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Abstract: Building energy consumption takes up over 30% of global final energy use and 26% of
global energy-related emissions. In addition, building operations represent nearly 55% of global
electricity consumption. The management of peak demand plays a crucial role in optimizing building
electricity usage, consequently leading to a reduction in carbon footprint. Accurately forecasting peak
demand in commercial buildings provides benefits to both the suppliers and consumers by enhancing
efficiency in electricity production and minimizing energy waste. Precise predictions of energy peaks
enable the implementation of proactive peak-shaving strategies, the effective scheduling of battery
response, and an enhancement of smart grid management. The current research on peak demand for
commercial buildings has shown a gap in addressing timestamps for peak consumption incidents.
To bridge the gap, an Energy Peaks and Timestamping Prediction (EPTP) framework is proposed
to not only identify the energy peaks, but to also accurately predict the timestamps associated
with their occurrences. In this EPTP framework, energy consumption prediction is performed
with a long short-term memory network followed by the timestamp prediction using a multilayer
perceptron network. The proposed framework was validated through experiments utilizing real-
world commercial supermarket data. This evaluation was performed in comparison to the commonly
used block maxima approach for indexing. The 2-h hit rate saw an improvement from 21% when
employing the block maxima approach to 52.6% with the proposed EPTP framework for the hourly
resolution. Similarly, the hit rate increased from 65.3% to 86% for the 15-min resolution. In addition,
the average minute deviation decreased from 120 min with the block maxima approach to 62 min with
the proposed EPTP framework with high-resolution data. The framework demonstrates satisfactory
results when applied to high-resolution data obtained from real-world commercial supermarket
energy consumption.

Keywords: commercial building energy consumption; peak demand; timestamp prediction; deep
learning; MLP; LSTM

1. Introduction

Trends and patterns of energy consumption have been widely studied by numerous
researchers due to growing concerns about supply difficulties and global warming [1–3].
The International Energy Agency [4] has reported that the operations of buildings account
for 30% of global final energy consumption and 26% of global energy-related emissions.
In addition, the Global Alliance for Buildings and Construction [5] reported that the
electricity consumption in building operations represents nearly 55% of global electricity
consumption. Therefore, efficiency in building energy management has become a crucial
strategy in the low-carbon economy [6–8], and being able to accurately predict power
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loads has emerged as a crucial part of preventing energy wastage and in developing
effective power management blueprints [9]. Precise predictions benefit both the suppliers
and consumers by enhancing power management, grid security, and load control [10].
Furthermore, the accurate forecasting of power loads serves not only the initial stage
in addressing load management [11], but also establishes a baseline for predicting peak
demand [12].

The electrical grid structure faces challenges in balancing the power flow between
the production and consumption of energy. There is always a gap between the forecasted
demand and the available capacity to avoid energy shortages. Peak demand prediction
in energy smart grid management aims to improve such issues through power storage
scheduling and demand flexibility. The ultimate objective of peak demand management is
to achieve a balance between electricity supply and demand, thereby maximizing the overall
benefits of the power system. In addition, accurate peak demand prediction helps with peak
shaving and load smoothing. Enhanced efficiency in electricity production, stemming from
decreased fluctuations in power demand, will also contribute to a reduction in the carbon
footprint [13]. Overall, the precise forecasting of peak loads holds significant importance
in various applications including network constraint management, peak shaving, and the
scheduling of batteries and demand response. Considering that electricity consumption in
commercial buildings has increased by 82% since 1979 [14], optimizing the load predictions
is crucial in mitigating energy wastage in commercial building management.

The energy consumed by commercial buildings in the United States, encompassing
office spaces, retail establishments, educational and healthcare facilities as well as lodging,
primarily originated from electricity and natural gas, accounting for 60% and 34% of
the total consumption, respectively [14]. Notably, electricity is the most commonly used
energy source by commercial buildings in the United States, which is utilized in 95% of
establishments, representing 98% of the total floorspace [15]. In commercial supermarkets,
over 70% of the energy utilized is in the form of electricity, primarily dedicated to powering
refrigeration equipment [16,17]. The remaining portion of the energy is allocated to tasks
such as lighting, HVAC (heating, ventilation, and air conditioning), baking, and other
supplementary services [18]. In such a scenario, refrigeration systems can be utilized as
virtual batteries by increasing the energy consumption during low-demand hours and
discharging during peak hours to smooth out the electricity consumption. Therefore,
accurate predictions of the peak energy consumption as well as the time index are the key
preconditions in promoting such load-shaving strategies. In this work, a novel approach
is proposed that uses long short-term memory (LSTM) and multilayer perceptron (MLP)
networks to predict both the peak energy demand as well as the time index based on the
energy consumption data and weather information. The contributions of this work are
summarized as follows:

• An Energy Peaks and Timestamping Prediction (EPTP) framework is proposed as a
novel approach for commercial building applications to predict not only the value
of the peak energy consumption, but also the corresponding starting, peaking, and
ending indices in various data resolutions.

• The time indices are labeled with block maxima (BM) and base values to avoid long
peak durations, especially in low-frequency data. The labeling of the time indices not
only helps prevent prolonged durations, but also enables the second stage of training
of the EPTP framework.

• The proposed EPTP framework is also benchmarked using an existing open-source
dataset and baselined with common indexing practices, where the performance of the
EPTP framework is compared using hit rates and time deviations.

The rest of this work is organized as follows. Section 2 focuses on the existing method-
ologies for energy and peak demand predictions with potential gap areas. Section 3
introduces the overview of the MLP and LSTM structures and the corresponding hyper-
parameter tuning processes. Section 4 presents the proposed EPTP framework. Section 5
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discusses the evaluation of the EPTP Framework with two databases. Finally, Section 6
concludes the research with key outcomes and future work.

2. Related Work
2.1. Energy Consumption Forecasting in Commercial Building

Demand forecasting can be classified into three categories: short-term, medium-term,
and long-term [19]. By definition, short-term forecasts typically cover intervals from one
hour to one week, medium-term forecasts span from one week to one year, and long-term
forecasts extend beyond one year. The current research specifically focused on the short-
term forecasting of energy consumption, hence, the literature review primarily concentrated
on short-term forecasting within commercial building applications [20,21]. After reviewing
the state-of-the-art models, it was observed that common methods for such tasks included
variations or hybrid models of autoregression integrated moving average [22,23], support
vector machine [24–26], and LSTM [27,28].

A hybrid model combining autoregression integrated moving average and support
vector regression (SVR) was introduced to predict electricity consumption with various
prediction horizons for an office building [23]. Their findings indicated that the perfor-
mance of the proposed hybrid model excelled with a shorter prediction horizon, while the
vanilla autoregression integrated moving average model exhibited better predictions for
longer horizons. However, their proposed model was only tested on a small-scale dataset
comprising 117 daily electricity consumption datapoints. The H-EMD-SVR-PSO hybrid
model was proposed to improve the forecasting accuracy of a supermarket in Australia [24].
Their model employed empirical mode decomposition to decompose electric load data into
nine intrinsic mode functions. The intrinsic mode functions were categorized into three
groups and modeled separately using SVR with particle swarm optimization [25]. Their
study concluded that the proposed H-EMD-SVR-PSO model achieved high accuracy and
was easily interpretable. A comparison between LSTM and support vector machine models
on a building with a significant commercial profile was conducted [28] with performance
assessment using the mean absolute error (MAE), root mean squared error (RMSE), and
mean absolute percentage error (MAPE). The study concluded that the LSTM model ex-
hibited higher prediction accuracy when a sufficient amount of load data was available.
However, in cases of limited training data and when prioritizing time cost, the overall
performance favored the support vector machine model.

Based on the literature review on short-term forecasts in commercial buildings, the
proposed framework incorporated LSTM as a baseline model for peak demand prediction.
Aligning with the findings of [29], which identified three typical types of independent
variables in commercial building energy models (i.e., weather, occupancy, and time), this
work included weather information and time-related variables in the energy prediction
modeling, considering data availability. To assess the performance of this work, common
performance metrics such as MAE, RMSE, and MAPE, consistent with standard practices
in energy prediction model evaluation, were employed.

2.2. Peak Demand Prediction

Peak demand prediction has gained increasing attention across various industries for
load management and scheduling purposes. Studies in this domain, particularly focusing
on residential houses and neighborhood energy management, have employed techniques
such as the ensemble LSTM model [30], CNN sequence-to-sequence network [31], and
cluster analysis [32]. In addition, the peak load demand in a distribution zone substation
located in Australia was forecasted and concluded that the LSTM model could predict
faster and more accurately compared with feed-forward neural networks and recurrent
neural networks [33]. The hybrid complete ensemble empirical mode decomposition
with adaptive noise for data decomposition and extreme gradient boosting for predicting
energy consumption proposed by [34] were tested using the daily peak power consumption
data from an intake tower. On a broader scale, research on peak demand forecasting has
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extended to include studies on power system networks [35], national grids [36], and daily
electricity demand data [37,38].

Research on peak demand predictions has also directed its attention to commercial
buildings. Ensemble models were proposed to predict next-day total energy consumption
and peak power demand [39]. Their method employed a data mining-based approach,
with variable selection for individual models based on recursive feature elimination, and
optimization of ensemble models weighted using the genetic algorithm. Their study
concluded that the accuracy of the ensemble model surpassed that of individual base
models. However, it is worth noting that the prediction of the peak power demand was
treated as a standalone task, with recursive feature elimination and genetic algorithm steps
conducted independently of energy consumption prediction. Furthermore, the model did
not incorporate the timing of peak demand, which is essential information for peak shaving
strategies. A probabilistic regression model for the daily electrical peak demand was
suggested in [40]. Their modeling approach involved using temperature and occupancy
as predictors for electric demand. Their research concluded that the proposed method
outperformed machine learning algorithms, specifically support vector machine, random
forest, and MLP, when dealing with small datasets. However, the model was trained
with only one datapoint for each feature per day, predicting only the maximum daily
consumption and considering only the peak output value. An artificial neural network
model with a Bayesian regularization algorithm was investigated for predicting day-ahead
electricity usage in 15-min intervals [41]. Their results indicated that the proposed adaptive
training methods could reasonably predict daily peak electricity usage. However, the peak
hours were predefined by the suppliers and based solely on seasonal considerations.

The aforementioned methodologies employed various approaches to predict the
magnitude of peak energy consumption, but the research did not focus on determining
the specific index or timestamp corresponding to the peak occurrence. Conversely, daily
electricity load peak demand was considered as the maximum value of the electricity
power demand curve over one day [36]. They proposed a multi-resolution approach to
forecasting both the magnitude and the timing of the peak demand occurrence. Their
proposed algorithm was tested with a half-hourly demand resolution using the UK total
national demand. The authors reported a mixed performance, particularly in peak timing
forecasting, especially when employing a multi-resolution generalized additive model.
Furthermore, another study proposed employing probabilistic forecasting with forecast
fusion in the low-voltage network to predict peak density and timing [42]. Their proposed
framework underwent testing using real smart meter data and a hypothetical low-voltage
network hierarchy comprising feeders as well as secondary and primary substations.
They concluded that the proposed framework based on generalized additive models for
location, scale, and shape contrasts with non-parametric methods and yielded an average
improvement of 5% compared to kernel density estimation.

From this literature review, it can be deduced that there is a notable gap in the ex-
ploration of the time index for peak demand within the domain of commercial building
applications. Most studies primarily focused on predicting the magnitude of the peak
value, neglecting the timestamp associated with the peak occurrence. This lack of emphasis
on identifying timestamps is a common trend observed in commercial buildings and other
applications such as residential houses. Additionally, the performance of the approaches in
timestamp forecasting has shown mixed results, with some studies utilizing hypothetical
networks rather than real-world applications. To address this gap, this paper acknowledges
the significance of predicting both the magnitude and index of the peak, aiming to enhance
smart grid management and operational planning [43]. The proposed framework goes
beyond solely forecasting the peak demand value; it also focuses on predicting the times-
tamps for the starting, peaking, and ending indices specifically tailored for a commercial
supermarket located in Quebec, Canada.



Energies 2024, 17, 1672 5 of 24

3. Background

This section provides the background information for the proposed framework, fo-
cusing on deep learning modeling. This review includes an overview of MLP, the LSTM
network, and hyperparameter optimization techniques.

3.1. Multilayer Perceptron (MLP)

MLP is a type of neural network that makes no prior assumptions concerning the
data distribution and has been shown to be an effective alternative to traditional statistical
techniques [44]. MLP models are proven to successfully detect delays and time deviations
in flight and traffic controls [45,46]. Figure 1 shows the basic structure of a simple MLP
model where each MLP model consists of an input layer, one or more hidden layers,
and an output layer. The input layer is responsible for receiving a vector of values to be
processed with a matching neuron size to the input vector length. Hidden layers are not
directly exposed to the input data but are connected to the output values from the previous
layers. Finally, the output layer is the last layer in the MLP model, serving the purpose of
outputting a vector of values that correspond to the required format and vector length.
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Figure 1. An MLP model with two hidden layers.

The MLP model operates as a network of interconnected neurons, wherein the trans-
mission of information is governed by a nonlinear transformation. This transformation
is applied to the weighted sum of inputs, as delineated in Equation (1). This process
underpins the model’s ability to learn from and adapt to various data inputs. Figure 2
shows the graphic demonstration of a single neuron where x = {x1, x2, . . . , xn} is the
input vector, w = {w1, w2, . . . , wn} is the corresponding weight vector, and b is the bias
term for adjusting the offset. The activation function f is applied to the weighted sum of
the inputs. A differentiable error function is required for the training of the MLP network.
Common error functions include RMSE and MAE for regression tasks, and cross entropy
loss for classification tasks. The back-propagation training algorithm uses gradient descent
in attempting to find the global minimal for the error surface. In this training process, the
weights of the MLP network are initially set to small random values, leading to a random
point on the error surface. The local gradient is then calculated with the back-propagation
algorithm so that the weights are updated toward the steepest downside. This process is
continued until the error reaches the desired or smallest value.

y = f
(

b + ∑n
i=1 xiwi

)
(1)
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3.2. Long Short-Term Memory (LSTM) Network

The LSTM network is a type of recurrent neural network (RNN) that is predominantly
used to learn and process sequential data. Traditional RNN systems are problematic in
practice as they suffer from vanishing gradients or exploding gradients as the unrolling
process is presented without justification from the beginning of the sequence to the end [47].
The LSTM network is then introduced to address this problem by incorporating nonlinear
controls into the RNN cells [48]. Due to the ability to capture long-term dependencies
without suffering from optimization hurdles, LSTM networks have been widely used in
language modeling [49], text sentiment analysis [50], and time series forecasting [27,51,52].

Figure 3 shows the internal structure of an LSTM unit with three gates, one node, and
two states. The gates control the flow of information with a sigmoid activation function,
which limits the value between 0 and 1 to alleviate the vanishing gradients from a classic
RNN cell. More specifically, It is the input gate, controlling the amount of information to
be added to the current memory cell’s internal state. Ft is the forget gate, controlling the
amount of information to keep from the previous state. Ot is the output gate, controlling
whether the memory cell influences the output at the respective timestep. The calculations
for the gate values are shown in Equation (2).

It = σ(XtWxi + Ht−1Whi + bi)

Ft = σ
(

XtWx f + Ht−1Wh f + b f

)
Ot = σ(XtWxo + Ht−1Who + bo)

(2)

where X are the input values, H are the hidden states, W are the corresponding weights,
and b is the corresponding bias value.
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Equation (3) shows the calculation of the node and states for the internal structure

of an LSTM unit. The input node
∼
Ct, combines the information from the current input

value and the hidden state from the previous timestep using the tanh activation function to
restrict the value between −1 and 1. Ct denotes the cell state, also known as the long-term
memory. The information from the internal state of the previous timestep and the current
input node is combined using the elementwise product operation. Ht denotes the hidden
state, also known as the short-term memory, in which the value is also restricted with the
elementwise multiplication.

∼
Ct = tanh(XtWxc + Ht−1Whc + bc)

Ct = Ft
⊙

Ct−1 + It
⊙ ∼

Ct
Ht = Ot

⊙
tanh(Ct)

(3)

3.3. Hyperparameter Optimization

Hyperparameters are variables in machine learning systems that govern the learning
process to achieve optimized performance [53]. In deep learning systems, hyperparameters
encompass elements such as the number of neurons and hidden layers, the learning rate,
and the activation function. In models incorporating LSTM layers, optimizing the sliding
window length is crucial, supported by sound reasoning. Neuron size and the number of
hidden layers contribute to the fitting of the model. An insufficient number of neurons will
result in the underfitting of the model, whereas too many neurons will increase the need
for training resources and may also lead to overfitting [54]. The learning rate generally
strongly impacts the stability and efficiency of the training process. A large value of the
learning rate results in the instability and divergence of the objective function, whereas
choosing a value that is too small results in slow learning and inefficiency. Activation
functions improve the ability of the model to extract complex features from data. Choices
of activation function include sigmoid, tanh, rectified linear unit (ReLU), and leaky ReLU,
each with distinct advantages and value ranges [55]. The size of the sliding window
length signifies the balance between the prediction accuracy and the utilization of training
resources. Increasing the window size introduces additional temporal dependencies by
incorporating more historical values as input variables.

As the hyperparameters cannot be directly estimated from the data and no analytical
formulas exist to calculate the appropriate values, tuning techniques are needed to optimize
the model performance [56]. Grid search, as one of the fundamental methods, contains a
user-defined search space with a finite set of hyperparameter combinations. Due to the full
factorial design, the required number of evaluations grows exponentially as the number
of tuning parameters increases [57]. This property makes the grid search algorithm only
reliable in low-dimensional spaces due to inefficiencies and the need for computational
resources. An alternative to grid search is the random search algorithm, where the user
only specifies the search space as a boundary of hyperparameter values. Bergstra and
Bengio [58] proved that randomly chosen trials are more efficient as the random points are
far more evenly distributed in the subspaces. The Bayesian optimization algorithm contains
the probabilistic surrogate model and an acquisition function as key components [59]. As
the acquisition function needs to be updated after each trial, the training procedures are
time-consuming, thus resulting in high computational costs. The naïve form of Bayesian
optimization also faces limitations in tuning categorical variables such as the activation
functions. Therefore, due to the proven efficiency of the random search algorithm and the
need for tuning the activation function, the proposed framework incorporated random
search as the hyperparameter tuning method.

4. The Proposed EPTP Framework

This section introduces the proposed Energy Peaks and Timestamping Prediction
(EPTP) framework as a novel approach for peak demand detection using commercial build-
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ing electricity consumption data and weather information. Figure 4 shows an overview
of the proposed EPTP framework with three phases, namely data preprocessing, energy
consumption prediction with the LSTM network, and timestamp prediction with the MLP
model. The energy consumption raw data were obtained from the sensor reading in the
commercial supermarket. Braun et al. [60] studied the energy consumption pattern in
commercial supermarkets and concluded that half of the electricity usage in commercial
supermarkets was directly related to the weather. Therefore, the outdoor temperature
and dewpoint temperatures were extracted from the closest weather station as additional
features. The raw data then underwent the data preprocessing steps to sanitize the input
required for the deep learning model. Time-related variables were feature engineered as
part of the input. In the second stage, the sanitized dataset passed through an LSTM model
to predict the energy consumption of the commercial supermarket for the next 24 h. Finally,
an MLP model was trained with the predicted 24-h energy consumption as the input to
obtain the indices, which were compared to the real starting, peaking, and ending labels
from the original dataset. As the end goal of the proposed EPTP framework, the prediction
should not only contain the peak consumption value but also the indices for which it occurs
24 h in advance. The details regarding each step are described as follows.
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4.1. Phase 1: Data Preprocessing

Impurities are naturally included in data collection when obtained from real-world
applications. Data preprocessing serves as a necessary step to remove impurities in the
dataset and improve accuracy and reliability in model training. Starting off, missing
and duplicated values may occur during the data collection stage, caused by unexpected
situations such as unstable sensor connections, data corruption, or hardware failures. In
this EPTP framework, short-term missing datapoints were linearly interpolated with the
average of the previous and next datapoints. The daily energy consumption data were
removed for any day containing long-term missing data. A two-hour threshold was used to
distinguish between short- and long-term missing values. Duplicated entries were simply
removed to ensure that each timestamp contained only one datapoint.

In the data collection stage, observations are recorded based on the sensor reading.
However, the sensor readings may contain noise, errors, or unwanted data due to potential
sensor faults or connection issues [61]. These observations are considered outliers that
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should be removed to improve the data quality for better prediction accuracy. In the EPTP
framework, the outliers in the commercial building energy consumption data are detected
and replaced with the Hampel filter [62]. The Hampel filter is a type of decision-based
filter that implements the moving window of the Hampel identifier [63] so that the sliding
window length is 2N + 1, where N represents a positive integer called the window half-
width. Equation (4) shows the detection and replacement of the outliers using the Hampel
filter, where mk and ψk represent the median and the median absolute deviations of the
sliding window, respectively, and τ represents the threshold value. In the utilization of
the Hampel filter, N and τ are user-defined parameters that can be adjusted based on the
specific outlier detection and replacement requirements. Specifically, N controls the size
of the sliding window that is used to calculate mk and ψk, and τ determines the boundary,
hence the number of outliers detected in the dataset. In this framework, N was chosen to
be the number of datapoints per day; τ was chosen to have the default value of 3 based on
Pearson’s rule [64].

yk =

{
mk, i f |xk − mk| > τ × ψk,
xk, i f |xk − mk| ≤ τ × ψk.

(4)

Since the energy consumption data of the commercial building and the weather
information originate from distinct sources, both the timestamp and frequency need to be
aligned. In the timestamp alignment, modifications included converting from Coordinated
Universal Time to local time, and accommodating any daylight-saving time changes. In the
conversion from Coordinated Universal Time to local time, the time zone was determined
using the geological location of the commercial building. For the observations collected
during the daylight-saving time changes, the data were treated as missing and duplicated
values and sanitized using the interpolation and removal methods. In frequency adjustment,
the data samples were either averaged to a lower frequency or interpolated to a higher
frequency based on the prediction requirements.

In the final steps of data preprocessing, cyclical feature encoder and normalization
were implemented to enhance the model performance. Electricity consumption in com-
mercial building is affected by the hour of the day [20]. This is especially true in the retail
industry, as the customer footprint increases during the store’s operating hours. Therefore,
in this proposed EPTP framework, the hour of the day (i.e., ranges between 0 and 23)
was included as an independent variable to predict energy consumption. A common
method for encoding the cyclical feature is to transform the data into two dimensions with
a trigonometric encoder. To ensure that each interval was uniquely represented, both sine
and cosine transformations were included, as shown in Equation (5). The complete dataset
was then split into training, validation, and test sets based on roughly a 70:15:15 ratio to
normalize the data using the min–max scaling technique to transform the features into the
same unit of measure as the raw attributes typically lack sufficient quality for obtaining
accurate predictive models. Normalization aims to transform the original attributes to
enhance the model’s predictive capability [65].xsin = sin

(
2πx

max(x)

)
xcos = cos

(
2πx

max(x)

) (5)

4.2. Phase 2: Predictor Model for Energy Consumption

The second phase of the proposed EPTP framework was to predict energy consump-
tion using the given features with LSTM modeling, as depicted in Figure 5. Input features
included energy consumption (unit: kW), outdoor temperature (unit: ◦C), dewpoint temper-
ature (unit: ◦C), and the transformed cyclical feature. The input layer of the LSTM modeling
accepts 3-dimensional input in the shape of batch size × window length × f eature count.
Shuffling was rejected on the input features to maintain the relationship for time series
sequential data.
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However, the output of the LSTM model depends on the frequency at which the data
are processed. The objective of this EPTP framework was not only to predict the amount
of energy usage for the peak consumption, but also the corresponding timestamp. Hence,
it was necessary to simultaneously generate the consumption for the next day. Therefore,
the output shape for Phase 2 was batch size × 24, batch size × 48, batch size × 96 for the 1-h,
30-min, and 15-min frequencies, respectively. The hyperparameters for the LSTM modeling
included the sliding window length, activation function, number of LSTM layers, batch
size, and learning rate. The random search algorithm was utilized for hyperparameter
optimization as the search space included a combination of continuous and categorical
variables. Random search optimization also aims to reduce computational power and
resources as tuning is processed with five hyperparameters.

In this framework, the energy consumption predictions were evaluated against the
MAE, RMSE, and MAPE. Equations (6)–(8) provide the formula for the calculations where
ti and t̂i represent the grounded truth and predicted values, respectively. Among all
three metrics, MAPE provides a better understanding of the error scale, whereas RMSE
and MAE are not normalized regarding the prediction scale. For MAPE, the higher the
value, the better the result, while for the RMSE and MAE, the lower the value, the better
the result.

RMSE =

√
1
m∑m

i=1

(
ti − t̂i

)2 (6)

MAE =
1
m∑m

i=1

∣∣ti − t̂i
∣∣ (7)

MAPE =
100%

m ∑m
i=1

∣∣∣∣ ti − t̂i
ti

∣∣∣∣ (8)

4.3. Phase 3: Peak Index Model for Timestamp Prediction

In the final phase of the EPTP framework, an MLP model was proposed to predict the
timestamps of the daily starting, peaking, and ending indices. To train for the MLP network,
three timestamps per day were designated as true labels, allowing for a comparison with
the model prediction. In such labeling, the peak consumption was defined using the BM
approach in the extreme value theory. BM consists of dividing the observation period
into non-overlapping blocks of equal size and retrieving the maximum value within each
block [66]. Consider the total number of observations as P, which can be divided into B
blocks of size M so that P = B × M. Equation (9) shows the retrieval of the peak value

where
∼
Xj represents all the datapoints in block b and Xb represents the corresponding peak

value in the same block.
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Xb = max
(b−1)M<j≤bM

∼
Xj (9)

After defining the peak consumption, the main contribution of this study was to
label the starting, peaking, and ending indices in each block b. The peaking index is
defined as the timestamp so that the maximum energy consumption has occurred in the
predefined window. In the EPTP framework, the window was defined to be 24 h so that
M = 24, 48, and 96 for the 1-h, 30-min, and 15-min resolutions, respectively. The starting
index was extracted using the base value on the left-hand side of the peak. The peak
occurrence was led by an increasing trend where the start timestamp of the increment was
defined as the starting index of the peak. Similarly, the ending index was defined using the
base value on the right-hand side. In addition, the duration of the peak was also validated
so that a long period of peak occurrence was avoided, especially for the low-frequency
data. This proposed EPTP framework used a four-hour threshold to validate the peak
duration. If the peak duration lasts more than four hours based on the previous steps, the
ending index will be updated if the consumption at the ending index is lower than that of
the starting index. Likewise, the starting index will be adjusted if the consumption at the
starting index is lower than that of the ending index. The justification ensures the duration
between the starting and peaking indices was equal to the duration between the peaking
and ending indices. This modification preserves the shape of the peak consumption while
preventing excessively long peak durations, especially for low-frequency data. Once the
true labels are extracted, these indices will be compared to the MLP model’s output for
performance evaluation.

As mentioned, MLP models have successfully detected delays and time deviations
for flight and traffic control applications. In this proposed EPTP framework, the MLP
input layer accepts a 2-dimensional input in the shape of day count × unit. Since the
model was designed to predict the daily peak indices, the input needs to encompass the
consumption data for the entire day. Consequently, depending on the prediction frequency,
the input shape for the final phase of the EPTP framework was presented as day count× 24,
day count× 48, and day count× 96 with respect to the 1-h, 30-min, and 15-min frequencies,
respectively. Shuffling was introduced at this stage as each day was treated as a standalone
sample.

The output of the MLP model was day count × 3, as each neuron represents a single
index. In the proposed EPTP framework, the starting, peaking, and ending indices need to
be predicted for upcoming peak-shaving strategies in commercial building applications.
As a consequence, the output layer contained three neurons. As previously mentioned,
the predicted index was then compared with the day ahead labels to identify the model
performance. The hyperparameters in this phase included the number of hidden layers and
neurons on each layer, activation function, and learning rate. As the MLP model predicts
the timestamps on a daily frequency (i.e., contains only 365 samples per year) and MLP is
less computationally heavy compared to LSTM modeling, batching was not required in
this phase.

The timestamp prediction was evaluated using the hit rate (HR) metric [67] and mean
absolute minute deviation. Equation (10) shows the calculation of the HR metric, where δ
represents the tolerance residual for the expected timestamp and h is a flag representing
whether the predicted timestamp is within the tolerance interval. In this study, the tolerance
interval was chosen to be one hour (HR-1) and two hours (HR-2) for a better comparison.
This means that δ was {1, 2}, {2, 4}, and {4, 8} for the 1-h, 30-min, and 15-min resolutions,
respectively. The higher the HR value, the better the results. Equation (11) shows the
calculation for translating the timestamp MAE error into minute deviations for consistency
as the model works with different resolutions.

HR =
100%

m ∑m
i=1 hi where hi =

{
1, t̂i ∈ [ti − δ, ti + δ]

0, otherwise.
(10)
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Mean Absolute Minute deviation =


MAE × 15 for 15 − minute resolution
MAE × 30 for 30 − minute resolution

MAE × 60 for 1 − hour resolution
(11)

5. Evaluation of the EPTP Framework

This section provides a comprehensive evaluation of the EPTP framework. The section
begins with the evaluation setup and metrics, followed by experiments conducted on two
real-world datasets with a detailed discussion of the findings.

5.1. Evaluation Setup

The models and experiments ran on a Linux server with an Intel® Core™ i7-6850K
Processor and 64 GB RAM, with 2 GPUs GeForce GTX 1080 Ti and OS Ubuntu 20.4.
The algorithm and framework were implemented in Python version 3.9.0. The deep
learning models in the case study were implemented using the PyTorch library with Ray
tune hyperparameter optimization. Table 1 shows the hyperparameters and their search
spaces for the LSTM modeling. The sliding window considers the weekly patterns of the
energy consumption data with lower and higher sensitivity. To generalize the results, Ray
tune optimization was performed with 20 trials. Since random search was used as the
optimization method with the learning rate as a continuous hyperparameter, regenerating
the searching process with the exact learning rate using seeding was impossible. Therefore,
the top three trials with the highest accuracy were repeated for the second time to generate
the averaged results. With the best energy consumption prediction results, the model
moves to the third phase of predicting the timestamps. Table 2 lists the hyperparameters
and their search spaces for the MLP modeling. Since the input layer consisted of the
predicted daily energy consumption data and the output layer contained three neurons,
one for each timestamp, the neuron size per hidden layer was chosen to provide a linear
division between the neurons of the input and the output layers. The MLP hyperparameter
optimization process was also performed with 20 trials, with the top three trials repeated
for a second time to generate the average results.

Table 1. Phase 2—hyperparameters and search space for LSTM model training.

Hyperparameter Description Search Space

Sliding window (SW) Historical window size Sample * × {5, 7, 10}
Activation The activation function for each layer {tanh, ReLu, Sigmoid}
Learning rate (LR) Learning rate for the optimizer Log uniform {0.01, 0.0001}
Batch size Number of samples processed before update {256, 512, 1024}
LSTM layer Number of LSTM layers {1, 2}

* Sample: Number of datapoints per day. Sample = {24, 48, 96} for {1-h, 30-min, 15-min} resolutions.

Table 2. Phase 3—hyperparameters and search space for MLP model training.

Hyperparameter Description Search Space

Hidden layer Number of hidden layers {1, 2, 3} *

Neuron size 1 The number of hidden neurons for the
first layer Random integer

 {18, 23} for 1 − hour
{34, 47} for 30 − minute
{66, 95} for 15 − minute

Neuron size 2 The number of hidden neurons for the
second layer Random integer

 {11, 17} for 1 − hour
{19, 33} for 30 − minute
{35, 65} for 15 − minute

Neuron size 3 The number of hidden neurons for the
third layer Random integer

 {4, 10} for 1 − hour
{4, 18} for 30 − minute
{4, 34} for 15 − minute

Activation The activation function between layer {tanh, ReLu, Sigmoid}
Learning rate (LR) Optimizer learning rate Log uniform {0.01, 0.0001}

* Only neuron size 2 will be used if the hidden layer = 1; neuron size 1 and 3 will be used if the hidden layer = 2.
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5.2. Evaluation with a Real-World Commercial Supermarket Dataset

The private commercial dataset was collected from a supermarket located in Quebec,
Canada. The store opens seven days a week from 8:00 a.m. to 10:00 p.m. (excluding
national holidays) and offers a variety of products and services including in-house bakeries,
fish and seafood departments, pastry-shop counters, and bistro express. The available
data ranged from 17 August 2020 to 24 January 2023, for a duration of 890 days. The
electricity consumption data were collected with a resolution of one datapoint per minute.
The weather information was extracted from the closest station listed on the Environment
Canada website at a frequency of 1 datapoint per hour. Three cases were created to evaluate
the model performance, specifically at a 1-h resolution, 30-min resolution, and 15-min
resolution. Figure 6 provides an example of the weekly energy consumption pattern in
which a higher resolution figure contains more details and spikiness. As the resolution
decreases, the figure shows a smoother trend with less information. With data splitting in
the proportions 70:15:15, the training set contained 620 days of information, and validation
and test sets each contained 135 days of information.
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5.2.1. Performance Baselines

In this experiment, two performance baselines were established for a later comparison
with the results of the proposed EPTP framework. The first baseline was created so that the
energy consumption prediction was based on SVR, followed by MLP for the timestamp
predictions. The raw data underwent the three phases outlined in Section 4, except that
the energy consumption prediction was performed with SVR instead of LSTM architec-
ture. Table 3 outlines the hyperparameters for the SVR model. The energy consumption
predictions with the highest accuracy were then grouped into days based on the number
of datapoints (i.e., 24, 48, and 96 datapoints for the 1-h, 30-min, and 15-min resolutions,
respectively). The grouped data then underwent the MLP model for timestamp prediction
of the starting, peaking, and ending indices.
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Table 3. List of the hyperparameters and search space in the SVR modeling for commercial supermar-
ket electricity consumption prediction.

Hyperparameter Description Search Space

C Regularization of the penalty {1, 100}
Kernel Kernel function used in the algorithm {‘rbf’, ‘poly’, Sigmoid}

The second baseline was created so that the peak index for the commercial building
application was extracted using the common method of BM with extreme value theory.
This means that instead of modeling for the indices, the timestamp for the highest energy
consumption for each day was treated as the peak index. However, since the model was
not trained to learn the starting and ending indices in the second baseline, only the peak
index was compared to the proposed EPTP framework in the later experiments. Table 4
summarizes the results of the two baseline models to compare the timestamp indices. The
results of the proposed EPTP framework were compared to the HR-1, HR-2, and minute
deviations to validate its performance.

Table 4. Results of the performance baselines for commercial supermarket electricity consumption
data in different resolutions.

Method Resolution Index HR-1 (%) HR-2 (%) Minutes

SVR + MLP

15-min
Start 20.71 47.17 146
Peak 18.57 49.28 148
End 22.86 51.43 145

30-min
Start 19.38 47.86 154
Peak 21.43 47.14 145
End 33.57 50 136

1-h
Start 25.2 47.86 165
Peak 30 46.43 150
End 25.72 42.86 191

LSTM + BM

15-min Peak 41.43 65.52 120

30-min Peak 50.88 78.1 113

1-h Peak 19.74 21.04 139

5.2.2. EPTP Performance on the Private Dataset

The model was initially proposed to work with 15-min resolutions based on the
industrial specifications. However, when high-frequency data are inaccessible, predictions
using lower-frequency data is deemed necessary. Therefore, three cases were used to
evaluate the model performance, specifically the 1-h, 30-min, and 15-min resolutions. The
raw data were then preprocessed so that the high-frequency data were averaged into the
expected resolution, and the low-frequency data were interpolated if necessary. The LSTM
network was optimized with 20 trials so that the best hyperparameters were used to retrieve
the energy prediction, thereafter, the index predictions were also optimized with 20 trials
using the MLP network.

The training time for each LSTM random search trial was around 0.52 h, 2.45 h, and
5.33 h for the 1-h, 30-min, and 15-min resolutions, respectively. The MLP training time was
negligent since the MLP model requires fewer training resources for predicting timestamps
on a daily frequency (i.e., contains only 365 samples per year). Table 5 summarizes the
results of the LSTM modeling and shows that the MAPE error on the energy consumption
was comparable across different resolutions, at around 4.5%. Table 6 shows the metrics in
evaluating the predicted timestamps and concludes that the predictive results presented a
better accuracy as the input data frequency increased (i.e., more samples per hour).
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Table 5. Results of the LSTM model in energy consumption prediction with commercial supermarket
electricity consumption data in different resolutions.

Resolution
Best Hyperparameters Results

SW Activation LR Batch Layers RMSE MAE MAPE (%)

15-min 960 tanh 0.000482 256 2 20.33 15.32 4.48
30-min 336 ReLu 0.000961 256 2 21.21 15.05 4.2

1-h 240 tanh 0.000955 512 1 22.54 16.52 4.88

Table 6. Results of the MLP model in timestamp prediction with commercial supermarket electricity
consumption data in different resolutions.

Resolution
Best Hyperparameters Results

Activation LR Layers Neuron Index HR-1 (%) HR-2 (%) Minutes

15-min Sigmoid 0.00913 3 {95, 64, 8}
Start 57.14 76.03 93
Peak 56.31 86.05 62
End 54.82 82.14 74

30-min Relu 0.00911 2 {36, 17}
Start 33.11 53.25 132
Peak 33.26 54.55 127
End 37.66 57.78 122

1-h Relu 0.00257 3 {18, 12, 6}
Start 32.46 42.86 172
Peak 30.52 52.6 148
End 32.47 53.91 163

5.2.3. Results and Discussions of the Commercial Supermarket Dataset

Figure 7 presents the boxplot of the differences between the predicted indices and the
real indices in all three resolutions using the EPTP framework. It shows that the range
between the first and third quartiles was narrower for the higher resolution data. However,
the boxplot of the 15-min resolution data showed some outliers in the prediction. Upon
further examination of Figures 8–10, which show the comparison between the density plot
of different resolutions with the EPTP framework, they revealed that the predicted results
better captured the bi-modal distribution in the real label as the frequency of data increased.
This prediction of the bi-modal timestamp label may have contributed to the outliers in the
boxplot for the higher frequency input. The discrepancy between the unimodal prediction
and the bi-modal true labels indicates that the model emphasizes a single dominant pattern
in the output, potentially due to the lack of input features. Future work on this study should
consider including the occupancy, customer footprint, or detailed operational schedules to
further improve the timestamp predictions in low-frequency data.

The EPTP framework also generated better results when compared to the performance
baselines, especially for the 15-min resolution data. The LSTM modeling outperformed
the SVR modeling in following the trends and fluctuations in the commercial supermarket
consumption data, resulting in better timestamp prediction results. The EPTP framework
also generated an HR-2 of 86% with 62-min deviations for the peak indices using 15-min res-
olution data, compared to 65% with 120-min deviations in the second performance baseline.
Although the second baseline of using BM provided a higher HR for the 30-min resolution,
it lacked insights into the starting and ending indices. While the EPTP framework still
needs to be further improved with more granular data frequency, it is still recommended
for providing insights into the duration of the peak period.
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5.3. Evaluation with the Benchmark Dataset

The benchmark dataset was retrieved from the Building Data Genome Project 2 (BDG2)
open-sourced data [68,69]. BDG2 contains 1636 non-residential buildings with a range of
two full years (2016–2017) at an hourly frequency, in which only twelve are categorized
into “Retail” for primary use type. For the purpose of benchmarking, the Fox Retail Manie
Building (FRMB) was chosen to model the peak values and timestamps. Figure 11 shows
an example of the weekly energy consumption for six out of twelve “Retail” buildings in
the BDG2 dataset. Upon close inspection, the FRMB had better data quality than the other
retail buildings. FRMB also has the highest correlation, at 0.56, with the private dataset that
was previously introduced. All other retail buildings from BDG2 had a correlation of below
0.47 with the private dataset. With data splitting in the proportions 70:15:15, the training set
contained 560 days of information, and the validation and test sets each contained 85 days
of information. As all of the data were provided at an hourly resolution, the benchmark
dataset was only used to model the low-frequency application.
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5.3.1. EPTP Performance on the Benchmark Dataset

The FRMB consumption data underwent the same procedure as the private commer-
cial supermarket dataset. However, since the BDG2 dataset contained two years of data
at an hourly resolution, only hourly modeling was performed to avoid excessive data
interpolation. The same search space was used for both the energy consumption predic-
tions and timestamp predictions to maintain consistency. Similarly, the LSTM network
was optimized with 20 trials so that the best hyperparameters were used to retrieve the
energy prediction. Thereafter, the index predictions were also optimized with 20 trials
using the MLP network. Table 7 summarizes the results of the LSTM modeling of FRMB
in comparison to the private commercial supermarket dataset that was previously dis-
cussed. Table 8 shows the timestamp predictions with MLP modeling compared with the
commercial supermarket results.
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Table 7. Comparison of the energy consumption prediction between FRMB and the private super-
market dataset at an hourly resolution.

Building
Best Hyperparameters Results

SW Activation LR Batch Layers RMSE MAE MAPE (%)

FRMB 168 ReLu 0.00095 512 2 13.97 10.25 14.83
Supermarket 240 tanh 0.000955 512 1 22.54 16.52 4.88

Table 8. Comparison of the timestamp prediction between FRMB and the private supermarket dataset
at an hourly resolution.

Building
Best Hyperparameters Results

Activation Lr Layers Neuron Index HR-1 (%) HR-2 (%) Minutes

FRMB Sigmoid 0.00551 2 {22, 6}
Start 36.25 56.25 166
Peak 43.75 66.25 128
End 38.75 56.25 181

Supermarket ReLu 0.00257 3 {18, 12, 6}
Start 32.46 42.86 172
Peak 30.52 52.6 148
End 32.47 53.91 163

5.3.2. Results and Discussions of the Benchmark Dataset

In the energy consumption predictions, as seen in Table 7, the RMSE and MAE errors
for FRMB were lower, and the MAPE error was high. Further examination concluded that
this was mainly attributed to two factors. First, the range of meter reading for FRMB was
on a lower scale compared to the private commercial supermarket dataset. The highest
reading from FRMB was around 118 kWh, whereas the highest reading from the private
commercial supermarket dataset was around 532 kW. Although the two datasets con-
sisted of different units, the value remained the same as the prediction was based on
an hourly resolution. Second, the commercial supermarket and the FRMB had different
operating schedules, as seen in Figure 12. It appears that the building is not in full op-
eration seven days a week as the consumption was substantially lower on some days
than others for the FRMB. In contrast, the commercial supermarket opens seven days a
week (excluding national holidays). This implies that the variation in energy consumption
for the private dataset was minimal. Since the details of the operating schedule was not
disclosed with the dataset, it is difficult to generate a model result as good as that of the
commercial supermarket.

The proposed EPTP framework resulted in a deviation of 128 min on the peak index for
FRMB and 148 min for the commercial building using the hourly resolution. Even though
the energy consumption prediction for FRMB deviated from the actual consumption, the
daily trend remained similar. In addition, Figure 13 shows that the real indices for FRMB
had a unimodal distribution compared to the bimodal distribution in the private commercial
supermarket dataset. This feature made the model easier to train, thus improving the
HR metrics.



Energies 2024, 17, 1672 20 of 24
Energies 2024, 17, x FOR PEER REVIEW 20 of 24 
 

 

 

Figure 12. Comparison of the meter reading in a weekly sample between the private commercial 

supermarket and FRMB. 

 

Figure 13. Comparison of the density plot for the FRMB test set between the real and predicted 

indices on an hourly resolution: (a) starting index, (b) peaking index, (c) ending index. 

6. Conclusions 

This paper proposed a three-phase EPTP framework designed to identify the energy 

peaks and precisely predict the timestamps associated with their occurrences. In the initial 

phase, energy consumption data and weather information were obtained and sanitized 

for the deep learning model. The sanitized data then passed through the second phase 

with LSTM modeling to predict the day-ahead energy consumption. Finally, the predicted 

Figure 12. Comparison of the meter reading in a weekly sample between the private commercial
supermarket and FRMB.

Energies 2024, 17, x FOR PEER REVIEW 20 of 24 
 

 

 

Figure 12. Comparison of the meter reading in a weekly sample between the private commercial 

supermarket and FRMB. 

 

Figure 13. Comparison of the density plot for the FRMB test set between the real and predicted 

indices on an hourly resolution: (a) starting index, (b) peaking index, (c) ending index. 

6. Conclusions 

This paper proposed a three-phase EPTP framework designed to identify the energy 

peaks and precisely predict the timestamps associated with their occurrences. In the initial 

phase, energy consumption data and weather information were obtained and sanitized 

for the deep learning model. The sanitized data then passed through the second phase 

with LSTM modeling to predict the day-ahead energy consumption. Finally, the predicted 

Figure 13. Comparison of the density plot for the FRMB test set between the real and predicted
indices on an hourly resolution: (a) starting index, (b) peaking index, (c) ending index.

6. Conclusions

This paper proposed a three-phase EPTP framework designed to identify the energy
peaks and precisely predict the timestamps associated with their occurrences. In the initial
phase, energy consumption data and weather information were obtained and sanitized
for the deep learning model. The sanitized data then passed through the second phase
with LSTM modeling to predict the day-ahead energy consumption. Finally, the predicted
day-ahead energy consumption was input to the MLP model to generate timestamps as the
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output. The performance of the MLP model was evaluated using peak occurrence labels
derived from real data. The proposed EPTP framework was evaluated with two datasets:
a private commercial supermarket and established open-source low-frequency data. The
results show that the EPTP framework exhibited a superior performance with higher
frequency data. When compared to the performance baselines, the HR-2 improved from
65.3% to 86%, and the minute deviation decreased from 120 min to 62 min for the 15-min
resolution. Finally, the EPTP framework was trained with an open-source retail building.
Despite FRMB being susceptible to fluctuations arising from varied operational patterns,
the predictions of the index values yielded comparable accuracy to those of the private
dataset with the same frequency. This experiment concludes that the unimodal distribution
of the real peaks will result in a higher HR compared to the bimodal distribution.

Further research will focus on enhancing the framework accuracy for low-resolution
data and providing additional validation. The proposed EPTP framework was initially
established to operate with high-resolution data, specifically 15-min intervals. However,
its performance degrades when applied to lower resolutions such as 1-h intervals. Hence,
areas of improvement should focus on improving the accuracy of the index prediction in
low-resolution data. During the benchmarking process of using open-sourced datasets,
the proposed EPTP framework revealed potential improvements in energy consumption
prediction, especially in accommodating varied operating patterns. In addition, the frame-
work should be examined to validate whether incorporating historical peak information
and store operation features such as occupancy and production could enhance the accuracy
of the timestamp prediction results. Finally, further research efforts should concentrate
on applying the model in real-time with Edge devices, aiming to enhance accessibility
and applicability.
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