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Abstract: The applicability of the ERA5 reanalysis for estimating wind and solar energy generation
over the contiguous United States is evaluated using wind speed and irradiance variables from
multiple observational data sets. After converting ERA5 and observed meteorological variables into
wind power and solar power, comparisons demonstrate that significant errors in the ERA5 reanalysis
exist that limit its direct applicability for a wind and solar energy analysis. Overall, ERA5-derived
solar power is biased high, while ERA5-derived wind power is biased low. During winter, the ERA5-
derived solar power is biased high by 23% on average, while on an annual basis, the ERA5-derived
wind power is biased low by 20%. ERA5-derived solar power errors are found to have consistent
characteristics across the contiguous United States. Errors for the shortest duration and most extreme
solar negative anomaly events are relatively small in the ERA5 when completely overcast conditions
occur in both the ERA5 and observations. However, longer-duration anomaly events on weekly to
monthly timescales, which include partially cloudy days or a mix of cloudy and sunny days, have
significant ERA5 errors. At 10 days duration, the ERA5-derived average solar power produced
during the largest negative anomaly events is 62% greater than observed. The ERA5 wind speed and
derived wind power negative biases are largely consistent across the central and northwestern U.S.,
and offshore, while the northeastern U.S. has an overall small net bias. For the ERA5-derived most
extreme negative anomaly wind power events, at some sites at 10 days duration, the ERA5-derived
wind power produced can be less than half of that observed. Corrections to ERA5 are derived using
a quantile–quantile method for solar power and linear regression of wind speed for wind power.
These methods are shown to avoid potential over-inflation of the reanalysis variability resulting
from differences between point measurements and the temporally and spatially smoother reanalysis
values. The corrections greatly reduce the ERA5 errors, including those for extreme events associated
with wind and solar energy droughts, which will be most challenging for electric grid operation.

Keywords: wind energy; solar energy; ERA5; bias correction; droughts

1. Introduction

Accurate meteorological data sets will be essential for planning the development of a
future energy system that includes large amounts of wind and solar energy. Gridded data
sets will be needed that cover all geographic areas where wind and solar generation will be
developed, and that span many decades in order to include the full range of meteorology
that can occur, including rare extreme events that would cause the greatest stress on the
electric grid system.

In a recent overview of meteorological requirements for energy system planning,
Sharp [1] emphasizes that, for energy system planning purposes, these wind and solar data
sets should be dynamically consistent and be thoroughly validated in the region where
they will be applied by calibrating them against observations and applying corrections

Energies 2024, 17, 1667. https://doi.org/10.3390/en17071667 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en17071667
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-9912-6396
https://orcid.org/0000-0001-5199-9633
https://doi.org/10.3390/en17071667
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en17071667?type=check_update&version=1


Energies 2024, 17, 1667 2 of 36

if needed. For solar, gridded data sets derived from combining visible satellite imagery
with radiative transfer models are now commonly used, as well as conventional reanalysis
products. For wind energy, only NWP-based reanalysis products are available. Reanalysis
products offer dynamically consistent wind and solar energy estimates, and among the
various global reanalysis data available, the ERA5 has been found to be the most accurate
for hub-height winds in a review by Gualtieri [2] and for wind and solar irradiances in the
work by Kies et al. [3], primarily using observations from Europe. In the present analysis,
extensive wind and solar irradiance observational data sets are used first to evaluate the
ERA5 reanalysis over the contiguous United States (CONUS) and then to correct systematic
errors found in the ERA5 using standard correction techniques.

Among the studies that have evaluated ERA5 hub-height wind speeds against obser-
vations, the most comprehensive is the analysis from Dörenkämper et al. [4], who used
wind speed observations from 291 tall towers across Europe. They found that the ERA5
underestimates the wind speed, with a negative bias of ~1.5 ms−1, resulting in a mean
wind power bias of −40%, with the bias increasing in magnitude in regions with more
complex terrain. Jourdier [5] used a smaller set of 7 tall towers and 1 lidar located in France,
finding a negative ERA5 bias of −0.5 ms−1 in flat terrain, which increased to −1.7 ms−1 in
areas of more complex terrain, and did not find any consistent diurnal variation. Similarly,
Gualtieri [6] compared ERA5 wind speeds to observations from 6 tall towers and found
that, on average, the ERA5 underestimated the observed speeds. In a comparison of the
ERA5 with hub-height wind speed observations at 14 sites in Europe, Brune et al. [7] found
significant variation in the bias between sites, with small but negative biases of −0.2 ms−1

over water and in areas of complex terrain, but a near-zero bias in flat terrain. In North
America, Pronk et al. [8] evaluated the ERA5 using one year of data from one lidar in the
central U.S., and offshore near New Jersey using two floating lidars. In both the onshore
and offshore locations, the ERA5 had large negative biases (−1.5 ms−1 and −0.8 ms−1,
respectively), which were both diurnally and seasonally independent. Sheridan et al. [9]
evaluated the ERA5 against two floating lidars off of Virginia, finding a negative ERA5
bias, although effects of the nearby coast may have impacted one of the sites. Sheridan
et al. [10] also evaluated the ERA5 against two floating lidars off of California, finding a
negative bias of −0.4 ms−1 for the lidar that had a complete year of data. Overall, these
results indicate that the ERA5 tends to underestimate observed hub-height wind speeds,
with the magnitude of the bias increasing in regions of more complex terrain, and with the
bias independent of time of day and season.

Multiple studies have also evaluated ERA5 solar radiation variables using in situ
observations. Most commonly, the downward shortwave radiation on a horizontal surface
has been the variable evaluated [11–16]. These studies all find that, on a yearly average
basis, the ERA5 has a 5–20 Wm−2 high bias, while some [11,16] also have demonstrated
that the positive bias is larger for cloudy conditions. Fewer studies have evaluated the
solar direct and diffuse components of downward solar irradiance, which are required
for calculating solar power on tilted panels. Using a network of 17 stations in China, Wu
et al. [17] found that the ERA5 underestimates the diffuse irradiance, while Jiang et al. [18],
using an observation network of 39 stations in China, found that the ERA5 underestimates
diffuse radiation by 43 Wm−2, but overestimates the direct radiation by 74 Wm−2. Using
observations from 14 stations, Li et al. [19] also found a negative ERA5 bias for diffuse
irradiance, and a positive bias for the direct beam, and concluded that, in addition to
cloud effects, at least part of these biases can be attributed to aerosols. Finally, Mathews
et al. [20] demonstrate that, if uncorrected, the solar irradiance errors in reanalysis data sets,
including the ERA5, can lead to distortions in the total energy requirement of long-duration
energy storage infrastructure in grid planning studies.

In the present analysis, the evaluation and calibration of the ERA5 is based on daily
averages of ERA5 wind speed and ERA5-derived solar power. Using daily averaged values
reduces scale mismatch effects that can arise between the comparison of high temporal
resolution point measurements with temporally and spatially smoother variables [21].
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However, for wind power, the calibration of the ERA5 is then applied to hourly values
of wind speed, while for solar power the corrections based on daily averages can also
be applied to ERA5-derived values at an hourly timescale, if desired. These issues are
discussed in more detail in Sections 4.3 and 5.2.

The outline of this manuscript is as follows. Section 2 describes the data sets used.
Section 3 describes the methods used for converting wind speed and solar irradiances to
wind and solar power. Section 4 evaluates the accuracy of ERA5 solar irradiances and
ERA5-derived solar power, and then corrects the power using a quantile–quantile-based
method. Section 5 evaluates the accuracy of ERA5 wind speeds and ERA5-derived wind
power, and then corrects the wind speeds using linear regression. Finally, Section 6 provides
a summary and additional discussion of the results. The novel aspects of this study are
that (1) it quantifies both ERA5-derived wind and solar energy errors across the CONUS;
(2) it demonstrates that corrections applied to daily ERA5-based values also improve the
accuracy of the most extreme negative anomaly values across a range of time scales from
weeks to months, which would be important for wind and solar energy drought analyses;
and (3) it demonstrates that the correction methods used do not result in any significant
over-inflation of the variability of the ERA5-derived values resulting from correcting model
grid cell values with hourly sampled point measurements.

2. Data Sets

Observational data sets are used to quantify the accuracy of ERA5 reanalysis fields
for renewable energy applications and to develop corrections to improve estimates of
wind and solar energy generation derived from the ERA5. For solar, the observations
include the NOAA Surface Radiation budget (SURFRAD) and Solar Radiation (SOLRAD)
networks, and the DOE Atmospheric Radiation Measurement Southern Great Plains (ARM-
SGP) array of solar irradiance observations. The DOE National Solar Radiation Database
(NSRDB) data set is also used to validate some of the assumptions made in correcting the
ERA5-derived solar power. For winds, we use observations of near turbine-height winds
from the first and second Wind Forecast Improvement Projects (WFIP1 and WFIP2), the
New York Mesonet, the DOE ARM-SGP lidar array, New York State Energy Research and
Development (NYSERDA) and DOE offshore buoy-mounted lidars, and individual towers
or lidars in several other locations. Each of these data sets is described in detail below.

2.1. ERA5

Meteorological reanalyses such as the ERA5 [22] provide continuous reconstructions
of past weather conditions by objectively combining a global weather prediction model
forecast with observations while accounting for uncertainty in both the forecast and the
observations. The ERA5 reanalysis, based on the ECMWF IFS model, has a native horizontal
resolution of ~31 km and is provided on a uniform 0.25 degree grid. Variables used in this
analysis include instantaneous hourly values of the 100 m zonal (U) and meridional (V)
wind components, 2 m temperature, 10 m horizontal wind speed, and surface pressure,
together with hourly accumulated solar direct beam irradiance on a horizontal plane
(DIRhor), diffuse irradiance on a horizontal plane (DHI), and global horizontal irradiance
(GHI). Because of limitations in the model’s physical parameterization schemes and grid
resolution, biases can occur in any of the reanalysis variables.

2.2. Solar Observations

The combined NOAA SURFRAD and SOLRAD network [23,24] comprises 14 stations
that span the CONUS (Figure 1). For the time period analyzed (1998–2020), the network
measured GHI, direct normal incident (DNI), and diffuse on a horizontal surface (DHI)
irradiances, in addition to surface albedo, temperature, and wind speed. Because of routine
blockage of the radiation sensors for some hours of the day, the Hanford, CA SOLRAD site
was excluded.
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Figure 1. NOAA SURFRAD (blue circles) and SOLRAD (red circles) observation sites, and the DOE
ARM-SGP network region (green square). The Hanford site was not included in the analysis due to
frequent missing data.

The DOE ARM-SGP radiation network (Figure 1) spans an approximately 370 km N-S
by 330 km E-W area in north-central Oklahoma and southern Kansas. In the calculation of
solar power, observations of DNI, DHI, and GHI [25], as well as surface albedo, temperature,
and wind speed, were used for the period of 1998–2020. During the entire period, there
were 28 unique sites. However, as some sites were discontinued while new sites were
established, the greatest number of sites potentially available at any one time was 23, and
the minimum number was 13. The typical spacing between sites of the latest and densest
configuration of stations was approximately 20 km, so each site corresponds approximately
to a unique ERA5 grid cell.

A potential challenge with using solar observational data sets for solar drought evalu-
ation is that spurious results could occur if extreme care is not taken to keep the instrument
domes clean and to avoid the effects of snow, frost, or rain on the measurements. The ARM-
SGP and SURFRAD/SOLRAD stations were used in this study because of their rigorous
maintenance, frequent calibration regimens, and careful quality assurance. In addition, the
instruments are ventilated or kept heated at a high temperature to eliminate the effects
of rain, dew, frost, and snow [23]. The overall accuracy for the DNI measurements is
2–3% [24] and for DHI it is ±0.5% [26]. We also note that surface radiation measurements
are an independent data set that can be used to evaluate the ERA5, as the ERA5 does not
assimilate any of these observations.

2.3. Wind Observations

As for solar, only wind observations (from lidar, sodar, or in situ anemometers on tall
towers) with well-defined maintenance/calibration regimes were used, and, in addition,
it was required that at least one full year of data was available for each location. For
tower data, we required booms on different sides of the towers to avoid tower shadowing
effects, the identification of potential anemometer icing events, and adequate metadata.
In addition, some observations in highly complex terrain or near coastlines were not
considered since they might not be representative of the ERA5 winds on its ~31 km grid.
The specific wind data sets used include lidar observations from the New York Mesonet
(2017–2021), NYSERDA offshore buoys (2019–2021), a DOE offshore buoy at Morro Bay,
California (2020–2021), the DOE ARM-SGP facility (2016–2021), and a NOAA Chemical
Sciences Laboratory site in Indiana (2016–2019); sodar and lidar observations from the
WFIP1 (2011−2012) and WFIP2 (2015–2017) field campaigns; and in situ anemometer
observations from 97 tall towers from the WFIP1 (2011–2012) Northern Study Area (NSA)
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and 27 towers from the Southern Study Area (SSA) field campaign, as well as the Iowa
Atmospheric Observatory (2016–2021). Many other wind data sets were considered but
rejected, based on the requirements stated above. Although the data sets are not exhaustive,
we believe they are sufficient to determine systematic ERA5 errors over much of the analysis
domain. Also, ERA5 data ingest tables (Hersbach, personal communication) were checked
to confirm that none of these wind observations were assimilated into the ERA5 reanalysis.

3. Converting Wind Speed and Solar Irradiance to Power

The steps followed in the calculation of solar and wind CFs and CF anomalies are
outlined in flow charts for solar (Appendix A, Figure A1) and for wind (Appendix A,
Figure A9). In the first part of this process, meteorological values of wind speed and solar
irradiances from the ERA5 and observations were first converted into power using the
following methods.

3.1. Solar Power Using Pvlib

Hourly averaged solar capacity factor (CF, the ratio of actual energy output over a
given period of time to the theoretical maximum energy output over that period) values
were constructed by first averaging the SURFRAD, SOLRAD, and SGP observational data
needed to compute solar power (GHI, DNI, DHI, 2 m temperature, 10 m wind speed,
surface pressure) from their original 1 or 3 min time resolution into 1 h blocks. If more
than 50% of the data were missing in a 1 h block, the entire hour was classified as missing.
To convert solar irradiances to solar power generated from a tilted solar panel, we used
the pvlib-1.4 software package developed by the DOE Sandia National Laboratory [27].
In this step, the hourly ERA5 and hourly averaged observed solar irradiance data were
transposed to the plane of a tilted solar panel, using solar zenith angles at the mid-point
of each hour, and the corresponding amount of generated solar power was determined.
The sub-models for this step include algorithms to track the position of the sun relative
to the tilted panel at each moment in time, and the semi-empirical model of Perez [28] to
calculate the portion of the horizontal diffuse irradiance that falls on the tilted panel. The
calculation also includes reflected irradiance from the ground and temperature and wind
speed dependencies of the solar panel efficiency. The calculations were made assuming
southward-facing solar panels, with fixed tilt angles that are a function of latitude that
maximizes the annual average solar energy generation [29]. Hourly solar power values
were then averaged into daily values, with the entire day classified as missing if any of the
hourly averages were missing between sunrise and sunset.

3.2. Wind Turbine Power Curves

As was carried out for solar, hourly, and then daily values of wind speed and wind
power were computed for both the observations and ERA5 fields. Conversion of turbine-
height wind speed to power is made by applying the non-dimensional power curves used
in the DOE WIND Toolkit simulations [30]. Three different onshore power curves are
employed: Class I for climatological mean wind speeds greater than 10 ms−1, Class II
for mean wind speeds between 10 and 7.5 ms−1, and Class III for mean wind speeds less
than 7.5 ms−1. In addition, an offshore power curve is applied to the over-water ERA5
grid points used in the analysis domain. Three of the power curves have high-speed
cutouts at 25 ms−1, while the Class III curve has a cutout speed of 22 ms−1. Density effects
are accounted for by multiplying the power curves by the ratio ρ/ρ, where ρ = P/RT,
R = 287.05 J kg−1 K−1, and ρ = 1.225 kg m−3, with P and T being the ERA5 values of surface
pressure and temperature. All wind speed to wind power conversions are carried out using
hourly ERA5 winds and hourly averaged observed wind speeds.
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4. Evaluation and Bias Correction of ERA5-Derived Solar Capacity Factor
Systematic Errors

Evaluating the accuracy of a model-based estimate of a meteorological variable with
point observations is challenging because of the inherent spatial scale mismatch between
the two [21]. Since the grid cell average would be expected to be smoother and have
less variability than a point measurement, if one uses a point measurement to correct a
model-based value that is inherently a spatial average, care must be taken to ensure that the
correction process does not lead to an erroneous inflation of the model variances [31]. Such
over-inflated variances would not be representative of the wind or solar power generated
over a grid cell, assuming the generators are geographically dispersed across that cell.
To maintain the maximum variability in the ERA5 values, the nearest ERA5 gridpoint is
selected for comparison to the observations, as any spatial interpolation method would
introduce some degree of undesirable smoothing.

Unfortunately, there are no wind or solar irradiance observational networks with
sufficient density to allow for comparisons of ERA5 grid cell values with the average of
multiple observations within each of those cells. For solar irradiance however, in Section 4.3,
we investigate the potential for over-inflation of the corrected ERA5-based solar power
by making use of the National Solar Radiation Database (NSRDB) that provides a 4 km
resolution indirect estimate of the solar irradiances based on satellite observations and a
radiative transfer model.

For tilted solar panels, solar power depends primarily on direct and diffuse radiation,
with secondary dependencies on an albedo-dependent reflected GHI, temperature, and
wind speed. Although one could choose to correct the systematic errors in the two primary
variables (direct and diffuse irradiance), the approach we take is to correct the solar power
itself. The reason why this approach was taken is illustrated in Figure 2, which compares
observations taken at the SURFRAD Pennsylvania State University (PSU) site with ERA5.
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in each panel.
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The top two panels of Figure 2 compare daily averaged values of the ERA5 and
observed GHI (Figure 2a), and the ERA5 and observed DHI irradiances (Figure 2b). The
GHI comparison has good agreement between the ERA5 and PSU observations, with
correlation r = 0.95, normalized RMSE = 20% (RMSE divided by the average of the observed
and ERA5 means, expressed as a percent), and a normalized mean bias (NMB) of only
+5.2%. The DHI irradiances (Figure 2b), however, have larger discrepancies between the
ERA5 and observations, with r = 0.83, normalized RMSE = 38%, and an NMB of −18%.
Figure 2c,d compare the direct beam irradiance in two ways: ERA5 direct beam on a
horizontal surface (DIRhor) converted to DNI (the native SURFRAD variable, Figure 2c),
and using the SURFRAD DNI converted to DIRhor (the native ERA5 variable, Figure 2d).
The conversions used hourly averaged values of DNI and DIRhor, together with solar
zenith angles at an hourly resolution, before calculating daily values. Figure 2 illustrates
that the ERA5 direct and diffuse components have compensating mean errors, with the
ERA5 DIRhor (Figure 2d) having a bias of +20.1 W/m2, while DHI has a negative bias of
−12.9 W/m2 (Figure 2b). Their sum is close to the ERA5 GHI bias of +8.0 W/m2. We also
note that the normalized RMSE for DHI (38%) and DNI (49%) are both larger than for GHI
(20%). Since solar power has contributions from DNI and DHI, correcting errors in solar
power will be more accurate than correcting the two components separately because both
the systematic and random errors will be smaller. In addition, because there is scatter in the
errors, it is possible that independent corrections applied to DHI and DNI that are then used
to derive solar power could result in non-physical values. It is also noted that applying
standard linear regression corrections will result in numerous days with non-physical
negative values of DNI. For these reasons, we choose to use a quantile–quantile method to
correct the solar CF values rather than DNI and DHI separately, which avoids the problem
of creating non-physical values.

Similar underestimates of the DHI irradiances and overestimates of the DIRhor irradi-
ances are found for all of the SURFRAD, SOLRAD, and ARM-SGP sites. We note that Wu
et al. [17], Jiang et al. [18], and Li et al. [19] also found similar opposing diffuse and direct
beam biases in the ERA5 in China, demonstrating the consistency of these errors across
diverse geographic regions.

We next compare ERA5 reanalysis-derived solar power, through mean annual cy-
cle, scatter, histogram, and intensity–duration plots. We show detailed analyses at the
SURFRAD PSU site, with summary plots for the remaining SURFRAD, SOLRAD, and
ARM-SGP sites.

4.1. Quantile–Quantile Correction of Solar Power

The annual cycle of daily solar power CF for the SURFRAD PSU site and the corre-
sponding ERA5 data are shown in Figure 3a, averaged over the time period 1998–2020.
ERA5 data are included only if the corresponding PSU daily values are present. We note
that even after averaging over 23 years of observations, the two time series still have
considerable day-to-day variability. To obtain a better, smoothed estimate of the annual
cycle, we fit both the PSU and ERA5 annual cycle time series in a least squares sense to an
algebraic expression consisting of four pairs of harmonics using QR factorization:

CF(t) = a1 + a2 cos(ωt) + a3 sin(ωt) + a4cos(2ωt) + a5 sin(2ωt)
+a6 cos(3ωt) + a7 sin(3ωt) + a8 cos(4ωt) + a9 sin(4ωt)

where ω = 2π/365 days. We find that 4 sets of harmonics, which allow for 4 maxima and
4 minima through the annual cycle, closely follow the 23-year average of the solar radiation
data, while allowing for sub-seasonal anomalies to be fully represented.
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Figure 3. Annual cycle of daily mean solar capacity factor at the SURFRAD PSU site averaged over the
time period 1998–2020, for the SURFRAD observations (red), and from the time-matched ERA5 (blue),
with their corresponding four-harmonic fits (SURFRAD, yellow; ERA5, cyan), for the uncorrected
ERA5 (a) and corrected ERA5BC (b); scatter plots of ERA5 (c) and ERA5BC (d) vs. SURFRAD PSU
daily solar CF values. Orthogonal least squares linear fits are shown as the red lines and values are
given as in Figure 2.

The ERA5 and PSU capacity factor harmonic curves shown in Figure 3a agree well
during the warm season months of June through September, but diverge in the cooler
months from October through May, with the ERA5-derived values being up to 30% too
large in December and January. The ERA5 clearly has a seasonally varying bias error,
overestimating the true solar power in all but the summer months. Scatter plots of the
ERA5-derived versus PSU daily solar CFs are shown in Figure 3c. The ERA5-derived CF
values are in fairly close agreement for both small (overcast) and large (clear-sky) values,
but are considerably greater than the observations for most mid-range CF values. Results
in Figure 3a,c indicate that ERA5 solar CF errors are a function of season as well as CF
magnitude. A seasonally dependent correction of the ERA5 CFs is therefore appropriate.
We note that because the ERA5 and observations are in close agreement for completely
overcast days when the CFs of both are near zero (Figure 3c), simply subtracting the day-of-
year (DOY) biases from the ERA5 values is not a viable alternative because it would result
in non-physical negative CF values for these overcast conditions.

Various methods have been proposed to correct the model, reanalysis, or satellite-
based irradiances using in situ observations. Polo et al. [32] provide a thorough review of
these methods, including linear regression [33,34], model output statistics (MOS) [35,36],
cumulative distribution function (CDF) adjustments [37], and measure–correlate–predict
(MCP) approaches [34]. In addition, Ruiz-Arias et al. [38] propose a method in which
gridded estimates of solar radiation are corrected in the vicinity of ground observations
based on the structure of the spatial covariance of the errors in both the gridded data set
and ground observations. In the present analysis, the seasonally varying ERA5 errors are
corrected using a standard quantile–quantile post-processing method (QM) that has been
often used for climate and weather models [39–45], which is functionally equivalent to the
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CDF adjustment technique. Cannon et al. [46] discuss the application of QM to climate
models’ projections of precipitation that have large trends and show that modified QM
approaches (QDM and DQM) can be superior for correcting extreme values. However, for
solar irradiances, the observed trends on continental scales are small and change signs on
decadal time scales [47], while for hub-height winds the observational record is too short
to accurately quantify long-term trends. Therefore, standard QM is used, and the ability
of QM to accurately correct extreme solar and wind energy anomalies is demonstrated.
Details of the QM procedure are provided in Appendix A.

The impact of the QM bias corrections on the CF annual cycle is seen in Figure 3b,d.
The ERA5 Bias Corrected (ERA5BC) and PSU 4-harmonic curves are in excellent agreement
and the DOY average values have similar ranges of values (Figure 3b). The ERA5BC has a
smaller bias, MAE, and RMSE, a slope closer to unity, and an increase in correlation from
0.90 to 0.92. In addition, the standard deviations of the ERA5BC CFs are in much closer
agreement with the observations (PSU = 0.084, ERA5 = 0.076, ERA5BC = 0.084).

Histograms of the ERA5, ERA5BC, and PSU CF values further demonstrate the im-
provement after QM correction (Figure 4). For the annual period (left panels), the un-
corrected ERA5 is seen to have too few occurrences of small CF values, and too many
moderately large CF values. The lack of small CF values is principally due to ERA5 errors
occurring in the winter months (DJF, center panels), while the excess ERA5 moderately
high values (CF ~ 0.2) occur in both winter and summer (JJA, right panels). For annual,
winter, and summer evaluation periods, the QM correction brings the ERA5BC histograms
into excellent agreement with the observations (Figure 4d–f).
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Mean annual cycle solar CF plots were generated for all 13 SURFRAD/SOLRAD sites
together with those for the aggregate of the 28 ARM-SGP sites (Appendix A, Figure A3).
The ERA5 error characteristics for each of these sites are very similar to those found at the
SURFRAD PSU site, namely that the ERA5 underestimates solar CFs during the autumn,
winter, and spring, with a near zero or significantly reduced bias during summer. Annual
quantile–quantile plots (Appendix A, Figure A4) also show a high degree of similarity
across all sites, with a tendency for slightly larger deviations from the 1-1 slope for sites in
the southwestern U.S. We note that the similarity of the ERA5 errors across the CONUS
would make it relatively easy to spatially interpolate bias corrections from these sites to the
entire ERA5 grid.
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Summary statistics (NMB, RMSE, correlation coefficient, and the ratio of standard devi-
ations) for the ERA5 and ERA5BC solar evaluation over all months of the year (Appendix A,
Figure A5) show a consistent improvement resulting from the QM corrections. Although
annual average solar CF NMB values range from about 5–15%, because the ERA5 biases
vary with season, winter NMB values are found to be approximately twice as large, averag-
ing +23% for all of the SURFRAD/SOLRAD sites, with the largest bias of +47% for Seattle
(SEA). Also, the highest correlation coefficient (0.94) is found for the ARM-SGP aggregate.
The aggregation process reduces the impacts of spatial variability and indicates that for
even small-sized grid balancing areas, the system-wide solar generation for a dispersed set
of generators would be very accurately estimated by the corrected ERA5.

4.2. Intensity–Duration Curves

Of particular importance for grid integration studies is knowledge of how accurately
the ERA5 replicates the most extreme low and high wind and solar energy events. Periods
with the lowest wind and solar generation will determine how transmission, storage,
and overbuilding of capacity will need to be configured in order to ensure that energy
generation will be able to match load. Periods with the highest wind and solar generation
provide valuable information on grid congestion, as well as on potential curtailment of
generation if no methods are found to make use of the excess generation. We note that the
results of capacity expansion model studies (e.g., [48–50]) that require generation to always
meet load will depend crucially on these most extreme events.

A useful way to evaluate the ERA5-derived CF extreme values is through intensity–
duration (I-D) curves, as shown in Figure 5 for the SURFRAD PSU site. Although there are
many different approaches in the hydrology literature to calculate I-D curves, the approach
we use focuses on the question of whether the corrections applied to the ERA5-derived
CFs improve the observed extreme events that will be most impactful for grid operations.
I-D curves are generated at each observation site by first calculating the time series of CF
anomalies for each day of the 23-year period of SURFRAD observations. The observed
anomalies are the differences between daily observed CF values and the 23-year mean
observed CF value, while the ERA5-derived anomalies are the differences between the daily
ERA5 CF values and the corresponding ERA5 mean CF over the same period. Next, the
observed anomaly values are normalized by the corresponding observed mean CF value
and the ERA5-derived CF anomalies are normalized by their corresponding ERA5-derived
mean CF value. Both are then expressed as a percent. Mathematically, the anomalies
are given by CFobsanom(ti) = 100 ×

(
CFobs(ti)− CFobs

)
/CFobs and CFeraanom(ti) =

100 ×
(
CFera(ti)− CFera

)
/CFera, where ti is a serial day counter over the 23 years of

observations, CFobs is the mean observed capacity factor over that time period, and
CFera is the ERA5 mean capacity factor over the same time period. Running means with
windows varying from 1 to 90 days duration are then applied to the time series of the daily
normalized CF anomalies. Next, the most negative occurrence is found within each of
these smoothed time series, with the center point in the window taken as the time stamp
for this worst “drought” event. Because of occasional missing observation data, at least
85% of the observed data are required to be present in any given window in order for
that minimum value to be selected. It is not required that the worst-case anomalies be
independent for each duration value, and, in fact, they most often contain overlapping
data. Anomalies defined in this way do, however, characterize what the most extreme
observed and ERA5-derived power anomalies are for any duration from daily to seasonal.
The same procedure is then applied finding the maximum values in the smoothed anomaly
time series, corresponding to the highest generation scenario. This method of calculating
extremes focuses on the worst event of any duration in the time period analyzed, under the
expectation that the energy system and grid would need to be designed to handle such an
extreme scenario.
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Figure 5. Intensity–duration curves of the largest normalized solar capacity factor anomalies (positive
and negative) as a function of duration, for the uncorrected ERA5 (blue curves) and the SURFRAD
PSU observations (red curves), using data for all months of the year, for years 1998–2020.

The I-D curves for the SURFRAD PSU site (Figure 5) have anomalies near −100% for a
duration of one day, for both the observations and ERA5, simply indicating that both have
completely overcast days when very little solar power would be produced. These anomaly
values become more positive with duration as sunny or partially cloudy days enter the
time-averaging window. At 90 days duration, the magnitude of the anomalies is largely
determined by the amplitude of the seasonal solar cycle. The I-D curves also show that
the ERA5-derived values underestimate the intensity of the negative solar anomalies for
almost all durations longer than 5 days, and underestimate the positive anomalies for all
durations. The magnitudes of these errors can exceed 25% of the observed anomalies.

I-D curves for each of the SURFRAD, SOLRAD, and spatially aggregated ARM-SGP
solar sites are shown in Figure 6. The panels are arranged based on geographic location,
with the more northern sites in the upper panels and the western sites in the left panels. In
general, the agreement is good for events of one to several day’s duration when overcast
conditions reduce solar power to near zero. However, as for the PSU site, for durations
of about a week or longer, the ERA5 consistently underestimates the magnitudes of the
normalized anomalies, both positive and negative, often by as much as 20–30%. QM
correction (Figure 7) eliminates the consistent underestimation of the solar CF positive
and negative extreme normalized anomalies with the two sets of curves now in close
agreement at each site. Although the QM corrections were applied to daily data, they
provide accurate estimates of extreme events for durations from one day to several months.
The full characterization of a drought event requires having an accurate mean annual cycle
and accurate extreme anomalies. The QM corrections provide both.
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sites and for the ARM aggregate. The abscissa on each panel is the duration from 1–90 days, and the
ordinate is CF anomaly as a percent, from −100 to +100. Sites corresponding to those in Figure 1 are
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Bismark (BIS), Madison (MSN), Sterling (STE), Desert Rock (DRA), Table Mountain (TBL), Bondville
(BON), Albuquerque (ABQ), ARM-SGP aggregate (ARM-agg), and Goodwin Creek (GWN).

4.3. NSRDB and SURFRAD

To address the issue of the potential for erroneous inflation of the ERA5 CF variability
resulting from the QM correction technique, we make use of an alternate data set, the
National Solar Radiation Database (NSRDB, [51]). The NSRDB is similar to a reanalysis data
set in that it combines both observations and a model to derive an estimate of atmospheric
variables. However, the NSRDB differs from the ERA5 in that it utilizes satellite cloud
observations together with a radiative transfer model, from which it estimates surface
values of the GHI, DNI, and DHI irradiances on a 4 km horizontal grid. In contrast,
observed cloud fields do not directly impact radiation estimates in the ERA5, and are only
used to provide wind velocity estimates through cloud feature tracking. Using the NSRDB
irradiance estimates together with ERA5 values of surface temperature, wind speed, and
albedo, we calculate solar CF values and normalized anomalies, in the same manner as
before, for each NSRDB grid point closest to the 13 SURFRAD/SOLRAD sites shown
previously in Figure 1. Next, using an 8 × 8 grid of NSRDB values centered around each
SURFRAD/SOLRAD location, the area mean GHI, DNI, and DHI values are calculated.
With the NSRDB 4 km resolution, these 64 points correspond to approximately one ERA5
grid cell at its 31 km native resolution. The area mean NSRDB irradiances are used to



Energies 2024, 17, 1667 13 of 36

calculate solar CFs and normalized anomalies for each of the 13 SURFRAD/SOLRAD sites,
which are then averaged to form network mean values.
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Figure 8 shows the resulting I-D curves for the four separate estimates (SURFRAD/
SOLRAD, ERA5, NSRDB single closest grid cell, NSRDB 8 × 8 grid cell area average) of the
largest anomalies. Both the single value and area-averaged NSRDB estimates are found
to be in close agreement with the SURFRAD/SOLRAD values, and all three have greater
anomaly amplitudes than the uncorrected ERA5. Importantly, the differences between
the NSRDB 8 × 8 area average and single closest grid cell values are negligible, with the
8 × 8 averages having only slightly smaller amplitudes. This indicates that any erroneous
over-inflation of the ERA5-derived CF values resulting from the QM correction is small
enough to not materially impact a solar anomaly (drought) analysis. We note that the
potential for QM correction-induced over-inflation is reduced by using daily averaged CF
values. It is possible, if not likely, that applying similar correction techniques to hourly
CF values would result in a significant over-inflation of reanalysis variances. However,
since the daily average-based seasonally varying correction factors are multiplicative, one
approach to correct hourly ERA5-derived solar CF values (if hourly values were desired)
is simply to apply the correction determined with daily averaged values to each hour of
the day. In essence, this assumes that the percentage biases in the ERA5 do not strongly
depend on the hour of the day. Comparisons of QM plots and histograms using hourly
data for the SURFRAD PSU site are shown in Appendix A, Figures A6 and A7, which
demonstrate that significant improvements to the hourly data are obtained using this
method. In addition, at every SURFRAD and SOLRAD site, the correlation coefficient, bias,
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MAE, and RMSE all improve after applying the daily average-derived corrections to hourly
values, demonstrating that this is a viable method for correcting hourly ERA5 values.

Energies 2024, 17, x FOR PEER REVIEW 14 of 36 
 

 

greater anomaly amplitudes than the uncorrected ERA5. Importantly, the differences be-
tween the NSRDB 8 × 8 area average and single closest grid cell values are negligible, with 
the 8 × 8 averages having only slightly smaller amplitudes. This indicates that any errone-
ous over-inflation of the ERA5-derived CF values resulting from the QM correction is 
small enough to not materially impact a solar anomaly (drought) analysis. We note that 
the potential for QM correction-induced over-inflation is reduced by using daily averaged 
CF values. It is possible, if not likely, that applying similar correction techniques to hourly 
CF values would result in a significant over-inflation of reanalysis variances. However, 
since the daily average-based seasonally varying correction factors are multiplicative, one 
approach to correct hourly ERA5-derived solar CF values (if hourly values were desired) 
is simply to apply the correction determined with daily averaged values to each hour of 
the day. In essence, this assumes that the percentage biases in the ERA5 do not strongly 
depend on the hour of the day. Comparisons of QM plots and histograms using hourly 
data for the SURFRAD PSU site are shown in Appendix, Figures A6 and A7, which 
demonstrate that significant improvements to the hourly data are obtained using this 
method. In addition, at every SURFRAD and SOLRAD site, the correlation coefficient, 
bias, MAE, and RMSE all improve after applying the daily average-derived corrections to 
hourly values, demonstrating that this is a viable method for correcting hourly ERA5 val-
ues. 

 
Figure 8. Intensity–duration curves over the full annual period derived from 13 SUR-
FRAD/SOLRAD sites and averaged over those sites (red curves); from the corresponding uncor-
rected ERA5 (blue lines); from the 13-site average of the closest NSRDB grid cells corresponding to 
each of the SURFRAD/SOLRAD sites (green dotted lines); and from the 13-site average using aver-
ages of an 8 × 8 array of NSRDB points surrounding each SURFRAD/SOLRAD site (purple dashed 
line). 

Returning to the mean errors between the observed and ERA5-derived anomalies 
averaged over the 13 SURFRAD/SOLRAD sites in Figure 8, the magnitude of the anomaly 
errors at any given duration can be referenced either to the amplitude of the observed 
anomaly or to the observed power produced, which is 100% plus the negative anomaly 
value (for negative anomalies). At 10 days duration, the negative CF anomaly error is 
(ERA5 CF anomaly—Observed CF anomaly) = −(67% − 79%) = 13%, which for the first 
option, is 16.5% of the 79% observed anomaly. However, for the second option, the ob-
served power produced is (100% + Observed CF anomaly) = (100% − 79%) = 21%, and 13% 
is 62% of the 21% observed power produced. This second interpretation option would be 
appropriate if one were to ask how much overbuilding of generation capacity would be 

Figure 8. Intensity–duration curves over the full annual period derived from 13 SURFRAD/SOLRAD
sites and averaged over those sites (red curves); from the corresponding uncorrected ERA5 (blue
lines); from the 13-site average of the closest NSRDB grid cells corresponding to each of the
SURFRAD/SOLRAD sites (green dotted lines); and from the 13-site average using averages of
an 8 × 8 array of NSRDB points surrounding each SURFRAD/SOLRAD site (purple dashed line).

Returning to the mean errors between the observed and ERA5-derived anomalies
averaged over the 13 SURFRAD/SOLRAD sites in Figure 8, the magnitude of the anomaly
errors at any given duration can be referenced either to the amplitude of the observed
anomaly or to the observed power produced, which is 100% plus the negative anomaly
value (for negative anomalies). At 10 days duration, the negative CF anomaly error is (ERA5
CF anomaly—Observed CF anomaly) = −(67% − 79%) = 13%, which for the first option, is
16.5% of the 79% observed anomaly. However, for the second option, the observed power
produced is (100% + Observed CF anomaly) = (100% − 79%) = 21%, and 13% is 62% of the
21% observed power produced. This second interpretation option would be appropriate
if one were to ask how much overbuilding of generation capacity would be needed to
compensate for the drought anomaly and shows the large impact that the ERA5 errors can
have when determining how to mitigate droughts.

Finally, it is noted that although the I-D evaluation focused on the most extreme event
at each duration in the observation time period, similar analyses have been conducted for
less extreme values. Whereas the single worst event for the 23 years in the PSU observation
record has, by definition, a return period of 23 years, in Appendix A, Figure A8, I-D
curves are shown for the average of the 10 most extreme anomaly events, which are
then the averages of all of the anomalies with return periods longer than 2.3 years. The
overestimation of the anomaly events by the ERA5-derived CF values is still present, while
the QM-corrected values (ERA5BC) are in very close agreement. A general finding is that
the agreement between the observations and QM-corrected values is better for shorter
return periods than for the single most extreme anomaly event.
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5. Evaluation of ERA5-Derived Wind Capacity Factor Systematic Errors

Although a varying density is included in our wind power calculations, we assume
that systematic errors in wind power values result only from errors in wind speed, not
density. This is because temporal variations in wind speed frequently produce changes
in power from zero to near 100% of maximum power capacity, while density temporal
variations typically range between +/− 10%, possibly reaching +/− 20% seasonally. In
addition, the weather models used for reanalyses are carefully tuned to produce accu-
rate estimates of near-surface temperature (from which, together with pressure, density
is derived). Therefore, we assume that systematic ERA5 errors in density will have a
small impact on wind power errors. Because the systematic wind power errors are then
dependent on a single model variable (wind speed), we choose to evaluate and correct
wind speed in order to obtain wind power that is unbiased, has the correct variability, and
can be used with any wind turbine power curve.

5.1. ARM-SGP Lidars

As the same analysis procedure is applied to each of the wind data sets analyzed, we
provide a detailed description of this process using one of these (the ARM-SGP lidars), and
then also provide summary figures comparing all of the data sets. The DOE ARM program
has operated a small network of vertical profiling lidars at the SGP facility since 2016,
consisting of 4 sites (E32, E37, E39, and E41) that form a square approximately 60 km on a
side, centered on the SGP central facility where a 5th lidar is maintained [52]. Although
none of the lidar data have been assimilated into the ERA5 reanalysis, radiosondes are
launched 4 times per day from the ARM-SGP central facility [53], which were assimilated
into the ERA5 (Hersbach, personal communication), and, therefore, the collocated lidar
wind profiles from this site are excluded from the analysis.

The first two lidar measurement heights are 90 and 116 m, which were linearly inter-
polated to 100 m. Six 10 min averages of scalar wind speed are nominally available each
hour, and a minimum of 3 values were required to form a valid hourly average, centered
on the hour. Wind CFs were then computed using the hourly averaged wind speeds and
using the wind turbine power curve classification consistent with the annual average 100 m
wind speed for each site. Daily averages of wind speed and power were then computed,
requiring at least 4 daytime and 4 nighttime hours to be present in order to reduce potential
biases associated with any diurnal variation of wind power. In addition, daily averaged
values from a minimum of 3 out of the 4 sites were required to be present to form a daily
aggregate value. ERA5 hourly wind speed values were time-matched with the hourly
observations, and the hours in which the observations were missing were excluded. ERA5
aggregate values of the daily mean wind speed and power were then computed as was
carried out for the lidar observations. For evaluation purposes, the same power curve at
each site was used for both the observations and ERA5, and the turbine high-speed cutout
was not applied to avoid the circumstance of one of either the ERA5 or observations being
just above the threshold and the other below, resulting in power values of 1 and 0, even
though the difference between the two wind speeds is small.

The annual cycle of daily wind speed is shown in Figure 9a. Six-year means for each
day of the year for the period of 2016–2021 were calculated for the observations and the
ERA5, along with their corresponding four-harmonic fits. An ERA5 wind speed low bias
of ~1.3 ms−1 is apparent, which is nearly constant across all seasons of the year. The
diurnal variation of wind speed (Figure 9b) shows that differences between the ERA5
and observations are nearly constant across the diurnal cycle. This indicates that using
corrections based on daily aggregate values would be appropriate, and also suggests that
ERA5 wind speed low biases are not due to stability effects, but more likely due to surface
roughness estimates or some other parameter that is diurnally independent.
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Figure 9. Annual cycle (a) and diurnal cycle (b) of uncorrected ERA5 100 m wind speed for the
aggregate of the 4 ARM-SGP sites for the time period of 2016–2021.

Scatter plots of the ARM-SGP lidar 4-site aggregate of daily mean wind speed and CF
values are shown in Figure 10i. The ERA5 wind speeds are consistently low for all values
of wind speed. An orthogonal least squares linear fit has a slope of 0.94, indicating that the
ERA5 also has slightly too little variability, and a correlation of 0.979, demonstrating that
other than the systematic offset, the ERA5 has very high skill at replicating the observed
daily wind speeds at these sites. We note that for the ARM-SGP aggregate, the −1.29 ms−1

ERA5 bias is equivalent to a normalized mean bias (NMB) of −16%, but that after applying
the appropriate power curve, this translates to a wind CF NMB of −27%. Using the least
squares fits to the daily aggregate wind speeds, corrections are then applied to the hourly
wind speeds, and wind power is then calculated from the corrected hourly values. Staffel
and Pfenninger [54] also applied linear regression to bias correct the MERRA reanalysis,
but in their analysis, they derived wind speed corrections needed to match the known
regional wind power generation, rather than observed wind speeds.

The annual cycle of wind CF for the ARM-SGP aggregate is shown in Figure 11,
both before (Figure 11a) and after the linear regression correction (Figure 11b). Without
correction, the ERA5-derived wind CFs are biased low by 0.14, which is the opposite
sign of the ERA5 high-bias found for solar CF for most seasons. The correction results in
near-perfect agreement through the complete annual cycle. Histograms of the daily wind
CF values (Figure 11c) indicate that the ERA5 produces too many low CF days and not
enough mid-to-high CF days compared to the ARM observations. After applying the linear
regression correction, the histograms of ERA5BC and the observations are in very close
agreement (Figure 11d). Scatter plots of CF values show the uncorrected ERA5-derived
values are too small except for extremely small and large values (Figure 11e) and are in
close agreement after applying the linear regression correction (Figure 11f). I-D curves
show that the ERA5 overestimates the magnitudes of both the most negative and positive
anomalies for almost all durations (Figure 11g), with the negative anomalies being as much
as 40% larger than the observed values on monthly or longer timescales. In terms of power
produced (100% minus the anomaly value), at 10 days duration, the ERA5-derived wind
power produced is less than half the observed power, highlighting the significant impact
that the ERA5 errors can have during wind drought events. The linear regression correction
greatly reduces these errors (Figure 11h).
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Figure 10. Scatter plots of observed and corresponding uncorrected ERA5-derived daily wind speeds
or aggregate wind speeds for 11 different wind data sets: (a) WFIP2 non-Gorge sodars and lidars;
(b) Iowa Atmospheric Observatory tower; (c) NY mesonet lidars; (d) WFIP1 NSA towers; (e) WFIP1
NSA sodars; (f) Indiana lidar; (g) WFIP1 SSA towers; (h) WFIP1 SSA sodars; (i) ARM-SGP lidars;
(j) Morro Bay buoy lidar; and (k) NYSERDA buoy lidars. Red lines show orthogonal least squares
linear fits. Panel titles display the slope, intercept, correlation coefficient, bias, and normalized mean
bias as a percent.
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Figure 11. Annual cycles of wind CF derived from the uncorrected ERA5 (a) and ERA5BC (b). The
6-year mean for each day of the year is shown for the average of 4 ARM-SGP lidars (red) and the
ERA5 or ERA5BC (blue). Corresponding four-harmonic fits are shown for the lidar observations
(yellow) and the ERA5 or ERA5BC (cyan). Histograms of derived wind CF from the observations
(orange) and uncorrected ERA5 (blue) (c), and for ERA5BC (d). Scatter plots of ERA5-derived versus
observed CF values for the uncorrected ERA5 (e) and ERA5BC (f). Intensity–duration curves of
capacity factor anomalies as a percent of the annual mean capacity factor, as a function of duration,
for the observations (red) and ERA5 (g) or ERA5BC (h).
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5.2. Corrections to the Remaining Wind Data Sets

To assess whether a similar correction could be applied to the ERA5 across the entire
analysis domain, we repeat the same procedure using each of the wind data sets listed in
Section 2.3. Details of the processing for each data set are provided in Appendix A.

Scatter plots of the daily average wind speed for each of the wind data sets are shown
in Figure 10. For those data sets that have multiple observation sites, the spatial aggregate
of the daily mean wind speeds is shown. At all land-based sites from the Pacific coast to
Iowa, the scatter plots consistently have slopes less than unity, negative intercepts, and
negative biases, with the 6-network (WFIP1 NSA towers, WFIP1 NSA sodars, WFIP1 SSA
towers, WFIP1 SSA sodars, WFIP2 sodars and lidars, and ARM SGP lidars) average wind
speed NMB being −12%, and the corresponding wind CF NMB = −20%. The negative
biases occur regardless of whether the observations come from tall towers, sodars, or lidars.
In contrast, further east the NYmesonet aggregate and the Indiana site both have slopes
greater than unity, with small wind speed normalized mean biases of −1.8% and +3.9%,
respectively. Scatter plots of daily average 100 m wind speed for the over-ocean wind
data sets are shown in the bottom row of Figure 10. The aggregate of the two NYSERDA
lidar buoys on the east coast [55], and the Morro Bay west coast lidar data sets both show
similar ERA5 error characteristics, which also closely match those found over the central
and western CONUS, with slopes less than unity and negative biases. Summary statistics
(NMB, RMSE, correlation coefficient, and the ratio of standard deviations) for the ERA5
and ERA5BC wind evaluation (Appendix A, Figure A10) show a consistent improvement
resulting from the linear regression corrections.

Intensity–duration diagrams for each of the wind data sets are shown in Figure 12
for the ERA5 and Figure 13 for the ERA5BC. The ERA5-derived values (Figure 12) display
varying degrees of agreement with the observed values. As was shown for the ARM lidar
data set, applying a linear wind speed correction specific to each of the individual data sets
yields closer agreement between the ERA5BC-derived and observation-derived extreme
anomalies, as depicted in the I-D curves.

A map of the mean ERA5 wind speed biases for each of the wind data sets is shown
in Figure 14, individually for each observation site, except for the WFIP1 NSA and SSA
tall tower sites, which are only shown in aggregate due to the large number of towers
and because of data gaps in many of the individual tower data records. An ERA5 low
wind speed bias is found to exist generally across the central and western U.S., similar
to that shown previously for the ARM-SGP sites. The three offshore sites also show
a negative wind speed bias. In contrast, although the number of observation sites is
limited, in the northeastern U.S., the biases have a nearly equal distribution of positive and
negative values.

An important consideration is the potential impact of wind farms themselves on the
wind speed observations used to evaluate the ERA5. Wakes from wind farms can be
substantial and can propagate for tens of kilometers downstream before they eventually
dissipate [56]. Other than not including data from one WFIP1 sodar and one of the Iowa
Atmospheric Observatory tall towers that were each collocated with wind turbines, the
possible effects of wind plants are not accounted for. With the large numbers of wind farms
now operating across the central U.S., it is likely that many of the observations used in our
analysis are affected by them to some degree. For example, Bodini et al. [56] determined
that several of the ARM-SGP lidars are impacted by nearby wind plants, decreasing the
observed 100 m wind speeds by 4–6% during stable stratification. Given the number of
wind farms and their growth over time, it would be a near-impossible task to correct their
impacts on the observational data sets used. However, as can be seen in Figure 14, the
ERA5 has a consistently low wind speed bias compared to observations across the central
U.S. Wind plant wakes would decrease the observed wind speeds locally (limited in both
the horizontal and vertical directions), while it seems unlikely that they would influence
the ERA5 windspeeds that are driven by large scale pressure gradients. Therefore, the
true ERA5 bias in the absence of wind plant wakes would only be worse, an even larger
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underestimate. Correcting the ERA5 based on the available observations is therefore clearly
better than not correcting it. However, it is possible that the resulting higher ERA5BC wind
speeds and wind CFs will still be lower than for the true non-waked flow.
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Figure 12. Intensity–duration curves of the largest normalized wind capacity factor anomalies
(positive and negative) as a function of duration, for the uncorrected ERA5 (blue curves) and the
observations (red curves), using data for all months of the year, for years of observations available as
indicated. The abscissa on each panel is the duration from 1–90 days, and the ordinate is normalized
CF anomaly as a percent, from −100 to +100.
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Unlike for solar, where the high spatial resolution NSRDB data set could be used to
evaluate possible excess inflation of the ERA5 grid cell values based on point measurement
corrections, no such high-resolution data set exists for turbine-height winds within the
analysis domain. One test that can be carried out, however, is to evaluate the effects of both
temporal and spatial averaging on the least squares regression-based correction. For this
purpose, wind speed slopes were determined for the seven networks of wind observations
(ARM-SGP lidars, WFIP1 NSA and SSA tall towers, the WFIP1 NSA and SSA sodars, the
WFIP2 sodars and lidars, and the NYmesonet lidars), for four levels of averaging: hourly
non-aggregate, hourly aggregate, daily non-aggregate, and daily aggregate. The averages of
these slopes are 0.83, 0.93, 0.91, and 0.96, respectively. The smallest mean slope corresponds
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to the least amount of temporal or spatial averaging, and the largest slope for the greatest
amount of averaging. This is a result of the phenomena of regression dilution, which is
the biasing of the linear regression slope toward zero caused by errors in the independent
variable. In the present analysis, the errors of the independent variable are in part a result
of using point measurements, which may sub-sample small-scale spatial variability, to
compare to an ERA5 value. The larger slope for the aggregate of the daily averaged speeds
compared to the non-aggregate daily averaged speeds indicates that correcting the ERA5
with daily averaged speeds from individual non-aggregated stations would over-inflate
the ERA5 variability by about 5%. Correcting the ERA5 with hourly non-aggregate linear
regression would be significantly worse, with the ERA5 variability being over-inflated by
13% compared to the daily spatial aggregate. To reduce the impact of regression dilution
we use only orthogonal linear regressions of spatial aggregates of daily averaged wind
speeds to correct the ERA5. We also note that although regression dilution can change the
slope and intercept, the overall bias is not affected.
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Figure 14. ERA5 mean 100 m normalized wind speed bias (NMB) (ERA5—observations) at each of
the wind observation locations. The two larger circles represent aggregate biases from the WFIP NSA
region (97 towers) and the SSA region (27 towers).

Having derived site-based corrections to the ERA5-derived solar CFs and wind speeds,
an important question is how one could translate those site-dependent corrections onto the
entire ERA5 grid within the analysis domain. For solar CFs, the spatial uniformity of the
binned bias corrections shown in Figure A4 indicates that this would be a trivial exercise,
and almost any type of spatial interpolation procedure would produce reasonable results.
For wind speed, there is greater spatial heterogeneity, but perhaps more importantly,
the available observations are geographically clustered. Clearly, however, in the high-
wind resource areas in the central U.S. and for offshore locations, correcting the ERA5
underestimation of hub-height wind speeds is necessary.

6. Summary and Discussion

Errors in ERA5-based estimates of daily averaged wind and solar energy generation
have been quantified using observed and ERA5 meteorological variables. For solar irra-
diances, although the ERA5 errors for global horizontal irradiance are small, there are
large compensating errors in its direct beam (NMB = +25%) and diffuse (NMB = −18%)
components. These errors lead to corresponding systematic errors in derived solar capacity
factors for solar panels that are tilted off the horizontal plane towards the sun. For solar
panels that have a fixed tilt that optimizes the annual energy production (assumed in this
study), the ERA5-derived CFs have a seasonally varying positive bias that is largest in
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winter (NMB = +23%) and smallest in summer. These errors are found to have consistent
characteristics across the CONUS region.

Systematic errors for 100 m wind speed are also found in the ERA5. Negative bias
errors in the ERA5 wind speeds and CFs are generally consistent across the central and
western U.S., and offshore, usually with little seasonal or diurnal variation, while the
northeastern U.S. has an overall small net bias. Wind speed NMB values average −12%
across the central and western U.S., with a corresponding wind CF NMB average of −20%.
Overall, solar CFs are biased high in the ERA5, and wind CFs are biased low.

Errors for the shortest duration, most extreme solar negative anomaly events (i.e., solar
energy droughts) are found to be small when completely overcast conditions occur in both
ERA5 and observations. Longer duration events on weekly to monthly timescales, which
include partially cloudy days or a mix of cloudy and clear-sky days, have significant ERA5
errors. At 10 days duration, the ERA5-derived solar power produced during the largest
anomaly events is 62% greater than observed, when averaged over all of the SURFRAD and
SOLRAD sites. For the ERA5-derived most extreme negative anomaly wind power events,
at some sites at 10 days duration, the ERA5-derived wind power produced can be less than
half of that observed. The ERA5 errors, if uncorrected, could therefore significantly impact
any ERA5-based wind and solar drought analysis.

Four potential sources of the identified discrepancies between ERA5 and observa-
tions are:

(1) Instrumentation errors: Although this possibility can never be completely ruled out,
this seems unlikely, as only the highest quality observational data sets available have
been used, and for wind, similar errors are found whether using sodars, lidars, or tall
tower in situ observations.

(2) Non-representative siting within a grid associated with topography or land surface
conditions: For solar, similar systematic errors are found for all sites, indicating that
non-representative siting can be ruled out. For wind, in the central and western U.S.,
similar systematic errors are found whether in extremely flat (Iowa), flat but uniformly
sloping (ARM-SGP) terrain, or more moderate rolling terrain (WFIP1, WFIP2). This
indicates that it is unlikely that siting and terrain effects are a dominant source of the
wind speed errors.

(3) Turbine wake effects: Since the ERA5 does not account for turbine wake effects, the
effect of wakes, if they are present, would be to bias the ERA5 winds higher than
the observations, while instead they are found to have a low bias. Wind turbine
wakes cannot therefore explain the ERA5 biases, and the true ERA5 biases, relative
to unwaked flow, would be larger by some unknown amount if wind turbine wakes
did not exist. The magnitude of the ERA5 wind speed negative bias, therefore, can be
considered to be a lower bound and may be greater.

(4) Model physical parameterization errors: Wind speed errors are not found to be a
strong function of season or diurnal cycle, suggesting that stability impacts are not
important, but also increase with wind speed, leaving surface roughness as a more
likely source. Wind biases are larger for non-forested regions, and are smaller on
average for the northeastern U.S., which is heavily treed, again suggesting a surface
roughness parameterization error. For solar, ERA5 errors are smallest in summer
months, while winter days that are partially cloudy are the most difficult, which may
help identify aspects of cloud parameterizations that could be the source of these
errors.

Two methods are presented for correcting the ERA5 errors, one for solar and one for
wind. For solar, although one could choose to correct separately the DNI, DHI, and GHI,
and then calculate solar power, we instead calculate solar power first and then correct
it. This is both simpler and likely more accurate. The solar correction technique, based
on quantile–quantile ordered pair plots, effectively reduces the solar CF biases across the
annual cycle, brings the reanalysis and observed variability (standard deviations) into
agreement, and produces intensity–duration curves of the largest amplitude anomalies that
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closely agree with the observations. Because of the geographic similarity of the ERA5 solar
errors, corrections derived from the solar observation networks could be easily interpolated
across the analysis domain. For wind power, wind speed corrections based on linear
regression also reduce the wind CF biases across the annual cycle, bring the reanalysis and
observed variability into close agreement, and produce intensity–duration curves of the
largest amplitude anomalies that better agree with the observations.

The potential for erroneous inflation of ERA5 variances due to applying corrections
from point measurements to grid cell values is investigated for solar using the high-
resolution NSRDB tool. Results from this analysis indicate that when using daily averaged
CFs, the quantile correction method does not create any significant over-inflation. In ad-
dition, the ARM-SGP aggregate results indicate that for even small-sized grid balancing
areas, the system-wide solar generation for a dispersed set of generators would be very
accurately estimated by the corrected ERA5, with correlation coefficients of daily CFs ap-
proaching 0.94. For wind, the potential for erroneous inflation of corrected ERA5 variances
is investigated by examining the effects of both temporal and spatial averaging on the least
squares regression-based correction. Comparing hourly non-aggregate, hourly aggregate,
daily non-aggregate, and daily aggregate regressions indicates that, although the hourly
non-aggregate data would result in over-inflation, that over-inflation is greatly reduced for
the daily and spatially aggregated corrections used in this study.

In summary, the proposed correction methodologies would provide considerably more
accurate estimates of the wind and solar resources, and the depiction of drought events,
than those obtained using the uncorrected ERA5. Given that the ERA5 is widely considered
to be one of the most accurate reanalysis data sets available, the findings demonstrate the
importance of carefully evaluating and correcting systematic errors within model-based
meteorological data sets, including climate models, which are used for resource assessment,
grid integration, or drought analysis studies. Although the corrected ERA5-derived data
better represent the observed statistics of wind and solar power, including the most extreme
events, they still will suffer from the fundamental limitation of the ERA5’s coarse grid
resolution. The effects of grid resolution will likely affect wind power estimates more than
solar, as local topographic variations can have an acute impact on turbine-height winds, but
less impact on clouds that are present through deep layers of the atmosphere. Ultimately,
the best solution would be to have much higher resolution (~3 km) reanalyses, which
could be directly compared against observations and then corrected. Finally, this analysis
has benefitted greatly from the long-term observations provided by the geographically
distributed NOAA SURFRAD, SOLRAD, and DOE ARM SGP solar networks. Building a
continental-scale network of long-term, high-quality boundary layer wind observations
would provide similar benefits for future renewable energy analyses.
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Figure A1. Flow chart of processing steps to calculate daily observed, uncorrected ERA5-derived, and
corrected ERA5-derived solar CFs and CF anomalies. In the last step, the anomalies are calculated
independently for the observations, ERA5-derived, and corrected ERA5-derived CFs.
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In the application of QM, first, for each month of the annual cycle, observed ERA5
daily solar CF values that fall within a centered 3-month window are sorted by their magni-
tude, and then divided into ERA5 CF bins, as shown for January and July in Figure A2a,c.
Next, the ratio of the mean values of the observed and ERA5 CFs are computed for
each bin, and the ERA5 values within the bin are then multiplied by that ratio, result-
ing in the corrected ERA5 values shown as purple symbols in Figure A2a,c. That is,
Ratio(bin) = CFobs(bin)/CFera(bin) and CFeraBC(bin) = Ratio(bin) ∗CFera(bin), where
CFobs, CFera, and CFeraBC are the bin averaged CFs for the observations, ERA5, and QM-
corrected ERA5BC. The ratio values are shown in Figure A2b,d for January and July. Since
correction factors will eventually be needed for all ERA5 gridpoints, not just those corre-
sponding to the observations, and since the range of CF values at those gridpoints may be
larger than at the observation sites, correction factors are estimated for CF values in the
range of 0.0–0.5 by linearly extrapolating the lowest CF correction factor to 0 at the origin
(consistent with the finding that the ERA5 and PSU observations are in close agreement for
completely overcast conditions), and by keeping the correction factor constant and equal to
its highest bin-computed value for large CF values of up to 0.5. We note that the magnitude
of the correction for January CFs can be as large as 45% of the uncorrected ERA5 value.
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Figure A2. Sorted solar capacity factors (blue circles) from the SURFRAD PSU site for months of
DJF used to correct the ERA5 values for the month of January (a) and for the months of JJA used to
correct July (c). Multiplicative bias corrections for January (b) and July (d) shown in the right panels
are determined for binned values of the ERA5, which when applied to the ERA5-derived values give
the corrected sorted values (purple squares).
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curves), and the corresponding ERA5 values (red curves). The cyan and yellow curves are 4-term 
harmonic fits to the observations and ERA5-derived values, respectively. Sites corresponding to 
those in Figure 1 are Seattle (SEA), Fort Peck (FPK), Sioux Falls (SXF), Penn State University (PSU), 
Salt Lake City (SLC), Bismark (BIS), Madison (MSN), Sterling (STE), Desert Rock (DRA), Table 
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Goodwin Creek (GWN). 

Figure A3. Annual cycles of the solar capacity factor at each of the SURFRAD/SOLRAD sites and for
the ARM aggregate for the periods of available observations (nominally 1998–2020) (blue curves), and
the corresponding ERA5 values (red curves). The cyan and yellow curves are 4-term harmonic fits to
the observations and ERA5-derived values, respectively. Sites corresponding to those in Figure 1 are
Seattle (SEA), Fort Peck (FPK), Sioux Falls (SXF), Penn State University (PSU), Salt Lake City (SLC),
Bismark (BIS), Madison (MSN), Sterling (STE), Desert Rock (DRA), Table Mountain (TBL), Bondville
(BON), Albuquerque (ABQ), ARM-SGP aggregate (ARM-agg), and Goodwin Creek (GWN).
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Figure A4. Quantile–quantile diagrams of observed and ERA5-derived daily solar CFs at each of
the SURFRAD/SOLRAD sites and for the ARM aggregate, for the periods of available observations
(nominally 1998–2020). The abscissa is the observed CFs and the ordinate the ERA5-derived CFs.
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Figure A5. Summary statistics comparing the ERA5- (blue) and ERA5BC-derived (orange) solar CFs 
at each of the SURFRAD, SOLRAD, and ARM-SGP aggregate sites. (a) Normalized mean bias 
(NMB), (b) root-mean-squared error (RMSE), (c) correlation coefficient (CORR), and (d) the ratio of 
the CF standard deviations from the ERA5 or ERA5BC to the observed (SD/SDobs), where the 
dashed line is the ideal value. 

 
Figure A6. Hourly based capacity factor quantile–quantile diagrams for the SURFRAD PSU site for 
the (a) annual period, (b) DJF months only, and (c) JJA months compared to the ERA5 (blue) and 
corrected ERA5BC (red) values. The 1–1 black dashed line is ideal. 

Figure A5. Summary statistics comparing the ERA5- (blue) and ERA5BC-derived (orange) solar CFs
at each of the SURFRAD, SOLRAD, and ARM-SGP aggregate sites. (a) Normalized mean bias (NMB),
(b) root-mean-squared error (RMSE), (c) correlation coefficient (CORR), and (d) the ratio of the CF
standard deviations from the ERA5 or ERA5BC to the observed (SD/SDobs), where the dashed line
is the ideal value.
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Figure A6. Hourly based capacity factor quantile–quantile diagrams for the SURFRAD PSU site for
the (a) annual period, (b) DJF months only, and (c) JJA months compared to the ERA5 (blue) and
corrected ERA5BC (red) values. The 1–1 black dashed line is ideal.



Energies 2024, 17, 1667 30 of 36Energies 2024, 17, x FOR PEER REVIEW 30 of 36 
 

 

 
Figure A7. Hourly based solar CF histograms, for annual (a,d), DJF (b,e), and JJA (c,f) periods, for 
SURFRAD PSU site observations (orange) and hourly reanalysis values (light blue) for the uncor-
rected ERA5 (top row) and corrected ERA5BC (bottom row). 
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average of the 10 most extreme events corresponds to the average of all events with a return period 
longer than 2.3 years. 

  

Figure A7. Hourly based solar CF histograms, for annual (a,d), DJF (b,e), and JJA (c,f) periods, for
SURFRAD PSU site observations (orange) and hourly reanalysis values (light blue) for the uncorrected
ERA5 (top row) and corrected ERA5BC (bottom row).
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Figure A8. Intensity–duration curves of the mean of the 10 most extreme normalized solar capacity
factor anomalies (positive and negative) as a function of duration for (a) the uncorrected ERA5
(blue curves) and the SURFRAD PSU observations (red curves), and (b) ERA5BC (blue curves) and
SURFRAD PSU observations (red curves), using data for all months of the year, for years 1998–2020.
The average of the 10 most extreme events corresponds to the average of all events with a return
period longer than 2.3 years.
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Processing Methods for Wind Power and Summary Statistics
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same turbine class specification, based on the observed mean wind speeds for each observational 
data set, is used for the observations and ERA5. In the last step the anomalies are calculated inde-
pendently for the observations, ERA5-derived, and corrected ERA5-derived CFs. 

The WFIP1 tall-tower networks [57] consisted of 97 towers in the Northern Study 
Area (NSA) and 27 towers in the Southern Study Area (SSA), with measurement levels 
mostly between 60 and 80 m. Wind speeds from those towers were extrapolated to 100 m 
using a simple power law, with a power exponent value of 0.143. More complex stability-
dependent methods were not used because the vertical extrapolations from 60 or 80 m to 
100 m are relatively small; and second, as for the ARM-SGP site, the wind speed errors 
did not strongly vary across the diurnal cycle. All towers had two orthogonal or opposite 
booms, and speeds were calculated using the sensors on the booms least impacted by 
tower wakes, determined from hourly wind directions. For the Iowa Atmospheric Obser-
vatory set of two towers [58,59], we use observations from the A2 tower, which was further 
separated from existing wind turbines than tower A1, again using the upstream-oriented 
boom, and also blocking out some wind directions potentially affected by wind plants 
within 30 km. Also, for WFIP1, one sodar site (Ozona) was found to have its normalized 
mean bias more than double that of all the other WFIP sodars, and to have the opposite 
sign bias of those sodars. Comparing Ozona to a nearby site (Reagan, TX), the 100 m wind 
speed ERA5 values at the two sites are similar, but the Ozona observed mean speeds are 

Figure A9. Flow chart of processing steps to calculate daily observed, uncorrected ERA5-derived (left
side boxes), and corrected ERA5-derived wind CFs (right side boxes) and CF anomalies. The same
turbine class specification, based on the observed mean wind speeds for each observational data set,
is used for the observations and ERA5. In the last step the anomalies are calculated independently
for the observations, ERA5-derived, and corrected ERA5-derived CFs.

The WFIP1 tall-tower networks [57] consisted of 97 towers in the Northern Study
Area (NSA) and 27 towers in the Southern Study Area (SSA), with measurement levels
mostly between 60 and 80 m. Wind speeds from those towers were extrapolated to 100 m
using a simple power law, with a power exponent value of 0.143. More complex stability-
dependent methods were not used because the vertical extrapolations from 60 or 80 m to
100 m are relatively small; and second, as for the ARM-SGP site, the wind speed errors
did not strongly vary across the diurnal cycle. All towers had two orthogonal or opposite
booms, and speeds were calculated using the sensors on the booms least impacted by tower
wakes, determined from hourly wind directions. For the Iowa Atmospheric Observatory set
of two towers [58,59], we use observations from the A2 tower, which was further separated
from existing wind turbines than tower A1, again using the upstream-oriented boom, and
also blocking out some wind directions potentially affected by wind plants within 30 km.
Also, for WFIP1, one sodar site (Ozona) was found to have its normalized mean bias more
than double that of all the other WFIP sodars, and to have the opposite sign bias of those
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sodars. Comparing Ozona to a nearby site (Reagan, TX), the 100 m wind speed ERA5
values at the two sites are similar, but the Ozona observed mean speeds are more than
2 ms−1 smaller than the Reagan observations. Therefore, we have chosen to eliminate
Ozona and only use 5 WFIP SSA sodars. We also did not use data from the Lubbock, TX
sodar, as it was collocated with wind turbines at the Texas Tech University wind turbine
testing facility, whose wakes could have affected the sodar measurements.

The WFIP2 data set [60,61] contained multiple sites that were in an area strongly
influenced by gap flow winds that are channeled through the Columbia River Gorge. The
Gorge is of sufficiently small scale that the ERA5 would have a difficult time resolving those
gap winds. The study by Sharp and Mass [62] indicates that a model resolution of 3 km
or better is likely needed to properly simulate these gap winds. Therefore, we eliminated
13 of the 22 sodar and lidar sites strongly influenced by the gap winds, leaving 9 outside of
the Gorge area (Figure A10).
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Figure A10. WFIP2 sites selected for inclusion in the ERA5 wind evaluation are shown as red circles,
while sites within the area of extremely complex terrain associated with the Columbia Gorge that
were not used are shown as blue open circles.

Many of the NYMesonet lidar stations [63] can also be affected by surface heterogeneity,
as although all are situated on land, many of the stations are located very close to the
coast, where the observations, ERA5 winds, or both, could be significantly influenced by
the nearby ocean. Also, because the ERA5 uses a sub-grid-resolution tiled approach for
specifying the surface roughness, in most cases for these coastal sites, the nearest ERA5
grid point would contain a mix of both land and ocean roughness lengths. As our goal is to
characterize the ERA5 wind errors separately for land and ocean and to find corrections for
each, we eliminated from consideration any NYmesonet lidar station that was within 15 km
of the ocean or the Great Lakes, which is one half of the ERA5′s native grid resolution of
~31 km. This reduced the number of stations used from 17 down to 8. Also, some of the
NYmesonet lidars as well as the Indiana lidar are mounted on buildings 8–13 m tall, and
the height of the buildings was accounted for in determining the 100 m agl wind speed.
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