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Abstract: Aiming at the demand for subjective evaluation of driveability for fuel cell vehicles,
the modeling and evaluation method of driveability for fuel cell vehicles were studied in this
paper. Firstly, a real-time model of the fuel cell vehicle powertrain system was established, which
included the fuel cell model, power battery model, DC/DC converter model and drive motor model.
Secondly, it was integrated with the vehicle dynamics model to form a virtual prototype of a fuel cell
vehicle. And a virtual subjective evaluation platform for fuel cell vehicles was built by combining
the virtual prototype and high-fidelity driving simulator. Thirdly, a subjective evaluation method of
driveability for fuel cell vehicles was proposed, which included the starting performance, acceleration
performance, uniform speed performance and tip-in/tip-out performance. Finally, the paper used
the platform and method mentioned above to conduct subjective evaluations of the fuel cell vehicles.

Keywords: vehicle engineering; fuel cell vehicle; driveability; modelling; evaluation; driving simulator

1. Introduction

As one kind of new energy vehicle, fuel cell vehicles provide power through fuel cells
and use motors as driving devices. The reaction product is only water and the energy
conversion rate is high, so fuel economy can be effectively improved and zero emissions
can be achieved, which is one of the most important directions for the development
of vehicles [1]. Compared with traditional vehicles, the powertrain system of fuel cell
vehicles consists of fuel cells, power batteries and drive motors. In addition to the power
battery, the supercapacitor is also sometimes used as the auxiliary power source to prevent
overcharging and discharging of the power battery [2,3]. It results in significant changes
in vehicle mass and load distribution. And due to the impact of characteristics of fuel
cells and motors, the driveability of fuel cell vehicles is different from that of traditional
cars. Therefore, studying the modeling and evaluation methods of driveability for fuel cell
vehicles is of great significance.

The driveability of vehicles refers to the longitudinal dynamic performance reflected in
the driving process, which shows the vehicle response characteristics to the driver’s inputs
and the driver’s feeling of the vehicle response. It is usually evaluated by the subjective
scoring of professional drivers. Therefore, the modeling and evaluation of drivability for
fuel cell vehicles need not only the high-precision model of the powertrain and vehicle
dynamics but also the driving simulator and other simulation platforms that can be used
for subjective evaluation.

In terms of the research on the driveability of traditional vehicles, List et al. proposed
a vehicle driveability evaluation system [4]. Schoeggl et al. proposed a subjective and
objective evaluation method for vehicle driveability [5]. Hayat et al. established various
subsystem models that affect driveability [6]. Zehetner et al. proposed a new method for
the economy, emission and driveability [7]. A method that can quantitatively evaluate
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the driveability of heavy vehicles was proposed [8]. Walters et al. evaluated the drive-
ability of vehicles through the co-simulation method of the complex engine model and
the vehicle dynamics model [9]. Lakshmanan et al. proposed a subjective and objective
evaluation method for the driveability of commercial vehicles [10]. Castellazzi et al. stud-
ied the influence of powertrain dynamics on vehicle driveability [11]. A fuzzy hierarchy
quantization method on the basis of an analytic hierarchy process and fuzzy method to
quantify the relevant indicators of driveability was designed [12]. Chandrasekaran et al.
conducted a correlation study between the subjective and objective evaluation of the driv-
ability of compact SUVs [13]. A driveability evaluation model based on the optimization
of an extreme learning machine and principal component analysis was proposed [14]. An
approach for objectified drivability evaluation and classification of passenger cars based
on physical criteria was presented [15]. Zhou et al. proposed an intelligent driveability
objective evaluation model based on analytic hierarchy process and rough set method
for passenger cars with a dual-clutch transmission and took the static gearshift condition
as an example for research [16]. Huang et al. proposed a driveability evaluation model
based on fuzzy dynamic weights and determined the evaluation indicators that affect
driveability in tip-in conditions [17]. A driveability objective evaluation model for the
passenger car powertrain was developed, which was, on the basis of prior knowledge,
SMART principle and principal component analysis [18]. In addition, an improved fuzzy
comprehensive evaluation method was proposed, which considered the subjective and
objective consistency [19].

In terms of the research on the driveability of new energy vehicles, Wei et al. proposed
an evaluation method for the economy, power and driveability of hybrid electric vehi-
cles [20]. Yang et al. conducted subjective and objective evaluations of PHEV passenger
cars regarding the impact of complex control strategies and operating modes on driving
performance [21]. A driveability evaluation of the battery electric vehicles equipped with
multi-speed gearboxes in a static driving simulator was conducted [22]. A simulation
model for driveability assessment and optimization of hybrid drive trains was also pro-
posed [23]. Al Aawar et al. investigated the optimization method for the powertrain of
hybrid electric vehicles to achieve good driveability [24]. Jauch et al. developed a generic
model of the driveline of a plug-in hybrid vehicle [25]. A fuzzy evaluation method for
the driveability of new energy vehicles was proposed [26]. Barroso et al. evaluated the
driveability of electric vehicles applying different regenerative braking strategies based on
a driving simulator integrated with a vehicle model [27].

It can be seen from the above analysis that scholars have proposed some driveability
evaluation methods for traditional vehicles and new energy vehicles, but there is no
modeling and evaluation method of driveability for fuel cell vehicles. Aiming at the
demand for driveability evaluation for fuel cell vehicles, this paper establishes a real-time
model of the fuel cell vehicle powertrain system and builds a virtual subjective evaluation
platform for fuel cell vehicles. At the same time, it proposes a subjective evaluation method
of driveability for fuel cell vehicles and analyzes the drivability evaluation results of the
virtual prototype of a fuel cell vehicle.

2. Methods

In response to the demand for the evaluation of fuel cell vehicle driveability, this
paper proposes a method for modeling and subjective evaluation of fuel cell vehicle
driveability. As shown in Figure 1, the main research methods of this paper are as follows:
the parameters of the fuel cell vehicle prototype, including suspension, tires, steering, brake,
the fuel cell vehicle powertrain system and other characteristic parameters, are utilized
to complete the modeling of the vehicle dynamics and fuel cell powertrain system and
achieve the integration of the fuel cell powertrain system and the vehicle dynamics model.
Next, the integration of the fuel cell vehicle model and the automobile driving simulator
are realized and a subjective evaluation platform of driveability for fuel cell vehicles based
on the automobile driving simulator is formed. Finally, the differences between fuel cell
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vehicles and traditional fuel vehicles in terms of powertrain systems is fully considered,
and the evaluation method suitable for the driveability of fuel cell vehicles is proposed.
Evaluators are proposed to score the starting performance, acceleration performance,
uniform speed performance, and tip-in/tip-out performance of the fuel cell vehicle and
obtain corresponding subjective evaluation results.
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3. Real-Time Model of Fuel Cell Vehicle Powertrain System
3.1. Fuel Cell Model

The schematic diagram of the structure of proton exchange membrane fuel cells
is shown in Figure 2. The reaction of fuel cells can be seen as two semi-electrochemical
reactions, namely the oxidation reaction of hydrogen at the anode and the reduction reaction
of oxygen at the cathode. In this paper, the model of the proton exchange membrane fuel
cell (PEMFC) is established. The polarization curve of PEMFC reflects the relationship
between steady voltage and current density or current of the fuel cell. The polarization
curve of the fuel cell is shown in Figure 3.
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The voltage calculation formula of the electrochemical model of the proton exchange
membrane fuel cell established is:

Ucell = Uoc − η0 − j0R (1)

where Uoc is the ideal open circuit voltage of the fuel cell, η0 is the cathode voltage loss,
and j0R is the ohmic loss. The ohmic loss j0R can be expressed as:

j0R = Istack/AareaR (2)

where j0 is the stack current density, Istack is the stack current, Aarea is the effective activation
area of the proton exchange membrane fuel cell, and R is the resistance of the fuel cell.

3.2. Power Battery Model

Considering the power and dynamic response characteristics of the fuel cell, fuel cell
vehicles are usually equipped with a power battery. In this paper, the equivalent circuit
model of the lithium-ion power battery is established, and its principle is shown in Figure 4.
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According to the equivalent circuit, the voltage of the lithium-ion power battery is
related to the current, open circuit voltage and internal resistance. The relationship between
them can be expressed as:

Ucell = UOCV − Icell · R −
n

∑
i=1

Qi
Ci

(3)

Qi =
∫

ICidt (4)

where UOCV is the open circuit voltage, Icell is the current of the fuel cell, R is the resistance,
Qi is the electric charge of the capacitor, ICi is the current flowing through the capacitor,
Ci is the capacitance of the capacitor in the resistor-capacitance (RC) element, and n is the
number of RC elements.
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3.3. Drive Motor Model

As an important component of the fuel cell vehicle powertrain system, the drive motor
affects the driveability of fuel cell vehicles under different complex conditions. In this paper,
the internal mechanism of the drive motor is not considered, and the external characteristic
model of the drive motor at different accelerator pedal openings is established as shown in
Figure 5.
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The target motor torque is calculated by looking up a two-dimensional characteristic
table based on the current motor speed and accelerator pedal opening:

Ttarget = fT(nm, α) (5)

where Ttarget is the target motor torque, nm is the current motor speed, and α is the accelera-
tor pedal opening.

To dynamically describe the change process of motor torque, a first-order hysteresis is
adopted to describe the dynamic process between the target motor torque and the actual
motor torque:

Tactual =
1

1 + τs
Ttarget (6)

where Tactual is the actual motor torque; and τ is the time constant, which can be obtained
through a motor test.

The drive motor converts electrical energy and mechanical energy when the fuel cell
vehicle is in the starting, accelerating, braking and other conditions. In the process of
energy conversion, there will be a certain loss of motor power. As shown in Figure 6,
the drive motor model established in this paper uses the motor working efficiency map
to determine the working efficiency of the drive motor, which reflects the motor energy
conversion efficiency under different motor angular velocities and torques. The range of
energy conversion efficiency that may occur during the operation of the drive motor is
85–98%.

3.4. DC/DC Converter Model

The DC/DC converter is an important component of the fuel cell vehicle powertrain
system, which can stabilize and transform the voltage. The DC/DC converter has a voltage
type and current type. A current-type DC/DC converter model is established in this paper,
and its working principle is shown in Figure 7.

When switching from Side 1 to Side 2, the equivalent circuit of the DC/DC converter
can be expressed as:

V1 × I1 × E f f = V2 × Itarget (7)
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where V1 and I1 are the voltage and current of Side 1, respectively; V2 and Itarget are
the voltage and current of Side 2, respectively; and E f f is the efficiency of the DC/DC
converter.
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4. Virtual Subjective Evaluation Platform for Fuel Cell Vehicles

In order to evaluate and analyze the driveability of fuel cell vehicles in the virtual
environment, this paper integrates the real-time fuel cell powertrain system and the vehicle
dynamics model. And they are embedded into the high-fidelity driving simulator to
achieve the driveability evaluation of fuel cell vehicles.

4.1. Integration of Fuel Cell Vehicle Dynamics Model

As shown in Figure 8, the model of the fuel cell vehicle powertrain system is realized
in AVL/Cruise M [28]. The controller includes control algorithms for fuel cells and motors.
And the reducer consists of the final reduction drive and the differential. It is integrated
with the high-fidelity vehicle dynamics model [29] in Matlab/Simulink [30], in which
the powertrain system in the vehicle dynamics model is replaced by the fuel cell vehicle
powertrain system model. The vehicle dynamics model is written in C language, and
the code is compiled into a dll file using a compiler. The s-function module is created in
Matlab/Simulink to call the dll file, and the vehicle dynamics model is finally expressed
in Matlab/Simulink. In order to coordinate the braking energy recovery and energy
management, the vehicle controller model is also implemented in AVL/Cruise M.
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The integration relationship between the fuel cell vehicle powertrain system and the
vehicle dynamics model is shown in Figure 9. The fuel cell vehicle powertrain system
obtains the accelerator pedal signal, braking pedal signal and master cylinder pressure
from the driver, and the wheel speed and longitudinal speed signals are obtained from the
vehicle dynamics model. It uses the above signals to calculate the torque and transfer it to
the vehicle dynamics model to solve the vehicle motion.
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4.2. Evaluation Platform of Driveability for Fuel Cell Vehicles

The fuel cell vehicle dynamics model is embedded in the automobile driving simulator
to replace the traditional vehicle dynamics model and form a subjective evaluation platform
of driveability for fuel cell vehicles. As shown in Figure 10, the fuel cell vehicle dynamics
model is used to calculate the dynamic response of the fuel cell vehicles. The projection
equipment and screen form a visual system to provide drivers with traffic scenes and visual
simulation. The motion system provides the driver with a sense of vehicle motion. The
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console is used for test control, condition generation and test data recording. The cockpit is
used for human–machine interaction.
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5. Subjective Evaluation Method of Driveability for Fuel Cell Vehicles

Due to the change in the powertrain system of fuel cell vehicles, the transmission
mechanism is relatively simple, which reduces the impact of engine vibration, clutch
engagement and shifting. However, the driveability of fuel cell vehicles is different from
that of traditional vehicles because of the impact of the dynamic response characteristics,
energy management and braking energy recovery of fuel cell engines. According to
the characteristics of fuel cell vehicles, the evaluation method of driveability for fuel
cell vehicles proposed in this paper includes four subjective evaluation items: starting
performance, acceleration performance, uniform speed performance and tip-in/tip-out
performance.

5.1. Starting Performance

The evaluation of starting performance of fuel cell vehicles is conducted under three
working conditions: starting with a small accelerator pedal opening, starting with a medium
accelerator pedal opening, and starting with a large accelerator pedal opening. Specifically,
when the vehicle is on a flat and straight road, accelerate to a certain speed with 30%,
50% and 80% accelerator pedal opening. The main evaluation indicators are the starting
response, starting feeling, starting jerk and body pitch. The starting response evaluates the
time when acceleration is felt after stepping on the accelerator pedal. The starting feeling
evaluates whether the vehicle is smooth in the starting process and reflects the vehicle
starting acceleration. The starting jerk evaluates the size of the longitudinal jerk felt by
the driver during the starting process. The body pitch evaluates the pitch angle and pitch
frequency that the driver feels during the starting process.

5.2. Acceleration Performance

The evaluation of the acceleration performance of fuel cell vehicles includes four
working conditions: accelerating to 100 km/h at the full accelerator pedal pressing, interval
acceleration at the full accelerator pedal pressing, slow accelerator pedal pressing, and
sudden accelerator pedal pressing.
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(1) Accelerating to 100 km/h at the full accelerator pedal pressing: the driver will step
down the accelerator pedal to the bottom to accelerate the fuel cell vehicle from a
standstill to 100 km/h.

(2) Interval acceleration at full accelerator pedal pressing: when the accelerator pedal
opening is 100%, the driver accelerates in the following speed ranges: 20–60 km/h,
40–80 km/h, 60–100 km/h and 80–120 km/h.

(3) Sudden accelerator pedal pressing: the initial speed is 40 km/h, 60 km/h and
80 km/h. This is followed by sudden acceleration with 30%, 50% and 80% accel-
erator pedal opening.

(4) Slow accelerator pedal pressing: the initial speed is 40 km/h, 60 km/h and 80 km/h.
This is followed by pressing the accelerator to the bottom for about 3 s, 6 s and 9 s,
respectively, to accelerate.

The acceleration performance is mainly evaluated from the following four aspects: ac-
celeration feeling, acceleration response, acceleration jerk and body pitch. The acceleration
feeling reflects the acceleration of the vehicle and evaluates the feeling of pushing back
felt by the driver during acceleration. The acceleration response reflects the time when the
driver feels accelerated from pressing the accelerator pedal. The acceleration jerk evaluates
the longitudinal jerk of the vehicle felt by the driver during acceleration. The body pitch
evaluates whether the driver feels the pitch frequency and angle is appropriate during
acceleration.

5.3. Uniform Speed Performance

Fuel cell vehicles are driven at a constant speed of 30 km/h, 50 km/h, 70 km/h,
100 km/h and 120 km/h, respectively. The uniform speed performance is evaluated from
two aspects: body shrugging and speed controllability. The body shrugging reflects the
anti-jamming ability of the vehicle at a constant speed. The speed controllability reflects
whether the driver can easily control the accelerator pedal to maintain a constant speed of
the vehicle.

5.4. Tip-In/Tip-Out Performance

The test conditions for the tip-in/tip-out performance of fuel cell vehicles are as
follows: the initial speed is 25 km/h or 45 km/h. Then, the vehicles accelerate with 30%,
50% and 80% accelerator pedal opening, respectively, and the accelerator pedal is released
after 1.5 s.

The tip-in/tip-out performance is mainly evaluated from two aspects: speed response
and longitudinal jerk. The speed response reflects the time from tip-in/tip-out to accelera-
tion or deceleration. The longitudinal jerk evaluates the longitudinal jerk of the vehicle felt
by the driver during the tip-in/tip-out process.

6. Results and Discussion

This paper evaluates the drivability of fuel cell vehicles with a changed powertrain
system compared with traditional vehicles. Therefore, this paper adopts a seven-point
subjective evaluation scoring method, as shown in Table 1. It can be seen that four points
are taken as the dividing line of evaluation, and the drivability of the original traditional
vehicles is taken as the benchmark of the dividing line.

Table 1. Subjective evaluation scoring scale.

Scores 1 2 3 4 5 6 7

Descriptions Severe Very poor Poor Fair Good Very good Excellent

Eight evaluators of different genders and driving experience are selected to score the
fuel cell vehicle, and the scores are averaged to obtain the final scores. The scores are
as follows.
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6.1. Starting Performance Results and Analysis

The subjective evaluation results of starting performance are shown in Figure 11.
The overall score is good under each condition except the starting feeling. The starting
feeling score is low under 30% and 50% accelerator pedal opening, which indicates that
the starting feeling of the fuel cell vehicle is not good under the small and the medium
accelerator pedal opening. This may be due to insufficient discharge of the fuel cell during
starting or the vehicle energy management restriction. The body pitch score is low when
the accelerator pedal opening is 80%, which indicates that the body control is not ideal with
a large accelerator pedal opening.
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6.2. Acceleration Performance Results and Analysis

The subjective evaluation results of accelerating to 100 km/h at full accelerator pedal
pressing are shown in Figure 12. The scores of the acceleration response, acceleration jerk
and body pitch are all 5–6 points, indicating that the acceleration performance is good.
However, the score of acceleration feeling is 3 points, which indicates that the acceleration
felt by the driver is small.
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The subjective evaluation results of interval acceleration at full accelerator pedal
pressing are shown in Figure 13. The overall score of the fuel cell vehicle is high, basically
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above 4 points. In terms of acceleration response, the fuel cell vehicle is superior to the
traditional vehicle in all speed ranges, especially in the 60–100 km/h range. In terms of
acceleration feeling, the fuel cell vehicle is better than the traditional vehicle. The body
pitch score is relatively low, which indicates that the body control of the fuel cell vehicle is
weak. In terms of the acceleration jerk, there is little difference between them.
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The subjective evaluation results of sudden accelerator pedal pressing to 30% opening
are shown in Figure 14. The score of each condition is high, which indicates that the fuel cell
vehicle performs better than the traditional vehicle in acceleration response, acceleration
jerk, body pitch and other aspects.
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The subjective evaluation results of sudden accelerator pedal pressing to 50% opening
are shown in Figure 15. The subjective scores of the acceleration feeling, acceleration
response and acceleration jerk are high under each speed condition. In terms of body pitch,
the score of the fuel cell vehicle is relatively low.
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The subjective evaluation results of sudden accelerator pedal pressing to 80% opening
are shown in Figure 16. The subjective scores of the acceleration feeling and acceleration
response at each speed condition are high while sudden accelerator pedal pressing to 80%.
In terms of body pitch, the fuel cell vehicle is almost the same as the traditional vehicle.
However, in terms of acceleration jerk, the subjective score of the fuel cell vehicle is low,
which indicates that the jerk felt by the driver is large.

Energies 2024, 17, x FOR PEER REVIEW 13 of 17 
 

 

 
Figure 16. Subjective evaluation results of sudden accelerator pedal pressing to 80% opening. 

The subjective evaluation results of slow accelerator pedal pressing for 3 s, 6 s and 9 
s are shown in Figures 17–19. It can be seen that the subjective score under slow accelerator 
pedal pressing is unbalanced. The acceleration response score is high, but the acceleration 
jerk score is low. This is closely related to the control logic of the vehicle controller. 

 
Figure 17. Subjective evaluation results of slow accelerator pedal pressing for 3 s. 

Figure 16. Subjective evaluation results of sudden accelerator pedal pressing to 80% opening.

The subjective evaluation results of slow accelerator pedal pressing for 3 s, 6 s and 9 s
are shown in Figures 17–19. It can be seen that the subjective score under slow accelerator
pedal pressing is unbalanced. The acceleration response score is high, but the acceleration
jerk score is low. This is closely related to the control logic of the vehicle controller.

6.3. Uniform Speed Performance Results and Analysis

The subjective evaluation results of uniform speed performance are shown in Figure 20.
The body shrugging score is high at each speed, which indicates that the fuel cell vehicle has
a strong anti-interference ability under constant speed. However, the speed controllability
score is slightly low, which indicates that the torque control is poor.
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6.4. Tip-In/Tip-Out Performance Results and Analysis

The subjective evaluation results of tip-in/tip-out performance are shown in Figure 21.
The speed response scores are high, which indicates that the vehicle controller has a good
response to the demand for rapid torque change. The longitudinal jerk score is slightly low,
which indicates that the longitudinal jerk of the vehicle felt by the driver is relatively large.
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7. Conclusions

In this paper, a real-time model of the fuel cell vehicle powertrain system was estab-
lished and a virtual subjective evaluation platform for fuel cell vehicles was built. And
subjective evaluation was conducted on the virtual prototype of a fuel cell vehicle according
to the subjective evaluation method mentioned in this paper. The main conclusions are
as follows:

1. The virtual subjective evaluation of driveability for fuel cell vehicles requires the
high-fidelity vehicle dynamics model and real-time fuel cell powertrain system model,
so as to dynamically calculate the main responses of vehicle driveability concerns
such as acceleration and body pitch.

2. An evaluation method for the driveability of fuel cell vehicles was proposed, including
the starting performance, acceleration performance, uniform speed performance
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and tip-in/tip-out performance. The evaluation indicator system was composed of
acceleration response, acceleration jerk, body pitch, etc.

3. The virtual subjective evaluation platform for fuel cell vehicles was used to evaluate
the vehicle according to the evaluation method proposed, which verified the platform
and evaluation method.

4. For the subjective evaluation of the driveability of fuel cell vehicles, it is necessary to
conduct field tests on real vehicles in subsequent research to obtain specific test results.
Meanwhile, it is also necessary to select as many evaluators from different regions
and with different driving experience as possible to complete subjective evaluation
tests on fuel cell vehicles to obtain more accurate evaluation results.
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