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Abstract: The accurate estimation of the state-of-charge (SOC) and state-of-health (SOH) of lithium-ion
batteries is crucial for the safe and reliable operation of battery systems. In order to overcome the
practical problems of low accuracy, slow convergence and insufficient robustness in the existing joint
estimation algorithms of SOC and SOH, a Dual Adaptive Central Difference H-Infinity Filter algorithm
is proposed. Firstly, the Forgetting Factor Recursive Least Squares (FFRLS) algorithm is employed for
parameter identification, and an inner loop with multiple updates of the parameter estimation vector
is added to improve the accuracy of parameter identification. Secondly, the capacity is selected as the
characterization of SOH, and the open circuit voltage and capacity are used as the state variables for
capacity estimation to improve its convergence speed. Meanwhile, considering the interaction between
SOC and SOH, the state space equations of SOC and SOH estimation are established. Moreover, the
proposed algorithm introduces a robust discrete H-infinity filter equation to improve the measurement
update on the basis of the central differential Kalman filter with good accuracy, and combines the Sage–
Husa adaptive filter to achieve the joint estimation of SOC and SOH. Finally, under Urban Dynamometer
Driving Schedule (UDDS) and Highway Fuel Economy Test (HWFET) conditions, the SOC estimation
errors are 0.5% and 0.63%, and the SOH maximum estimation errors are 0.73% and 0.86%, indicating that
the proposed algorithm has higher accuracy compared to the traditional algorithm. The experimental
results at different initial values of capacity and SOC demonstrate that the proposed algorithm showcases
enhanced convergence speed and robustness.

Keywords: joint estimation of SOC and SOH; improved forgetting factor least squares; dual adaptive
center difference H∞ filter

1. Introduction

Lithium-ion batteries are extensively utilized in electric vehicles and energy storage
systems due to their advantageous features, including long cycle life, high energy density,
and low self-discharge rate [1]. SOC and SOH are two important parameters in the battery
management system (BMS) [2], which provide important references for battery safety
protection, charge/discharge control, etc. Therefore, it is important to obtain the SOC and
SOH information accurately and in a timely manner to improve battery life and safety.

SOC can be predicted directly by the Coulomb counting method [3] and the open-
circuit voltage method [4]. However, the former method is significantly influenced by
initial SOC discrepancies, while sensor measurement inaccuracies further diminish SOC
estimation accuracy over time. The open-circuit voltage method requires the battery to
rest for a sufficient duration before estimating the SOC, rendering it unsuitable for real-
time estimation applications. Machine learning-based methods such as artificial neural
networks [5], deep neural networks [6], and Gaussian process regression [7] have also found
applications in SOC estimation, but these approaches require large and comprehensive
training data, and the results are susceptible to different datasets. In addition, there
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are the Kalman filter (KF) and its derivative algorithms, including the extended Kalman
filter (EKF) [8], CDKF [9], H-infinity filter [10], adaptive Kalman filter [11,12] and other
algorithms. The KF can better resist noise interference and has low dependence on the initial
value [13], so the KF is recognized as the most widely employed method in SOC estimation.

At present, a single SOC estimation method ignores the capacity degradation under
the influence of battery aging, which could result in considerable errors in SOC estimation.
Therefore, the joint estimation of SOC and SOH is highly necessary. Shen et al. [14] calcu-
lated the capacity by the ratio of the accumulated charge to the SOC change value over
a period of time. This is an offline estimation method, while the accuracy of the capacity
estimation is affected by the magnitude of the SOC change value over that period of time.
Zou et al. [15] placed the capacity and SOC within the same state vector and achieved the
joint estimation of SOC and SOH using a fourth-order EKF. Because SOC and capacity are
not decoupled, the convergence of capacity estimation tend to be slow. Lai et al. [16] pro-
posed a data-driven method based on the NSSR-LSTM Neural Network to achieve the
joint estimation of SOC and SOH for lithium-ion batteries. However, their generalization
to untrained cases is usually weak. Since the actual battery configuration file usually has
great uncertainty, a large amount of training data is needed to meet the accuracy of joint
estimation in different scenarios. To address the above problems, numerous researchers
have proposed a dual filter algorithm to estimate the SOC and capacity of the battery
separately. Cheng et al. [17] proposed a joint estimation algorithm of adaptive square root
unscented Kalman filter (ASRUKF) and EKF, where the ohmic resistance and capacity
parameters are estimated by EKF and brought into SOC estimation. At the same time, the
SOC value estimated by ASRUKF is used to update these two parameters in real-time.
Liu et al. [18] proposed a dual adaptive extended particle filter (DAEPF) to estimate the
SOC and SOH of the battery. The algorithm combines the advantages of EKF and particle
filter (PF) so that the algorithm not only has accurate initial state estimation and covariance
information but also can adapt to nonlinear systems and non-Gaussian noise. However,
due to the insufficient accuracy of the EKF and the high computational complexity of
the PF, this fusion algorithm cannot accurately estimate the SOC and SOH information
of the battery, and the computational cost is high. The dual adaptive unscented Kalman
filter (DAUKF) is proposed in the literature [19]. The battery parameters and SOC are
updated through two AUKF filters, respectively, which have certain estimation accuracy
and stability. Since the open circuit voltage (OCV) has a certain relationship with SOC
and capacity, OCV is crucial for accurately obtaining SOC values as well as for accurate
and timely capacity estimation. These joint estimation algorithms do not consider the
close relationship between OCV and capacity. Therefore, the accuracy and convergence
speed of capacity estimation are difficult to guarantee under inaccurate OCV estimation.
Yu et al. [20] proposed a joint estimation algorithm of RLS and adaptive H-infinity filter
to realize online capacity estimation, which reduces the influence of OCV on capacity
estimation. However, the AHIF algorithm used has the problem of high-order accuracy loss
caused by the simple linearization of nonlinear functions, so the accuracy of the algorithm
is limited, and it is difficult to ensure the accuracy of OCV and capacity estimation.

In view of the above problems, this paper uses an improved FFRLS (IFFRLS) algo-
rithm based on the 2RC equivalent circuit model to improve the accuracy of parameter
identification. Then, the CDKF algorithm with higher accuracy is used to fuse the H-infinity
filter equations in the measurement update stage, and the ACDHF algorithm is obtained by
combining the Sage–Husa adaptive filter. Since this algorithm combines both the accuracy
of the CDKF and the robustness of the H-infinity filter, the DACDHF algorithm proposed in
this paper has higher estimation accuracy and better robustness compared to the traditional
algorithms, and also avoids the complex operation of solving the Jacobi matrix of the system
matrix in the literature [20]. In addition, the capacity is selected as the index of SOH, and
the close connection between capacity and OCV is considered to realize the SOH estimation
with capacity and OCV as state variables. In the case of accurate OCV estimation results,
the influence of OCV on capacity estimation accuracy and convergence speed is weakened,
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and thus, the capacity estimation method in this paper has a faster convergence speed
compared to the traditional capacity estimation method. Finally, two ACDHF filters are
used to estimate SOC and capacity, respectively, and the proposed algorithm is verified to
have better estimation accuracy, robustness, and convergence speed under several typical
working conditions.

The subsequent sections of this paper are organized as follows: Section 2 introduces
battery modeling and parameter identification. In Section 3, the SOC-SOH joint estimation
method is presented. Analysis of the results is provided in Section 4, followed by the
conclusions in Section 5.

2. Battery Modeling and Parameter Identification
2.1. Battery Modeling

The two-RC equivalent circuit model is used, and the circuit diagram is shown in
Figure 1, where Uoc is the OCV; Ut is the terminal voltage; Rp and Cp are the electrochemical
polarization resistance and capacitance; Rd and Cd are the concentration polarization
resistance and capacitance; Ro is the ohmic resistance; I is the battery current, where
charging is positive; and Up and Up are the terminal voltage of the two-RC circuit.

Figure 1. Battery model.

The modeling equations of the battery are as follows:
U̇p = − 1

RpCp
Up +

1
Cp

I
U̇d = − 1

RdCd
Ud +

1
Cd

I
Ut = Uoc − Up − Ud − IRo

(1)

The SOC of the battery can be calculated by the Coulomb counting method:

SOCk = SOC0 −
η

Qc

∫ k

0
Ikdk (2)

where SOC0 is the SOC at the initial moment; Qc is the calibrated capacity of the battery; Ik
is the current at the k moment; and η is the Coulomb coefficient.

From Equations (1) and (2), the state space equation for battery SOC estimation is
obtained as follows:

xk =

e
− ∆t

τp 0 0

0 e−
∆t
τd 0

0 0 1

xk−1 +

Rp(1 − e
− ∆t

τp )

Rd(1 − e−
∆t
τd )

∆t × η
Qc,k

× Ik−1 + ωk (3)

Ut,k = f (SOCk)− Up,k − Ud,k − Ro × Ik + vk (4)
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where xk =
[
Up,k Ud,k SOCk

]T
is the state vector; ωk and νk are the process noise and

measurement noise, respectively; τp = RpCp, τd = RdCd; ∆t is the sampling time; f () is a
function of Uoc on SOC, which can be fitted by the correspondence between SOC and Uoc;
and Qc,k is the updated result of the capacity estimation, which is brought into the SOC
estimation in real-time.

2.2. The Relationship between the State-of-Charge and Open-Circuit Voltage

In this paper, we examine the NCR18650PF power lithium battery produced by Pana-
sonic, which features a nominal voltage of 3.6 V and a rated capacity of 2.9 Ah. The data
sampling frequency is 10 Hz, and the experiment is carried out at 25 °C. To obtain a more
precise SOC-OCV curve, this paper adopts the static voltage method [21] for the experiment,
and the sampling points taken are shown in Table 1:

Table 1. SOC-OCV relationship table.

SOC/% 100 90 80 70 60
OCV/V 4.175 4.059 3.947 3.862 3.768

50 40 30 20 10 5
3.663 3.602 3.55 3.458 3.345 3.237

To prevent overfitting as well as to consider the amount of computation, a 6th-order fit-
ting method is used. The fitting curve is depicted in Figure 2, and the SOC-OCV relationship
equation is as follows:

Uoc = 3.4290 × SOC6 − 4.4888 × SOC5 − 6.3228 × SOC4+

14.9681 × SOC3 − 9.7608 × SOC2 + 3.2527 × SOC + 3.0984
(5)

Figure 2. SOC-OCV relationship curve.

2.3. Improved FFRLS

In this paper, the FFRLS algorithm is used to identify the parameters of lithium-ion
battery model. The algorithm can achieve online parameter identification by the recursive
least squares method, and can solve the data saturation in the recursive least squares
algorithm by introducing the forgetting factor. It usually takes the value of 0.90–1.00, and
the value of the forgetting factor selected in this paper is 0.998. The FFRLS expressions are
as follows: 

θ̂k = θ̂k−1 + Kk
[
Uk − φT

k θ̂k−1
]

Kk = Hk−1 φk
[
φT

k Hk−1 φk + λ
]−1

Hk =
1
λ

[
E − Kk φT

k
]
Hk−1

(6)
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where θ̂k is the estimated parameter vector; Uk is the system input value; Kk is the gain
matrix; φk is the data vector; Hk is the error covariance matrix; and E is the unit matrix.

Adding an inner loop with multiple updates of the parameter estimation vectors
to the traditional FFRLS algorithm can improve the accuracy of model parameter
identification [22], thus further improving the accuracy of the joint estimation. Let
M be the number of iterations of the inner loop, then the initial inner loop estimation
vector is θ̂in,0 = θ̂k−1, and the parameter estimation update step of the inner loop is
as follows:

θ̂m,m = θ̂m,m−1 + Kk

[
Uk − φT

k θ̂m,m−1

]
, 1 ≤ m = m + 1 ≤ M (7)

2.4. Model Parameter Identification

The impulse transfer function of the lithium battery model is obtained from Equation (1):

G(z) =
a3 + a4z−1 + a5z−2

1 − a1z−1 − a2z−2 (8)

Let Uk = Ut,k − Uoc,k transform Equation (8) into the form of a difference equation:

Uk = a1Uk−1 + a2Uk−2 + a3 Ik + a4 Ik−1 + a5 Ik−2 (9)

where a1 − a5 is the parameter to be recognized.
Let φk = [Uk−1, Uk−2, Ik, Ik−1, Ik−2]

T , θ̂ = [a1, a2, a3, a4, a5]. Let θ̂0, θ̂1 be a reasonable
initial value, P0 be 105 × E5×5, and E5×5 be a 5th order unit matrix. Using the UDDS
conditions data, the IFFRLS is applied for parameter identification to obtain each resistance
and capacitance value of the model. Figure 3 illustrates the voltage simulation values and
the actual voltage values estimated by both the traditional FFRLS and the FFRLS with
different inner loops.

Figure 3. Model output and actual voltage.

Table 2 shows the performance index and runtime comparison information of conven-
tional FFRLS and IFFRLS for identifying battery parameters. It can be seen that the IFFRLS
algorithm has stronger tracking ability and better recognition accuracy, and the error of the
identification algorithm decreases with the increase in the number of inner loops. Among
them, compared with the FFRLS, when the number of inner loops M = 2, the accuracy improve-
ment is more obvious. When M = 4 and M = 8, the accuracy improvement of the algorithm is
limited, and the time cost of the algorithm operation increases obviously. For comprehensive
consideration, the parameter identification result of M = 2 is selected in this paper.
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Table 2. Performance metrics of FFRLS with different numbers of inner loop.

MRE (%) MAE (V) RMSE (V) t/s

FFRLS (M = 0) 0.26023 0.0093640 0.013023 1.74
M = 2 0.24618 0.0088864 0.011873 1.79
M = 4 0.23972 0.0086771 0.011361 1.96
M = 8 0.23855 0.0086541 0.011293 2.23

3. Joint Estimation of SOC and SOH Based on DACDHF
3.1. Joint Estimation of SOC and SOH

In order to address the issue of capacity degradation under the influence of ignor-
ing battery aging in the single SOC estimation algorithm, this paper uses the DACDHF
algorithm for joint estimation, and the flowchart is illustrated in Figure 4. At present, the
conventional joint estimation methods tend to overlook the intimate connection between
OCV and capacity. However, in the case of inaccurate OCV estimation, the accuracy and
convergence speed of capacity estimation will be affected. To solve the problem, on the
one hand, the capacity estimator is designed based on the relationship between OCV and
capacity, and the SOC is updated using the estimated capacity results. On the other hand,
χ = dUoc/dSOC is introduced into the capacity estimation to reveal the effect of SOC on
capacity estimation.

Figure 4. Joint estimation flowchart.

SOH is a crucial indicator used to evaluate the extent of battery aging or deterioration.
The chemical reactions and physical processes inside the battery inevitably lead to battery
decline, resulting in a decrease in SOH over the battery’s lifespan. In this study, the capacity
is selected as the characterization of SOH, and the SOH calculation formula is:

SOH =
Qc

QN
× 100% (10)
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where Qc and QN are the current maximum usable capacity and rated capacity of the
battery, respectively. It is generally recognized that when the maximum available capacity
of the battery is reduced to 80% of the rated capacity (i.e., SOH = 80%), the battery life is
terminated and needs to be replaced.

In traditional parameter estimation research, when the battery discharges at a low
current or the sampling time is sufficiently short, it is usually considered that the OCV
between adjacent sampling points do not change, i.e., dUoc/dt = 0, then Uoc,k = Uoc,k−1.
However, in the actual dynamic test conditions, where batteries do not always discharge
at small currents or the sampling time is not always short enough, it is not reasonable
to assume that the OCV remains unchanged at adjacent sampling points [20]. In this
paper, we consider that the OCV between adjacent sampling points is changing, i.e.,
dUoc

dt = dUoc
dSOC · dSOC

dt . Combined with Equation (2), the relationship between the OCV and
capacity can be obtained as Equation (11):

Uoc,k = Uoc,k−1 − χk−1
η Ik−1∆t

Qc
(11)

where dUoc
dt = dUoc

dSOC · dSOC
dt , it can be calculated by deriving the function SOC-OCV in

Equation (5).
In the case of Li-ion batteries, the capacity can be considered constant during the

single charge/discharge cycle. When the capacity Qc is directly selected as the state, the γ
of ACDHF algorithm never satisfies the lower bound condition for the normal operation of
the algorithm (it is given by Equation (19)), so the inverse of the capacity 1/Qc is selected as
the state. Since the accuracy of the OCV estimation may have an effect on the convergence
speed of the capacity estimation, the OCV is simultaneously selected as one of the capacity
estimation states in this paper. The OCV is estimated by the algorithm proposed in this
paper, and its effect on the convergence speed of capacity estimation is weakened when
the OCV estimation is accurate, i.e., the state vector of the capacity estimation is set to

x′k =
[
1/Qc,k Uoc,k Up,k Ud,k

]T
. Combining Equations (1) and (11), the state space

equations for battery capacity estimation are:

x′k = Ax′k−1 + BIk−1 + ω′
k (12)

Ut,k = Uoc,k − Up,k − Ud,k − IkRo + v′k (13)

where ω′
k and v′k are the process noise and the measurement noise of the capacity estimation

at moment k of the capacity estimation, respectively. The state space matrix is:

A =


1 0 0 0

−χk−1η Ik−1∆t 1 0 0
0 0 e−∆t/τp 0
0 0 0 e−∆t/τd

, B =


0
0(

1 − e−∆t/τp
)

Rp(
1 − e−∆t/τd

)
Rd

 (14)

3.2. Adaptive Center Difference H∞ Filtering (ACDHF) Algorithm

CDKF overcomes the high-order accuracy loss caused by first-order linearization, and
has higher accuracy than the EKF algorithm. However, due to the limitation of the KF
framework, its robustness is not as good as the H-infinity filter. CDHF mainly introduces a
robust H-infinity filter to improve the posterior covariance matrix in the CDKF measurement
update step. The improved covariance matrix is as follows (taking SOC estimation parameters
as an example):

Pxk = P−
xk
−

[
Pxkyk P−

xk

][ Pyk
PT

xkyk
Pxkyk P−

xk
− γE

][
PT

xkyk
(P−

xk
)T

]
(15)
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where Pxk is the covariance matrix of the system state; γ is defined to limit the maximum
estimation error; Pxkyk and Pyk

are the mutual covariance matrix and covariance matrix of
the systematic observation; and E is the unit matrix.

In addition, the time update steps of CDHF and CDKF are exactly the same, so the
posterior covariance matrix should satisfy the positive definite condition; otherwise, the
algorithm cannot work properly. It is difficult to determine the positive definite condition
directly for Equation (15), so it is obtained by using matrix inverse lemma transformation:

(Pxk )
−1 = (P−1

xk
)−1 + Vk NkVT

k − 1
γ

E (16)

Vk = (P−
xk
)−1Pkyk (17)

Nk =
[

Pyk − PT
xkyk

(P−
xk
)−1Pxkyk

]−1
(18)

If Pxk is to be positively determined, then it must be satisfied:

γ > max
{

eig((Pk)
−1 + Vk NkV−1

k

}
(19)

where max{eig()−1} represents the maximum eigenvalue after matrix inversion. To ensure
the proper functioning of the CDHF, the value of γ cannot be excessively small.

In order to reduce the interference of measurement noise, this paper introduces the
Sage–Husa adaptive algorithm to dynamically estimate the statistical characteristics of
measurement noise in real-time by utilizing the data of measurement variables in the
filtering process. In this paper, the process noise covariance array Q is set to a constant
value, while only the measurement noise covariance matrix R is updated in real-time. The
updated formulas of the Sage–Husa adaptive algorithm are as follows:

dk =
1 − b

1 − bk+1 , 0 < b < 1 (20)

r̂k = (1 − dk)r̂k−1 + dk(yk −
2L

∑
i=0

ω
(m)
i yi,k|k−1) (21)

R̂k = (1 − dk)R̂k−1 + dk(ekeT
k −

l

∑
i=1

[ω
(c)
i (yi,k|k−1 − yL+i,k|k−1)

2+

ω
(c2)
i (yi,k|k−1 + yL+i,k|k−1 − 2y0,k|k−1)

2])

(22)

where b is the forgetting factor, dk is the weighting factor, r̂k is the bias estimation of the
measurement noise, R̂k is the estimation of the measurement noise covariance matrix R,
L is the dimension of the state vector (L = 3 for SOC estimation and L = 4 for capacity
estimation), e is new interest, and yi,k|k−1 is the predicted value of the measurement update.

Therefore, the system measurement update estimates ŷ−k in the CDHF measurement
update phase and the update equation Pyk

are as follows:

ŷ−k =
2L

∑
0

ω
(m)
i yi,k|k−1 + r̂k (23)

Pyk
=

L

∑
i=1

[ω
(c1)
i (yi,k|k−1 − yL+i,k|k−1)

2 + ω
(c2)
i (yi,k|k−1 + yL+i,k|k−1 − 2y0,k|k−1)

2] + R̂k (24)

where ω
(m)
i , ω

(c2)
i , ω

(c1)
i is the weight corresponding to the sigma point.
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4. Experimental Verifications and Discussions

The experimental data of UDDS and HWFET are used to verify the SOC and SOH
joint estimation algorithm proposed in this paper. At the same time, the influence of the
IFFRLS parameter identification results on the accuracy of the joint estimation algorithm is
verified, and the proposed algorithm is compared with the traditional DACDKF algorithm.
The initial value of SOC is set to 0.6, and the initial values of capacity and open-circuit
voltage are set to 1/2.9 and 4.175, respectively.

Under the UDDS condition, Figure 5 displays the capacity and its error estimation
results, Figure 6 shows the OCV and its error estimation results, and the SOH estimation
results are shown in Figure 7. In Figure 5a, the pink and black lines are the battery-rated
capacity and actual capacity reference lines, respectively. The red and green curves are
the capacity curves estimated by the DACDHF and DACDKF joint estimation algorithms
(parameters identified by the traditional FFRLS). The blue curve is the capacity curve
obtained by the DACDHF using the parameters identified by IFFRLS (internal loop number
M = 2), which is DACDHF (M = 2). It can be seen from Figure 5a that the capacity
curve demonstrates rapid convergence to the actual capacity, which avoids the problem
of larger SOC estimation errors due to untimely capacity updates. In Figure 5b, after the
curve converges, the average absolute error of the capacity estimated by the DACDHF is
0.0066 Ah, the average absolute estimation error of the capacity estimated by the DACDKF
is 0.009 Ah, and the average absolute estimation error of the DACDHF (M = 2) is 0.005 Ah.
Therefore, compared with the DACDKF, the DACDHF in this paper has higher estimation
accuracy. In addition, compared with the traditional FFRLS method, the data identified by
the IFFRLS can further improve the estimation accuracy of the algorithm. In Figure 6, the
blue curve is the DACDHF (M = 2) estimation with a maximum estimation error of 5.5 mv,
the red curve is the DACDHF estimation with a maximum estimation error of OCV less
than 8 mv, and the green curve is the DACDKF estimation with a maximum error of less
than 12 mv. The estimated value of OCV is more accurate, which also proves that the OCV
estimated by the algorithm in this paper has little effect on the accuracy and convergence
speed of capacity estimation. From the SOH curve in Figure 7, it is observable that the
batteries in this group exhibit more pronounced aging, with the SOH of the batteries
declining to about 0.93.

(a) (b)

Figure 5. OCV and its error estimation results for UDDS conditions: (a) OCV estimation curve;
(b) OCV estimation error curve.
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(a) (b)

Figure 6. Capacity and its error estimation results for UDDS conditions: (a) capacity estimation curve;
(b) capacity estimation error curve.

Figure 7. SOH estimation results for UDDS conditions.

In Figure 5a, the capacity curve can quickly converge to the actual capacity with
a convergence time of less than 8 min. To validate the benefits of the proposed joint
estimation algorithm in terms of convergence time, traditional joint estimation algorithms
such as DEKF and multi-scale DEKF are used for comparison. The experimental results are
presented in Table 3. It is observed that the traditional joint estimation method exhibits a
notably slow convergence speed when there exists a deviation between the initial capacity
value and the actual capacity. In contrast, the capacity estimation method proposed in this
study demonstrates a faster convergence speed.

Table 3. Comparison of convergence times of different capacity estimation algorithms.

Estimation Algorithm Initial Capacity Value Convergence Time

DACDHF (M = 2) 2.9 Ah <8 min
DEKF [23] 2.9 Ah <140 min

Multiscale DEKF [23] 2.9 Ah <140 min
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The results of the capacity estimation are put into the SOC estimation in real-time,
and the SOC and its error results are shown in Figure 8. In Figure 8a, the black curve
is a single SOC estimation curve. It is evident that as the battery capacity declines, the
single SOC estimation algorithm will experience significant deviation in the later stages.
The joint estimation algorithm updates the results of the battery capacity estimation to
the calculated value of the SOC estimation in real-time, which solves the problem that the
single SOC estimation method ignores the battery capacity degradation under the influence
of battery aging. From Figure 8b, it is observed that the maximum error of SOC estimation
of the ACDHF algorithm without capacity update is 5.5%, while the average error of SOC
estimation of the DACDKF joint estimation algorithm is 1.1%, the average error of SOC
estimation of the DACDHF joint estimation algorithm is 0.58%, and the average error of
SOC estimation of the DACDHF (M = 2) joint estimation algorithm is 0.50%. Therefore, the
joint estimation algorithm has higher accuracy in SOC estimation.

(a) (b)

Figure 8. SOC estimation results and SOC error results for UDDS conditions: (a) SOC estimation
results; (b) SOC error results.

The accuracy of capacity estimation, OCV estimation, and SOC estimation across
three joint estimation algorithms: DACDKF, DACDHF, and DACDHF (M = 2) is shown
in Table 4. The table employs absolute mean (MAE) and root mean square error (RMSE)
metrics for evaluation. As shown in Table 4, the accuracy of the DACDHF algorithm
in capacity estimation, OCV estimation, and SOC estimation is better than that of the
DACDKF algorithm, and the parameters identified by the IFFRLS algorithm can further
improve the estimation accuracy.

Table 4. Performance comparison of different joint estimation algorithms.

Estimation Algorithm
Capacity Estimation OCV Estimation SOC Estimation

MAE/% RMSE/% MAE/% RMSE/% MAE/% RMSE/%

DACDKF 0.9 1.778 0.813 0.848 1.11 1.24

DACDHF 0.823 1.737 0.507 0.523 0.577 0.592

DACDHF (M = 2) 0.542 1.621 0.384 0.397 0.501 0.516

To verify the robustness of the algorithm, experiments are carried out with different
initial values of capacity, OCV, and SOC. Firstly, the initial value of the capacity estimation
state is set to x′ = [1/3; 3.9; 0; 0], and the initial SOC is set to 0.6. Figure 9 shows the capacity
and OCV estimation results.
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(a) (b)

(c) (d)

Figure 9. Capacity and OCV estimation results with initial value of x′ = [1/3; 3.9; 0; 0]; (a) capacity
estimation curve; (b) capacity error curve; (c) OCV estimation curve; (d) OCV error curve.

The initial value of the capacity estimation is guaranteed to be x′ = [1/3; 3.9; 0; 0].
Different SOC initial values are set to observe the estimation results of SOC. The initial
values of SOC are set to 0.2, 0.4 and 0.6 respectively, and the SOC estimation and its error
results are obtained as shown in Figure 10.

As shown in Figure 9, when the initial capacity value is set to 3 Ah and the OCV is set
to 3.9 V, both the capacity estimation error and the OCV estimation error experience a slight
increase. The maximum error in capacity estimation is 0.047 Ah, while the OCV converges
rapidly to the reference value, with a maximum estimation error of less than 10 mv. In
Figure 10, the initial value of the capacity estimation is constant. As the error of the initial
value of SOC increases, the convergence time of the SOC estimation increases, and the
maximum error increases from 0.78% to 0.96%. However, the overall errors remain within
a small range, indicating the high estimation accuracy and robustness of the DACDHF
algorithm. The initial SOC value is set to 0.6, and the estimation results under different
initial values of capacity and OCV are presented in Table 5.
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(a) (b)

Figure 10. SOC estimation and error curves for different SOC initial values; (a) SOC estimation curve;
(b) SOC error curve.

Table 5. Estimated results of capacity and OCV for different initial values.

Initial Capacity Initial OCV Capacity Estimation Error OCV Estimation Error

3.1 Ah 3.9 V 0.089 Ah 15 mv
3.1 Ah 3.7 V 0.108 Ah 24 mv
3.2 Ah 3.7 V 0.14 Ah 29 mv

Figures 11–14 shows the capacity, OCV, and SOC estimation results under HWFET
conditions. It can be seen that the OCV error of the battery is about 10 mv, which is more
accurate. Capacity and SOC also have good estimation results under this complex current
condition. The maximum estimation error of capacity is 0.025 Ah, and the maximum
estimation error of SOC is 0.63%, which reflects the superiority of the joint estimation
algorithm in this paper.

(a)

Figure 11. Cont.
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(b)

Figure 11. Capacity and error estimation results for HWFET operating conditions: (a) capacity
estimation results; (b) capacity estimation error.

(a) (b)

Figure 12. OCV and its error estimation results for HWFET conditions: (a) open-circuit voltage
estimation results; (b) open-circuit voltage estimation error.

Figure 13. SOH estimation results for HWFET conditions.
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(a) (b)

Figure 14. SOC estimation results and SOC error results for HWFET conditions: (a) SOC estimation
results; (b) SOC error results.

5. Conclusions

In order to improve the estimation accuracy and convergence speed of SOC and SOH
of lithium-ion batteries, a joint estimation algorithm based on DACDHF is proposed in
this study. Firstly, based on the second-order RC equivalent circuit model, the IFFRLS
algorithm is used for parameter identification. The model’s output voltage accurately
tracks the battery’s actual voltage, with the error diminishing as the number of internal
loops increases. Secondly, the capacity is selected as the SOH characteristic quantity.
Considering the close relationship between OCV and capacity, and the interaction between
SOC and SOH, the battery capacity estimation model and SOC estimation model are
established, respectively. In addition, the DACDHF algorithm is proposed to improve the
error covariance matrix in the measurement update stage of the CDKF algorithm, and the
Sage–Husa adaptive algorithm is introduced to update the measurement noise covariance
matrix R so as to realize the joint estimation of SOC and SOH. Finally, experiments under
UDDS and HWFET conditions are conducted with varied capacities and SOC initial values.
The experimental results show that the convergence time of the capacity estimation is
less than 8 min for both dynamic working conditions, the SOC estimation errors are 0.5%
and 0.63%, and the SOH maximum estimation errors are 0.73% and 0.86%. The findings
demonstrate that the proposed algorithm achieves superior estimation accuracy, faster
convergence speed, and enhanced robustness.
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