysis, the author could not obtain grid-connected electricity
demand data from the power utility company (EFL). For future study, if electricity demand
data is accessed from EFL, floor area data accessed from relevant authorities, and numbers
of students accessed from MEHA, then more robust predictive models can be constructed
based on the large data set using state-of-the-art methods. Furthermore, due to length
constraints, this paper could not investigate in detail the electricity and energy consumption
of off-grid schools. Future research will carry out a feasibility study on implementing solar
photovoltaic systems for off-grid schools that are using diesel generators and explore
a circular economy in schools where alternative cleaner technologies and fuels can be
implemented to cater to schools’ cooking energy needs.

Also, to receive a higher response rate for this online survey, the questionnaire was
not made very long and hence did not include questions on the power rating of electrical
appliances, especially for lights, air conditioning systems, and fans. Therefore, the capacity
of different electrical appliances used was not considered while constructing the regression
models. So, it is recommended that every school, either through their own initiative or
with research performed by external researchers, carry out detailed energy audits. This
will help schools keep a record of their electricity use and data can be used for comparative
and other energy studies. In addition, for future studies, the behavior of students and
teachers can be studied to determine their impact on electricity demand changes. For
example, Zhang and Bluyssen [76] surveyed nine primary schools located in different areas
in the Netherlands and studied the relationship between the building characteristics and
self-reported frequency of teachers’ actions on the school’s energy consumption. They
also measured temperature, relative humidity, CO2 concentration, illuminance, and sound
pressure level to study the indoor environmental quality of classrooms. This was similar to
the work of Barbosa et al. [77] in their study of a Portuguese school.

Furthermore, building energy management can be promoted in schools for advanced
monitoring. Various strategies for building energy management systems are discussed by
Hernandez et al. [78] out of which an appropriate one can be adopted in schools. Also, a
stochastic and distributed optimal energy management approach for an active distribution
network (ADN) with office buildings was proposed by Li et al. [79] for building energy
management while Yoon et al. [80] proposes a multiple-power-based building energy
management system (MPBEMS) for the efficient management of building energy. To start
with, schools in Fiji can be retrofitted with motion or daylight sensors so that lights and
fans are switched off when unoccupied or during the daytime. In addition, energy meters
that monitor and log data on the energy consumption of major electrical appliances such as
lights, fans, and air conditioners can be installed in schools.

Finally, for building cooling, possible renewable energy technologies can be investi-
gated. For instance, Schiboula and Tambani [81] found that a seawater cooling system,
deployed at a depth of 700 m in the Caspian Sea, can provide up to 78% energy saving com-
paring to a conventional cooling system, while seawater to cool chillers was investigated in
the urban area of a coastal city [82].
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5. Conclusions

This is the first study in Fiji, a small Pacific Island nation, where actual electricity
consumption data and related energy and building data were collected by sending out
questionnaires to schools around Fiji. Altogether, 173 schools responded to the survey, of
which 5 were standalone ECE schools, 109 were primary schools, and 59 were secondary
schools. All large primary schools, 98% of medium primary schools, and 83% of small
primary schools have electricity provided by EFL, while the rest are off-grid schools. All
large and medium secondary schools have grid electricity, while 22% of the small secondary
schools have off-grid electricity. The electricity demand for ECE schools ranged from 1200
to 1816 kWh/year, primary school electricity demand ranged from 353 to 18,000 kWh/year,
and for secondary schools, it was from 1765 to 72,000 kWh/year. The average annual
electricity consumption for secondary schools is around 3–4 times more than primary
schools in different categories. The schools’ electricity depends on the number of lights,
students, air conditioners, and floor area.

To understand the factors that affect electricity demand in schools, MLR and ANN
models were constructed to predict electricity demand for Fijian schools and R2 and RMSE
were used to test the performance of these models. The most optimum model from MLR
was Equation (8c) with an R2 of 73.3% and an RMSE of 0.2248. It was seen that ANN models
were better predictors of school electricity demand, as the optimum ANN model, 14.9, had
the second highest R2 of 95.3% and the second lowest RMSE of 59.4 kWh/year. Both ANN
and MLR models have shown that light is the most important variable affecting electricity
demand while noting that other input variables such as the number of air conditioning
systems, school type, and school category are also relatively important.

Hence, if schools want to reduce their electricity cost, they should manage their
light and air conditioning usage. The saved energy costs can be utilized by schools for
enhancing their teaching and learning activities. This study provides empirical data
on electricity consumption in schools and can contribute to better-informed policies to
support the development of Fijian schools and building codes and standards as well as the
implementation of energy conservation and efficiency measures in schools.
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