
Citation: Maldonado-Correa, J.;

Valdiviezo-Condolo, M.; Artigao, E.;

Martín-Martínez, S.; Gómez-Lázaro, E.

Classification of Highly Imbalanced

Supervisory Control and Data

Acquisition Data for Fault Detection

of Wind Turbine Generators. Energies

2024, 17, 1590. https://doi.org/

10.3390/en17071590

Academic Editor: Abdul-Ghani Olabi

Received: 1 February 2024

Revised: 14 March 2024

Accepted: 22 March 2024

Published: 26 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Classification of Highly Imbalanced Supervisory Control and
Data Acquisition Data for Fault Detection of Wind
Turbine Generators
Jorge Maldonado-Correa 1,2,* , Marcelo Valdiviezo-Condolo 2 , Estefanía Artigao 1 , Sergio Martín-Martínez 1

and Emilio Gómez-Lázaro 1

1 Renewable Energy Research Institute (IIER), University of Castilla-La Mancha, 02071 Albacete, Spain;
estefania.artigao@uclm.es (E.A.); sergio.martin@uclm.es (S.M.-M.); emilio.gomez@uclm.es (E.G.-L.)

2 Technological and Energy Research Center (CITE), National University of Loja, Loja 110150, Ecuador;
marcelo.valdiviezo@unl.edu.ec

* Correspondence: jorgeluis.maldonado@alu.uclm.es

Abstract: It is common knowledge that wind energy is a crucial, strategic component of the mix
needed to create a green economy. In this regard, optimizing the operations and maintenance (O&M)
of wind turbines (WTs) is key, as it will serve to reduce the levelized cost of electricity (LCOE) of
wind energy. Since most modern WTs are equipped with a Supervisory Control and Data Acquisition
(SCADA) system for remote monitoring and control, condition-based maintenance using SCADA
data is considered a promising solution, although certain drawbacks still exist. Typically, large
amounts of normal-operating SCADA data are generated against small amounts of fault-related
data. In this study, we use high-frequency SCADA data from an operating WT with a significant
imbalance between normal and fault classes. We implement several resampling techniques to address
this challenge and generate synthetic generator fault data. In addition, several machine learning (ML)
algorithms are proposed for processing the resampled data and WT generator fault classification.
Experimental results show that ADASYN + Random Forest obtained the best performance, providing
promising results toward wind farm O&M optimization.

Keywords: class imbalance; fault prediction; oversampling technique; SCADA data; wind turbine

1. Introduction

Wind energy has experienced sustained growth over the last decade, as shown in a
recent report by the Global Wind Energy Council (GWEC), which informed that 78 WTs
were installed in 2022. This has facilitated a total of 906 WTs of installed wind power
capacity around the world [1]. Moreover, the rapid development of Artificial Intelligence
(AI) techniques and their tools has positioned the fault prediction of wind turbines (WTs)
as a field of great interest in the scientific community [2].

WTs are equipped with a SCADA (Supervisory Control and Data Acquisition) system
for performance monitoring, supervision, and remote control. A SCADA system typically
uses 10 min intervals to monitor more than 200 signals generated by a WT [3] and creates
historical datasets which, after being processed by appropriate data analysis techniques, are
a valuable source of information on the WT’s status. However, datasets in the real world
are unevenly available, especially in industrial machinery fault detection, which means
that the amount of normal data (majority class) is much larger than that of fault-related
data (minority classes).

In this context, it is important to mention that WTs are routinely in a normal operating
state, i.e., a large amount of normal SCADA data and little abnormal SCADA data are
generated. The normal operating state of the WT comprises many stages, such as the
maximum power point tracking stage, the constant rotational speed stage, the rated power
output stage, etc. [4].

Energies 2024, 17, 1590. https://doi.org/10.3390/en17071590 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en17071590
https://doi.org/10.3390/en17071590
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-6272-8054
https://orcid.org/0000-0001-5476-2957
https://orcid.org/0000-0002-7217-7441
https://orcid.org/0000-0002-0986-6068
https://orcid.org/0000-0002-3620-3921
https://doi.org/10.3390/en17071590
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en17071590?type=check_update&version=2

Energies 2024, 17, 1590 2 of 20

Most of the models used for fault classification, and the metrics employed to evaluate
such models, assume that the distribution of classes is equal. However, imbalanced distri-
butions exist across the board between abnormal and normal classes, leading to inaccurate
failure diagnoses and predictions, because these models tend to be biased toward the most
widespread class.

This paper analyzes high-frequency and highly imbalanced SCADA data and alarms
on an in-service WT to predict failure in the induction generator. The data used for the
study are sampled every 30 s, thus being high-frequency. We highlight this aspect since
the sampling frequency of SCADA data used in most studies on WT fault prediction is
10 min [5].

In this work, the class imbalance problem, commonly disregarded, is first tackled. To
this end, modern resampling techniques are used to remove or generate synthetic data
randomly. Novel machine learning (ML) algorithms are then used for data processing and
fault classification. Finally, in order to avoid indicators that focus exclusively on one of the
classes, we use specific performance metrics that evaluate the overall performance of the
classification algorithms.

The main contributions of this article are summarized as follows:

• We carried out an exhaustive analysis of the SCADA operating data and alarms. In the
case of operational data, their high sampling frequency allowed us to better observe
the behavior patterns in the variables of interest.

• We used different resampling techniques to analyze our dataset, which is charac-
terized by a severe imbalance between classes (normal and faults), with an approx-
imate imbalance rate of 10,000:1. To reduce the classification bias of the data to-
ward the majority class, the data were resampled in the training set with different
oversampling methods.

• Using different metrics, we compared the performance of four binary classification
algorithms. We tried to use evaluation metrics that measure the overall performance
of the classification algorithms without solely focusing on one particular class.

Following this introduction, the paper is structured as follows: Section 2 describes the
state of the art and motivation of the present work. Section 3 presents the dataset used for
the analysis and the different methods implemented. The results are described in Section 4,
including the performance metrics. Finally, the conclusions drawn from the analysis are
summarized in Section 5, and the acknowledgments are included.

2. State of the Art and Motivation

A dataset is defined as imbalanced when the classification categories are not equally
represented [6], which generally occurs in industrial rotating machinery for failure data
versus normally operating data.

A recent work, presented in [7], performs a state-of-the-art review on intelligent
machine fault diagnosis using small and imbalanced data. The research results are divided
into three categories: data augmentation-based, feature learning-based, and classifier
design-based. The authors conclude that the data augmentation-based strategy using the
Synthetic Minority Oversampling Technique (SMOTE) can effectively enlarge the volume
of fault data; the feature learning-based strategy identifies faults accurately by extracting
features from small and imbalanced data, whereas the classifier design-based strategy
achieves high accuracy in fault diagnosis by building classifiers suitable for small and
imbalanced data. Additionally, Ref. [8] proposes a deep learning (DL) model with data
pre-processing and hyper-parameter tuning to achieve early anomaly detection in WTs. The
imbalanced classes in the records are addressed by SMOTE, with the experimental results
showing that the proposed model can identify possible failures 72 h before they occur.

In [9], a Minority Clustering SMOTE method (MC-SMOTE) is proposed, which in-
volves clustering minority class samples to improve classification performance. Here,
minority class samples are clustered and then combined with SMOTE. Subsequently, an
experiment is performed on real SCADA data on WT blade icing, the results of which

Energies 2024, 17, 1590 3 of 20

demonstrate the superiority of MC-SMOTE over SMOTE. Additionally, in [10], an im-
balance learning algorithm based on the SMOTE (Easy-SMT) technique is proposed and
augments the faulty classes. The feasibility and effectiveness of the proposed method in
a real WT icing fault forecasting challenge are determined. The experiments show that
Easy-SMT achieves better performance in binary and multi-fault classifications.

Similarly, in [11], the MiniBatch K-means clustering algorithm is combined with
SMOTE (MBK-SMOTE), allowing for the distribution of samples to be balanced. The au-
thors then use the Random Forest (RF) algorithm to predict icing on WT blades, concluding
that MBK-SMOTE significantly improves prediction accuracy.

Another method to diagnose WT blade icing faults is presented in [12]. To overcome
the shortcomings of data imbalance, a Safe Circle SMOTE (SC-SMOTE) is proposed and a
fault diagnosis method based on an improved k-Nearest Neighbor (kNN) classification is
adopted. The experimental results show the effectiveness of the method.

Furthermore, in [13], different analysis techniques are applied to imbalanced SCADA
data to improve temperature-related faults of the gearbox of a WT. Principal Component
Analysis (PCA) is used for data modeling and reduction, and an oversampling technique is
used for imbalanced data, which is able to increase the information per sample. The combi-
nation of these techniques leads to a better performance of the classification algorithms.

To overcome the problem of data imbalance between the majority and minority classes,
and the problem that models tend to be biased toward the majority class, a new intelligent
fault diagnosis methodology based on Deep Neural Networks (DNNs) is proposed in [4].
Here, the problem of imbalance between classes is tackled by learning a deep representation
that can preserve within-class information and between-class information. The effectiveness
and generalization of the proposed method are validated on SCADA data from two WTs.

Meanwhile, a new Spatio-Temporal Multiscale Neural Network (STMNN) is presented
in [14], to extract fault features from imbalanced SCADA data and execute the multi-class
fault diagnosis of WTs. To address the SCADA data imbalance problem and improve the
fault diagnosis performance, the model adopts Focal Loss (FL) as the loss function; the
experiments show that the STMNN method achieves the best performance.

In [15], a novel approach based on the Synthetic and Dependent Wild Bootstrapped
Oversampling Technique (SDWBOTE) is proposed for fault detection and localization of
WTs with imbalanced data. The authors design an improved oversampling algorithm
to generate the balanced dataset. They then introduce Convolutional Neural Networks
(CNNs), with experimental results of seven cases using the datasets collected from two real
wind farms in China to validate the effectiveness and robustness of the proposed approach.

A further work is presented in [16], which aims to predict fault-related alarms in WTs.
SCADA data are analyzed, and SMOTE is used to balance the classes. Then, Support Vector
Classifiers (SVCs) and Decision Trees (DTs) are compared, and the obtained performance
results incline DT to be selected for the prediction model. Additionally, an investigation on
WT gearbox failure diagnosis is presented in [17], the aim of which is to identify the most
suitable classification technique that least depends on the imbalance level of the dataset.
The authors conclude that DT is the most suitable prediction model for this task.

Moreover, in [18], a fault diagnosis algorithm combining SMOTE with adaptive Trans-
fer Learning (TL) is proposed. A case study demonstrates that the proposed algorithm can
effectively train models with highly imbalanced data and identify the types of faults and the
time windows in which they occur. In [19], models are developed using Artificial Neural
Networks (ANNs) to characterize the behavior and predict failures of the WT, gearbox, and
generator. The proposed method is tested on real WTs in Italy to verify its effectiveness.

An approach for detecting faults in WT converters using CNN and SCADA data is
presented in [20], finding that the accuracy of the proposed model is up to 98% compared
to other models.

In [21], TL algorithms on SCADA data are used for WT fault diagnosis. TL algorithms
are used to solve the data imbalance problem and two failure modes are compared with
the proposed algorithm, which is shown to perform better in dealing with data imbalance.

Energies 2024, 17, 1590 4 of 20

A study on WT failure data is presented in [22], demonstrating through case studies that
the proposed system can effectively detect failure events in the generator, the transformer,
and the hydraulic system. Another experimental study shows that, by using SCADA
data, SMOTE, and ML tools, WT failures can be predicted with 80% accuracy 18 days in
advance [23].

While the above shows that SMOTE has been successfully used in a number of studies
for imbalanced datasets in the wind industry, other oversampling techniques are widely
used in the AI community and, in some cases, may be more effective than SMOTE. This is
the case of Adaptive Synthetic Sampling (ADASYN) and Ranked Minority Oversampling
of Minorities in Boosting (RAMOBoost). However, as stated in [24], these have not yet been
used for the condition monitoring (CM) of WTs. Other studies that motivated this work
were [25–32].

In summary, there are a considerable number of scientific studies that combine tech-
niques for treating imbalanced SCADA data with the application of ML models in specific
problems of WT fault detection. Several factors, such as ice accumulation on the blades,
gearbox heating, and converter component malfunctions, among others, can cause these
failures. However, studies using highly imbalanced and high-frequency SCADA data for
WT generator fault detection are limited. We aim to fill this research gap, providing new
perspectives and innovative solutions.

Table 1 summarizes the most relevant articles analyzed in this work. The objective
is to succinctly show the different data resampling techniques used in WT fault detection
research. Likewise, the AI algorithms used, the WT component or subsystem on which the
study is focused, and the results achieved are shown.

In particular, the results column offers the reader the possibility of comparing the
performance of the algorithms used in fault detection based on the metrics of precision,
recall, F1-Score, Area Under Curve (AUC), accuracy (acc), geometric mean (G-mean), and
Matthews Correlation Coefficient (MCC).

Table 1. Summary of relevant studies on resampling techniques and ML tools for WT fault detection.

Ref. and
Year TDID 1 Learning

Algorithms
Tools/

Methods
Main

Components
Results

[4]
2019 Triplet loss function classification DNN, kNN blade 90.85% (precision),

63.10% (recall),
74.47% (F1-Score)

[7]
2021 SMOTE classification GANs 2 , DNN,

SVM 3
WT not

specified

[8]
2021 SMOTE classification DNN, SVM 3,

RF, kNN
WT >90% (precision)

[9]
2020 MC-SMOTE classification,

clustering
SVM 3, CART 4,

Bayesian classifiers
blade 91.70% (precision),

92.10% (recall) ,
91.90% (F1-Score)

[10]
2018 SMOTE classification RF, GBDT 5,

XGBoost 6
WT 86.82% (precision),

96.50% (recall),
91.49% (F1-Score)

[11]
2017 MBK-SMOTE classification,

clustering
K-means, RF blade 54.00% F1-Score),

74.85% (AUC)

[12]
2020 SC-SMOTE classification kNN blade 78.90% (acc)

[13]
2021

Random
oversampling,
data reshaping

classification kNN, SVM 3,
RUSBoost 7

gearbox 99.82% (recall),
95.48% (F1-Score),

95.36% (acc)

Energies 2024, 17, 1590 5 of 20

Table 1. Cont.

Ref. &
Year TDID 1 Learning

Algorithms
Tools/

Methods
Main

Components
Results

[14]
2021 FL function classification STMNN, LSTM 8,

CNN
WT 94.70% (F1-Score),

90.10% (G-mean)

[15]
2021 SDWBOTE classification CNN WT 97.51% (F1-Score)

[16]
2021 SMOTE classification SVC, DT WT

80.00% (precision),
83.00% (recall),

81.00% (F1-Score),
87.00% (acc)

[17]
2018

SMOTE,
undersampling,

cost-sensitive learning

classification MLP 9, Naive Bayes,
kNN, DT, Bagging,

Rotation Forest

gearbox 85.00% (MCC)

[18]
2023 SMOTE classification CNN, ResNet 10 gearbox,

generator bearing,
hydraulic system

>75.00% (recall),
>51.43% (F1-Score)

[20]
2021 Upsampling operations classification CNN converter 98.41% (precision),

97.66% (recall),
98.04% (acc)

[21]
2021 Re-sampling classification kNN, RF,

TrAdaBoost 11,
Inception V3

blade,
pitch system

>73.20% (recall),
>89.40% (acc)

[23]
2017 SMOTE classification ANN, SVM 3,

KNN, Naive Bayes
generator 96.34% (recall),

94.80% (acc)

[25]
2022

SMOTE,
FL function,
re-sampling

classification GANs 2, JAFTN 12,
WDCNN 13

gearbox 99.70% (precision),
99.60% (F1-Score),

99.60% (acc)

[26]
2020 SMOTE classification,

clustering
LSTM 8, XGBoost 6 WT 97.00% (acc)

[27]
2022

SMOTE,
cost-sensitive learning

classification LGBM 14, GMM 15 blade 97.80% (F1-Score)

[28]
2020

SMOTE,
cost-sensitive learning

classification
Logistic regression,

RF, XGBoost 6,
LSTM 8

gearbox 52.00% (precision),
86.00% (recall),

57.00% (F1-Score)

[29]
2022 SMOTE classification LSTM 8, CNN,

MLP 9
hydraulic system,

generator, converter
>80.20% (F1-Score),

>90.60% (acc)

[30]
2023 SMOTE+ENN classification DT, AdaBoost 16,

KNN, RF
WT 99.60% (precision),

99.20% (recall),
99.60% (F1-Score)

[31]
2023

SMOTE,
Adasyn

classification MCL 17, STMNN,
STFNN 18

WT 94.70% (F1-Score)

[32]
2022

SMOTE,
Adasyn,

SMOTE+ENN

classification DT, KNN,
SVM 3, MLP 9

blade 94.20% (F1-Score),
94.20% (G-mean),

93.80% (MCC)

1 Techniques for Dealing with Imbalanced Data (TDID), 2 Generative Adversarial Networks (GANs), 3 Support
Vector Machine (SVM), 4 Classification and Regression Trees (CARTs), 5 Gradient Boosting Decision Tree (GBDT),
6 eXtreme Gradient Boosting (XGBoost), 7 Random Under-Sampling Boosting (RUSBoost), 8 Long Short Term
Memory (LSTM), 9 Multi-Layer Perceptron (MLP), 10 Residual Neural Network (ResNet), 11 Transfer Adaptive
Boosting (TrAdaBoost), 12 Joint Attention Feature Transfer Network (JAFTN), 13 Deep Convolutional Neural
Networks with Wide First-layer Kernels (WDCNN), 14 Light Gradient Boosting Machine classifier (LGBM),
15 Gaussian Mixture Model (GMM), 16 Adaptive Boosting (AdaBoost), 17 Matching Contrastive Learning (MCL),
18 Spatio-Temporal Fusion Neural Network (STFNN).

3. Materials and Methods

This section describes the dataset used in the present work and the methodology
implemented. The methodology includes algorithms to tackle the class imbalance prob-

Energies 2024, 17, 1590 6 of 20

lem and, subsequently, the ML algorithms for fault detection. The complete process is
summarized in Figure 1.

 Diagrama de flujo1
Jorge Maldonado Correa | December 15, 2022

SCADA
dataset

Data
preprocessing

Data
imbalancing ?

Undersampling
Oversampling

Model
training/tuning

No

Model
evaluation

Resampling
evaluation

Yes

Figure 1. Overall flowchart of the implementation of ML and imbalanced SCADA data analysis.

3.1. Data Description

This paper analyzes high-frequency SCADA data from an operating onshore wind
farm located in the province of Albacete in Spain for a period of nearly a year, representing
a total of 782,233 records. Due to a confidentiality agreement between the wind farm
owners and the authors, the wind farm name is anonymized in this study.

The SCADA data specifically correspond to a pitch-controlled WT Gamesa G90-2MW,
equipped with a doubly fed induction generator (DFIG). The SCADA system of the WT
under study collects 20 variables every 30 s.

In order to reduce the full dataset, a correlation matrix was used to determine the most
suitable variables for the study. The matrix shows the color-coded Pearson’s correlation
coefficient scale for each pair of variables. In this study, we have chosen this correlation
method for its ability to calculate the correlation between quantitative variables and to
identify linear relationships between variables in the SCADA dataset.

As can be seen in Figure 2, there is a low correlation between the different temperatures
and the different power-related variables. Regarding the speed-related variables, these
present a medium-high correlation with the power-related ones, as opposed to the former
with the temperature-related variables, which again show a low correlation.

Pitch angle

Stator current

Grid current

Rotor current

Power factor

Wind direction

Grid frequency

Nacelle position

Stator power

Rotor power

React power

Total power

Ambient temp

Slip ring temp

Stator temp

Bus voltage

Grid voltage

Genenator speed

Rotor speed

Wind speed

Pi
tc

h
a
n
g
le

S
ta

to
r

cu
rr

e
n
t

G
ri
d

cu
rr

e
n
t

R
o
to

r
cu

rr
e
n
t

Po
w

e
r

fa
ct

o
r

W
in

d
d
ir
e
ct

io
n

G
ri
d

fr
e
q
u
e
n
cy

N
a
ce

lle
 p

os
it
io

n

S
ta

to
r

p
o
w

e
r

R
o
to

r
p
o
w

e
r

R
e
a
ct

p
o
w

e
r

To
ta

l
p
o
w

e
r

A
m

b
ie

n
t

te
m

p

S
lip

 r
in

g
 t

em
p

S
ta

to
r

te
m

p

B
u
s

vo
lt
a
g
e

G
ri
d

vo
lt
a
g
e

G
e
n
en

at
or

 s
p
ee

d

R
o
to

r
sp

e
e
d

W
in

d
sp

e
e
d 0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Figure 2. Correlation matrix of the full dataset.

After analyzing this matrix, the following variables were selected for the study: wind
speed, slip ring temperature, stator temperature, ambient temperature, rotor power, stator
power, and rotor speed. These variables were selected based on the target variable. In

Energies 2024, 17, 1590 7 of 20

this study, stator power is the target variable as it is closely related to the generator.
In addition, the authors made a final selection of the resulting variables based on their
domain knowledge.

Besides the variables shown, the SCADA system also collects alarms and warnings,
which indicate abnormal behavior in the operation of WT components or system-operating
states. According to [33], alarms can be classified into general alarms, operational alarms,
environmental alarms, and communication alarms.

During the period of study, the SCADA system recorded generator failures that
resulted in WT shutdown. In addition, a few days prior to these failure events, running
alarms associated with failure, which did not involve WT shutdown, were recorded. These
operating alarm records were considered in this study, and their details are presented in
Figure 3.

Stator magneto-thermal protection tirgger

High-speed generator

Stator protection magneto-thermal circuit breaker

Rotor protection circuit breaker

High temperature power limitation

Figure 3. Description of the name and percentage of SCADA alarms used in this study.

3.2. Methods to Balance the Class Distribution

As previously explained, imbalanced training datasets can negatively affect the perfor-
mance of most ML algorithms, with it thus being necessary to balance the class distribution
prior to implementing fault detection using ML.

In this study, the WT failure data represent the minority class. The majority class (no
anomaly or class 0) represents 99.99067% of the dataset, while the minority class (anomaly
or class 1) represents 0.00933% of the dataset, with an imbalance ratio of close to 10,000:1.

Data resampling is an effective strategy for balancing the class distribution. The two
main data resampling methods for the training dataset are oversampling and undersam-
pling. Undersampling is the method by which the number of instances or samples of the
majority class are removed. Among the most commonly used undersampling methods are
random undersampling, near miss undersampling, and Tomek Links undersampling [34].

The oversampling technique aims to increase the number of instances or samples
of the minority class until the training dataset is balanced. The most commonly used
oversampling methods are random oversampling [13] and SMOTE, the latter having
several variations, such as Borderline-SMOTE [35].

Another oversampling technique is ADASYN, which has been widely applied in the
healthcare domain, but has not been used with WT SCADA data. In the present work,
ADASYN and SMOTE (including two variations) are proposed.

The ADASYN procedure is briefly described as follows [36].

• First, the number of synthetic data examples that need to be generated for the minority
class is determined:

G = (ml −ms) · β (1)

where ms represents the number of minority class examples, ml represents the num-
ber of majority class examples, and β is used to specify the balance level after the
generation of the synthetic data, being between [0,1].

• Afterward, for each example, the minority class (xi), finds k-nearest neighbors based
on the Euclidean distance in n dimensional space, and calculates the ratio ri defined as

ri =
∆i
k

; i = 1, ..., ms (2)

Energies 2024, 17, 1590 8 of 20

where ∆i represents the number of examples in the k-nearest neighbors of (xi), associ-
ated with the predominant class.

• Then, normalize the ratio ri according to

r̂i =
ri

∑ms
i=1 ri

(3)

where r̂i represents the density distribution, and ∑i r̂i = 1.
• Finally, the number of synthetic data instances that must be developed is calculated

for each xi:

gi = r̂i · G (4)

The other technique used in the present work, SMOTE, generates synthetic samples in
the feature space formed by samples of the minority class and the KNN. According to [7],
the procedure used by the SMOTE algorithm is as follows:

• The nearest neighbor sample for each minority class sample is found.
• Random samples to interpolate are chosen among the nearest neighbor samples.
• The original minority class samples and their neighbor samples are linearly interpo-

lated. The synthetic sample (χnew) is generated by

χnew = χ + rand(0, 1) · (χi − χ), (i = 1, 2, ..., N) (5)

where χ represents the original samples used to obtain the new samples, rand(0, 1) is
a random number from 0 to 1, which guarantees that χnew is on the line joining the
original data χ and one of its nearest neighbors, and χi represents a randomly selected
sample among the minority class samples.

In addition, two variations of SMOTE are implemented in the present work, namely
SMOTE + Tomek and SMOTE + ENN. Both variations are regarded as hybrid methods,
since they combine oversampling and undersampling techniques, providing the best of
both techniques for improved results.

3.3. ML Methods for Fault Detection

The present work uses four binary classification algorithms to predict WT failures.
These were trained using the default parameters and adjusting the hyperparameters. A
brief description of the algorithms used is presented below.

• Random Forest (RF). Proposed by Leo Breiman in 2001 [37], this is a supervised
learning algorithm used for classification or regression problems, which works by
building many decision trees, where each tree yields a class prediction, and the class
with the most votes becomes the model prediction [38]. The general RF classifier
pseudocode used in this study is shown in Algorithm 1.

• Decision Trees (DTs). Non-parametric algorithms obtained from a set of learning
cases, labeled by class and attribute values. This prediction algorithm is suitable
for regression and classification problems, although it can be highly unstable, and
overtraining should be avoided [39]. Algorithm 2 shows the pseudocode of the
DT classifier.

• Multilayer Perceptron (MLP). ANNs are applied to a sequence of time series forecast-
ing problems. These have an input layer, one or more hidden layers, and an output
layer [40]. The advantages of MLP include the ability to withstand elevated levels
of noise in the input data and to learn independently of the linear and nonlinear
relationships existing in the variables under study.
For the binary classification problem, the MLP can be described as

y(x) = φ · (
n

∑
i=1

WiXi + b) (6)

Energies 2024, 17, 1590 9 of 20

where Wi denotes the weights associated with the neuron, Xi are its inputs, b is the
bias, and φ is the transfer or activation function.

Algorithm 1: Random Forest Classifier
Data: Training data X, labels y, number of trees num_trees
Result: Random Forest model

1 for i← 1 to num_trees do
2 Randomly select a subset of features: selected_ f eatures←

RandomSubset(all_features);
3 Randomly select a subset of data with replacement:

subset_data, subset_labels← BootstrapSample(X, y);
4 Train a decision tree using subset_data and selected_ f eatures: tree←

TrainDecisionTree(subset_data, subset_labels);
5 Add tree to the list of trees: trees← trees + [tree];

Result: Random Forest Prediction
6 for j← 1 to num_trees do
7 Predict using the j-th tree: predictionsj ← PredictWithTree(trees[j], X);

8 Combine predictions using majority voting: f inal_prediction←
MajorityVoting(predictions1, predictions2, ..., predictionsnum_trees);

9 return f inal_prediction

Algorithm 2: Decision Tree Classifier
Data: Training data X, labels y
Result: Decision Tree model

1 while not reaching maximum depth or another stopping criterion do
2 Select the best feature and split point: best_ f eature, split_point←

FindBestSplit(X, y);
3 Split the data into two subsets: Xle f t, Xright, yle f t, yright ←

SplitData(X, y, best_ f eature, split_point);
4 Create a tree node: node← CreateNode(best_ f eature, split_point);
5 if stopping criterion is met for Xle f t then
6 Assign a leaf node with label: nodele f t ← CreateLeafNode(yle f t);

7 else
8 Recursively build the left subtree: nodele f t ←

BuildDecisionTree(Xle f t, yle f t);

9 if stopping criterion is met for Xright then
10 Assign a leaf node with label: noderight ← CreateLeafNode(yright);

11 else
12 Recursively build the right subtree: noderight ←

BuildDecisionTree(Xright, yright);

13 Connect nodes in the tree: node← ConnectNodes(node, nodele f t, noderight);

14 return node

• The MLP structure used in this study consists of four hidden layers in addition to the
input and output layers. The activation functions of the hidden layers are rectified
linear unit (ReLU) and Sigmoid for the output layer. In addition, in the first hidden
layer, a dropout rate equal to 0.5 was applied to avoid the model overfitting problems.
The MLP pseudocode is shown in Algorithm 3.

• Boosting Decision Tree (BDT). In this algorithm, each tree depends on the previous
trees (boosting). Therefore, each tree has information about the errors made by the

Energies 2024, 17, 1590 10 of 20

previous one, thus helping to refine the result [10]. The pseudocode for the BDT
classifier employed in this study is presented in Algorithm 4.

Algorithm 3: Multilayer Perceptron Classifier
Data: Training data X, labels y, learning rate η, number of epochs num_epochs
Result: Trained Multilayer Perceptron model

1 Initialize weights and biases for each layer:
W1, b1, W2, b2, ..., Wnum_layers, bnum_layers;

2 for epoch← 1 to num_epochs do
3 for each training sample (xi, yi) do
4 Perform forward propagation to compute predicted output: a(L) ←

ForwardPropagation(xi, W1, b1, W2, b2, ..., Wnum_layers, bnum_layers);
5 Compute loss: J ← ComputeLoss(a(L), yi);
6 Perform backward propagation to compute gradients: ∂J

∂W , ∂J
∂b ←

BackwardPropagation(xi, a(L), yi, W1, b1, W2, b2, ..., Wnum_layers, bnum_layers);
7 Update weights and biases using gradient descent:

W1, b1, W2, b2, ..., Wnum_layers, bnum_layers ←
UpdateParameters(W1, b1, W2, b2, ..., Wnum_layers, bnum_layers,

∂J
∂W , ∂J

∂b , η);

8 return Trained model with weights and biases

Algorithm 4: Boosting with Decision Trees Classifier
Data: Training data X, labels y, number of weak learners num_learners
Result: Trained Boosting with Decision Trees model

1 Initialize weights for each sample: w1, w2, ..., wN ← 1
N ;

2 for t← 1 to num_learners do
3 Train a weak learner (e.g., decision tree) using weighted data: ht ←

TrainWeakLearner(X, y, w1, w2, ..., wN);
4 Make predictions with the weak learner: predictionst ←

PredictWithWeakLearner(ht, X);
5 Compute the weighted error: ϵt ←

ComputeWeightedError(predictionst, y, w1, w2, ..., wN);
6 Compute the weak learner’s contribution to the ensemble: αt ←

ComputeLearnerWeight(ϵt);
7 Update sample weights: w1, w2, ..., wN ←

UpdateSampleWeights(αt, predictionst, y, w1, w2, ..., wN);

8 return Ensemble of weak learners {h1, h2, ..., hnum_learners} and their weights
{α1, α2, ..., αnum_learners}

3.4. Metrics Used to Quantify the Prediction Accuracy

Various performance metrics are used to quantify prediction errors of oversampling
methods, on the one hand, and of ML methods, on the other hand. The metrics selected
for use in the present study are accuracy (acc), recall, precision, AUC, specificity, F1-Score,
geometric mean (G-mean), Negative Predictive Value (NPV), weighted accuracy (W_acc), and
Matthews Correlation Coefficient (MCC). Of these, acc, recall, specificity, AUC, G-mean, NPV,
and W_acc are specifically useful for classification models with imbalanced data since they
focus specifically on the performance of a class [13,23].

Conversely, acc can be a very unreliable metric when the class distribution is highly
biased [4,11], and is thus not used in this study to evaluate the ML methods for fault detection.

All of the above-mentioned metrics are briefly described as follows, where TP, TN, FP,
and FN refer to true positives, true negatives, false positives, and false negatives, respectively.

Energies 2024, 17, 1590 11 of 20

• Acc: The total percentage of correctly classified elements is given by the total number
of correct predictions divided by the total number of m predictions (Equation (7)).

acc =
TP + TN

m
(7)

• Recall: Known as True Positive Rate, this is the percentage of positive instances
correctly classified, i.e., the ability of the model to predict the class correctly, as shown
in Equation (8). Recall is useful for failure prediction as it effectively measures the
minority class prediction coverage [13].

recall =
TP

TP + FN
(8)

• Precision: As indicated in Equation (9), precision measures the number of positive class
predictions that belong to the positive class. In other words, precision refers to the
number of positive items that the model properly detected out of all the potentially
positive elements [9].

precision =
TP

TP + FP
(9)

• AUC: This metric represents the area under the ROC curve. The ROC (Receiver Oper-
ating Characteristic) curve is a graph that shows the performance of a classification
model. The graph represents the distribution of the True Positive Rate on the y-axis
versus the False Positive Rate on the x-axis.

AUC =
recall + speci f icity

2
(10)

• Specificity: This is a metric that determines the harmonic mean between precision and
the recall [13]. Specifically, Equation (11) defines the classification specificity.

speci f icity =
TN

FP + TN
(11)

• F1-Score: This is a metric for quantifying model performance. It is useful for imbal-
anced data because it attempts to find the balance between precision and recall [36].
The F1-Score measure is calculated as follows:

F1− Score = 2 · precision · recall
precision + recall

(12)

• G-mean: This evaluates the performance of the majority and minority classes compared
to each other. Although negative cases are successfully classified, a low G-mean
suggests poor performance in classifying positive cases [9]. G-mean can be calculated
as follows:

G−mean =
√

recall + speci f icity (13)

• NPV: This is the ratio of properly categorized negative class labels to the total number
of predicted negative labels [13]. The formula for this metric is given by

NPV =
TN

FN + TN
(14)

• W_acc: This is the average of the recall and specificity (Equation (15)), and measures
the average accuracy of both minority and majority classes. If a classifier performs
equally well on both classes, this number drops to the traditional accuracy. In contrast,
if the high value of traditional accuracy is due to the classifier exploiting the majority
class distribution, the balanced accuracy will be lower than the accuracy [21].

Energies 2024, 17, 1590 12 of 20

W_acc = 0.5 · (recall + speci f icity) (15)

• MCC: This includes all the elements of the confusion matrix (TP, TN, FP, and FN), as
shown in Equation (16). It is the metric least influenced by imbalanced data. It ranges
from −1 to +1; a value of +1 indicates a perfect prediction, and −1 indicates the worst
possible prediction [17].

MCC =
(TP · TN)− (FP · FN)√

(TP + FP)(TP + FN)(TN + FN)(TN + FN)
(16)

4. Results

This section presents the results after performing the methodology described in
Figure 1, with the ultimate goal of improving the fault detection algorithms by improving
the imbalance problem.

4.1. Data Resampling

As mentioned in Section 3.2, this study has an imbalance between the normal and
fault classes. To delve deeper into the problem of imbalance, a further correlation analysis
was performed to determine the relationship between the variables under study for both
the normal and anomaly classes of samples.

In this regard, as depicted in Figure 4, a high positive correlation was found between
stator power and rotor power (for both class 0 and class 1 samples), which denotes a close
relationship between the generator’s electrical and mechanical behavior. Deviations in this
correlation during WT operation could be an early indication of possible generator failure.

Moreover, similar correlations were observed between stator power and wind speed and
between ambient temperature and slip ring temperature. The latter association can be explained
by the direct effect of ambient temperature on the increase in slip ring temperature. On the
other hand, the correlations with the other variables were lower due to the dispersion of
the samples analyzed.

The differences between the synthetic samples generated with the resampling tech-
niques are visually imperceptible when considering the complete dataset. Therefore, a
sample of 10,000 data was selected for better visualization of the resampling on the power
curve. Figure 5 shows the application of the four resampling techniques, and a magni-
fied segment of the power curve is used to show how each technique generates different
synthetic samples.

The class imbalance problem was then tackled. A DT classifier was used to evaluate
the different oversampling techniques. This decision was taken due to the computational
benefits of this algorithm [41], which is crucial due to the considerable volume of data
being processed in this study. The experiments were carried out with the hyperparameters
shown in Table 2.

Table 2. Hyperparameters of the DT classifier.

Hyperparameter Value Description

max_depth 5 Maximum Tree Depth
min_samples_split 2 Minimum number of samples to split node
min_samples_leaf 1 Minimum number of samples in a leaf

max_features None Maximum number of characteristics
criterion gini Measure of the quality of a node split

Energies 2024, 17, 1590 13 of 20

Figure 4. Correlation analysis between WT variables using scatterplot matrix.

(a)
(b)

Figure 5. Cont.

Energies 2024, 17, 1590 14 of 20

(c) (d)

Figure 5. Comparative analysis of resampling techniques. (a) Results after SMOTE; (b) Results after
ADASYN; (c) Results after SMOTE + Tomek; (d) Results after SMOTE + ENN.

The results of applying the oversampling techniques to the complete dataset were ana-
lyzed using the specific metrics selected, explained in Section 3.4, and shown in Figure 6.
As can be seen, the ADASYN technique performed best, yielding the following met-
rics: acc = 92.80%, recall = 60.27%, specificity = 92.80%, AUC = 76.85%, G-mean = 74.79%,
NPV = 99.99%, and W_acc = 76.58%.

Figure 6. Evaluation metrics obtained for different oversampling techniques.

4.2. Performance of Classification Algorithms

After having implemented (and analyzed) the techniques to overcome the class imbal-
ance problem, the fault detection algorithms described in Section 3.3 were implemented,
with these being MLP, RF, DT and BDT. To this end, the dataset was first divided into a
training set (70% of the data) and a test set (remaining 30% of the data), and various analyses
were performed by gradually adjusting the hyperparameters in the specific algorithms.

Energies 2024, 17, 1590 15 of 20

As in the previous step, the metrics proposed in Section 3.4 were used to quantify the
results. Since the aim of this study was to predict generator failures, (i.e., faults – class 1),
class 1 is considered the more important one in the analysis. In this sense, recall is regarded
as a key metric since one of the objectives in fault classification problems is to minimize the
number of false negatives. Erroneous classification of observations as normal operation
(class 0) instead of fault (class 1) may cause unplanned downtime and, thus, additional
costs in the O&M of WTs.

Table 3 shows the classifiers’ performance when using the resampled dataset using
the Adasyn technique, mentioned above as the most effective in terms of resampling.
Experimental tests were carried out by varying the values of the hyperparameters. The
best performance obtained by each classifier is shown in bold.

Table 3. Performance evaluation values for the classifiers used in this study.

MLP

hidden_layer sizes alpha Precision Recall F1-Score Specificity AUC G-mean NVP W_acc MCC

100 0.0001 0.000 0.150 0.001 0.766 0.610 0.481 0.989 0.558 0.016
100 0.001 0.000 0.200 0.001 0.762 0.571 0.639 0.989 0.581 0.021
100 0.01 0.001 0.625 0.001 0.895 0.771 0.769 0.999 0.775 0.024

(50, 50) 0.0001 0.000 0.105 0.001 0.787 0.597 0.322 0.989 0.518 0.008
(50, 50) 0.001 0.000 0.100 0.001 0.788 0.595 0.314 0.989 0.544 0.020

BDT (lr: 50, max_depth: 0.01)

n_estimators min_samples split Precision Recall F1-Score Specificity AUC G-mean NVP W_acc MCC

0 3 0.000 0.300 0.000 0.005 0.784 0.589 0.924 0.723 0.013
1 3 0.000 0.500 0.000 0.005 0.784 0.589 0.953 0.723 0.002
2 3 0.000 0.600 0.001 0.005 0.844 0.739 0.994 0.750 0.014
3 5 0.000 0.500 0.000 0.003 0.830 0.576 0.907 0.744 0.001
4 5 0.000 0.400 0.000 0.003 0.830 0.576 0.907 0.740 0.001

DT (criterion: gini)

max_depth min_samples split Precision Recall F1-Score Specificity AUC G-mean NVP W_acc MCC

None 2 0.082 0.500 0.131 0.993 0.546 0.555 0.999 0.546 0.227
None 2 0.082 0.300 0.131 0.993 0.546 0.315 0.999 0.546 0.227

5 2 0.094 0.600 0.162 0.993 0.822 0.805 0.999 0.826 0.247
5 5 0.022 0.300 0.111 0.918 0.595 0.525 0.999 0.609 0.219
5 5 0.022 0.300 0.111 0.918 0.595 0.525 0.999 0.609 0.219

RF (n_stimators: 50)

max_depth min_samples split Precision Recall F1-Score Specificity AUC G-mean NVP W_acc MCC

None 2 0.149 0.400 0.426 0.937 0.648 0.722 0.999 0.523 0.420
None 5 0.219 0.400 0.425 0.996 0.668 0.722 0.999 0.523 0.419
None 10 0.019 0.500 0.425 0.996 0.661 0.622 0.999 0.523 0.419

10 2 0.183 0.500 0.489 0.934 0.589 0.743 0.999 0.657 0.413
10 5 0.391 0.643 0.487 0.999 0.821 0.802 0.999 0.821 0.502

The metrics obtained after implementing the ML algorithms are shown in Figure 7.
As can be seen, RF is the best performing algorithm, with the following scores: preci-
sion = 39.16%, recall = 64.38%, F1-Score = 48.70%, specificity = 99.99%, AUC = 82.18%,
G-mean = 80.23%, NPV = 99.99%, W_acc = 82.18%, and MCC = 50.21%. It is also noticeable
that, for some metrics, DT reaches values close to those obtained for RF. As previously
explained, acc was not used to evaluate the proposed models since it can be very unreliable
when the class distribution is highly biased, as is the case here.

The performance of the ML techniques selected for fault detection were further an-
alyzed before and after implementing the oversampling techniques, through confusion-
matrix plots and ROC curves.

On the one hand, the results of the confusion-matrix plots prove that, without applying
resampling techniques, the classifiers overfit the majority class, as can be seen in Figure 8a.
On the other hand, the results of the evaluation of the classifiers trained with the resampled
datasets, SMOTE (Figure 8b) and ADASYN (Figure 8c), highlight the performance of RF in
classifying faults, especially the minority class.

Energies 2024, 17, 1590 16 of 20

Figure 7. Evaluation metrics obtained for different fault prediction techniques.

Ac
tu

al
 V

al
ue

s

782160 0

73 0

0 1

0
1

MLP

782160 0

39 34

0 1

0
1

RF

Predicted Values

782160 0

73 0

0 1

0
1

DT

782160 0

69 4

0 1

0
1

BDT

W
ITHO

U
T

(a)

Ac
tu

al
 V

al
ue

s

547103 235057

11 62

0 1

0
1

MLP

782084 76

26 47

0 1

0
1

RF

Predicted Values

781684 476

26 47

0 1

0
1

DT

659781 122379

28 45

0 1

0
1

BDT

SM
O

TE

(b)

Ac
tu

al
 V

al
ue

s

700629 81531

25 48

0 1

0
1

MLP

782087 73

26 47

0 1

0
1

RF

Predicted Values

781696 464

26 47

0 1

0
1

DT

661119 121041

26 47

0 1

0
1

BDT

ADASYN

(c)

Figure 8. Confusion matrix results for performance evaluation of the proposed models with and with-
out oversampling techniques. (a) Original data; (b) Results after SMOTE; (c) Results after ADASYN.

Finally, the performance of these models was analyzed using ROC curves. As can
be observed in Figure 9, the results obtained improve after applying SMOTE and slightly

Energies 2024, 17, 1590 17 of 20

more after applying ADASYN. This is especially true for RF and DT techniques, with RF
providing better results than DT.

(a) (b)

(c)

Figure 9. ROC curves results for performance evaluation of the proposed models with and without
oversampling techniques. (a) Original data; (b) Results after SMOTE; (c) Results after ADASYN.

5. Conclusions

This paper presents a solution for the prediction of faults in the WT generator, which
is one of the main components of a WT. The solution is based on high-frequency and
highly imbalanced normal-operating SCADA data and fault-related data. The proposed
solution includes testing four resampling techniques to compensate for biases that occur in
imbalanced classification problems.

The resampling techniques implemented in the present work compare commonly used
methods for the CM of WTs, such as SMOTE and its variations, against newer techniques,
such as ADASYN, which is used in other fields but has not previously been implemented
in the wind energy sector. These oversampling techniques were analyzed using different
performance metrics as well as confusion-matrix plots and ROC curves, where ADASYN
obtained the highest scores on most evaluation metrics. Furthermore, four classification
algorithms for WT generator fault detection were tested before and after implementing the
proposed resampling techniques, with RF (after ADASYN) obtaining the best results on
different evaluation metrics and showing better results than DT in the confusion-matrix
plots and ROC curves.

Therefore, the methodology proposed in this study, developed using high-resolution
SCADA data from real WTs, is able to overcome the imbalance problem normally found in
operating wind farms and, thus, improve fault detection which will serve to optimize the
O&M of WTs.

Future research directions include exploring advanced oversampling methods such as
Gaussian Copula Oversampling, Distance-based Arranging Oversampling, and hybrid tech-
niques like SMOTE-NC + RUS (SMOTE for Nominal and Continuous features + Random
Under Sampling) to address the imbalance between SCADA system operational data and
WT fault data. We will also investigate the use of DL algorithms, such as LSTM, due to their
ability to identify complex data patterns without additional resampling techniques. This

Energies 2024, 17, 1590 18 of 20

will allow us to evaluate the benefits and limitations of different models, thus improving
the detection of WT faults.

Author Contributions: All authors contributed equally to the conceptualization and methodological
design of the proposal; J.M.-C. and M.V.-C. were responsible for data preparation and analysis; J.M.-C.
and M.V.-C. prepared the original draft; E.A. and S.M.-M. contributed to the review and editing, and
E.G.-L. was responsible for project supervision. All authors have read and accepted the published
version of the manuscript.

Funding: This research was partially funded by the Junta de Comunidades de Castilla-La Mancha
and the E.U. FEDER (SBPLY/19/180501/000287) and by the Spanish Ministry of Economy and
Competitiveness and the European Union (PID2021-126082OB-C21). The authors would like to
recognize the assistance received by National University of Loja through the research project 20-DI-
FEIRNNR-2023.

Data Availability Statement: The authors do not have permission to share data.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

SMOTE Synthetic Minority Oversampling Technique
MC-SMOTE Minority Clustering SMOTE
RF Random Forest
kNN k-Nearest Neighbor
SC-SMOTE Safe Circle SMOTE
DNNs Deep Neural Networks
STMNN Spatio-Temporal Multiscale Neural Network
FL Focal Loss
SDWBOTE Synthetic and Dependent Wild Bootstrapped Oversampling Technique
CNNs Convolutional Neural Networks
SVCs Support Vector Classifiers
DTs Decision Trees
TL Transfer Learning
ANNs Artificial Neural Networks
ADASYN Adaptive Synthetic Sampling
MLP Multi-Layer Perceptron
BDT Boosting Decision Tree
CM Condition monitoring
AUC Area Under Curve
acc Accuracy
G-mean Geometric mean
MCC Matthews Correlation Coefficient
TP True positives
TN True negatives
FP False positives
FN False negatives
ROC Receiver Operating Characteristic
NPV Negative Predictive Value
W_acc Weighted accuracy
Nomenclature
G Number of examples synthetic data to be generated
ms Number of minority class examples
ml Number of majority class examples
β Balance level after the generation of the synthetic data
xi Examples of the minority class
n Dimensional space
ri Majority class ratio within k-nearest minority neighbors

Energies 2024, 17, 1590 19 of 20

k Number of nearest neighbors
∆i Number of examples in the k-nearest neighbors of xi
r̂i Density distribution
gi Number of synthetic data instances to generate for each xi
χnew Synthetic sample to be generated
χ Original samples
χi Randomly selected sample among the minority class samples
Wi Weights associated with the neuron
Xi Input vector
b Bias
φ Transfer or activation function
m Total number of predictions

References
1. Global Wind Energy Council GWEC. Global Wind Report 2023; Technical report; Global Wind Energy Council GWEC: Lisbon,

Portugal, 2023.
2. Khanafer, M.; Shirmohammadi, S. Applied AI in instrumentation and measurement: The deep learning revolution. IEEE Instrum.

Meas. Mag. 2020, 23, 10–17. [CrossRef]
3. Blanco, M.A.; Gibert, K.; Marti-Puig, P.; Cusidó, J.; Solé-Casals, J. Identifying health status of wind turbines by using self

organizing maps and interpretation-oriented post-processing tools. Energies 2018, 11, 723. [CrossRef]
4. Chen, L.; Xu, G.; Zhang, Q.; Zhang, X. Learning deep representation of imbalanced SCADA data for fault detection of wind

turbines. Measurement 2019, 139, 370–379. [CrossRef]
5. Maldonado-Correa, J.; Martín-Martínez, S.; Artigao, E.; Gómez-Lázaro, E. Using SCADA Data for Wind Turbine Condition

Monitoring: A Systematic Literature Review. Energies 2020, 13, 3132. [CrossRef]
6. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell.

Res. 2002, 16, 321–357. [CrossRef]
7. Zhang, T.; Chen, J.; Li, F.; Zhang, K.; Lv, H.; He, S.; Xu, E. Intelligent fault diagnosis of machines with small & imbalanced data: A

state-of-the-art review and possible extensions. ISA Trans. 2022, 119, 152–171. [CrossRef] [PubMed]
8. Chen, H.; Hsu, J.Y.; Hsieh, J.Y.; Hsu, H.Y.; Chang, C.H.; Lin, Y.J. Predictive maintenance of abnormal wind turbine events by using

machine learning based on condition monitoring for anomaly detection. J. Mech. Sci. Technol. 2021, 35, 5323–5333. [CrossRef]
9. Yi, H.; Jiang, Q.; Yan, X.; Wang, B. Imbalanced Classification Based Minority Clustering Synthetic Minority Oversampling

Technique with Wind Turbine Fault Detection Application. IEEE Trans. Ind. Inform. 2020, 17, 5867–5875. [CrossRef]
10. Wu, Z.; Lin, W.; Ji, Y. An Integrated Ensemble Learning Model for Imbalanced Fault Diagnostics and Prognostics. IEEE Access

2018, 6, 8394–8402. [CrossRef]
11. Ge, Y.; Yue, D.; Chen, L. Prediction of wind turbine blades icing based on MBK-SMOTE and random forest in imbalanced data

set. In Proceedings of the 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, China, 26–28
November 2017; pp. 1–6. [CrossRef]

12. Peng, C.; Chen, Q.; Zhang, L.; Wan, L.; Yuan, X. Research on Fault Diagnosis of Wind Power Generator Blade Based on SC-SMOTE
and kNN. J. Inf. Process. Syst. 2020, 16, 870–881. [CrossRef]

13. Velandia-Cardenas, C.; Vidal, Y.; Pozo, F. Wind Turbine Fault Detection Using Highly Imbalanced Real SCADA Data. Energies
2021, 14, 1728. [CrossRef]

14. He, Q.; Pang, Y.; Jiang, G.; Xie, P. A Spatio-Temporal Multiscale Neural Network Approach for Wind Turbine Fault Diagnosis
With Imbalanced SCADA Data. IEEE Trans. Ind. Inform. 2021, 17, 6875–6884. [CrossRef]

15. Jiang, N.; Li, N. A wind turbine frequent principal fault detection and localization approach with imbalanced data using an
improved synthetic oversampling technique. Int. J. Electr. Power Energy Syst. 2021, 126, 106595. [CrossRef]

16. Karadayi, B.; Kuvvetli, Y.; Ural, S. Fault-related Alarm Detection of a Wind Turbine SCADA System. In Proceedings of the 2021
3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), Ankara, Turkey,
11–13 June 2021; pp. 1–5. [CrossRef]

17. Santos, P.; Maudes, J.; Bustillo, A. Identifying maximum imbalance in datasets for fault diagnosis of gearboxes. J. Intell. Manuf.
2018, 29, 333–351. [CrossRef]

18. Zhang, Y.; Liu, B.; Wang, C. A Fault Diagnosis Method for Electrical Equipment With Imbalanced SCADA Data Based on SMOTE
Oversampling and Domain Adaptation. In Proceedings of the 2023 8th International Conference on Power and Renewable
Energy (ICPRE), Shanghai, China, 22–25 September 2023; pp. 195–202. [CrossRef]

19. Santolamazza, A.; Dadi, D.; Introna, V. A Data-Mining Approach for Wind Turbine Fault Detection Based on SCADA Data
Analysis Using Artificial Neural Networks. Energies 2021, 14, 1845. [CrossRef]

20. Xiao, C.; Liu, Z.; Zhang, T.; Zhang, X. Deep Learning Method for Fault Detection of Wind Turbine Converter. Appl. Sci. 2021,
11, 1280. [CrossRef]

21. Chen, W.; Qiu, Y.; Feng, Y.; Li, Y.; Kusiak, A. Diagnosis of wind turbine faults with transfer learning algorithms. Renew. Energy
2021, 163, 2053–2067. [CrossRef]

http://doi.org/10.1109/MIM.2020.9200875
http://dx.doi.org/10.3390/en11040723
http://dx.doi.org/10.1016/j.measurement.2019.03.029
http://dx.doi.org/10.3390/en13123132
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1016/j.isatra.2021.02.042
http://www.ncbi.nlm.nih.gov/pubmed/33736889
http://dx.doi.org/10.1007/s12206-021-1105-z
http://dx.doi.org/10.1109/TII.2020.3046566
http://dx.doi.org/10.1109/ACCESS.2018.2807121
http://dx.doi.org/10.1109/EI2.2017.8245530
http://dx.doi.org/10.3745/JIPS.04.0183
http://dx.doi.org/10.3390/en14061728
http://dx.doi.org/10.1109/TII.2020.3041114
http://dx.doi.org/10.1016/j.ijepes.2020.106595
http://dx.doi.org/10.1109/HORA52670.2021.9461331
http://dx.doi.org/10.1007/s10845-015-1110-0
http://dx.doi.org/10.1109/ICPRE59655.2023.10353617
http://dx.doi.org/10.3390/en14071845
http://dx.doi.org/10.3390/app11031280
http://dx.doi.org/10.1016/j.renene.2020.10.121

Energies 2024, 17, 1590 20 of 20

22. Liu, X.; Du, J.; Ye, Z.S. A Condition Monitoring and Fault Isolation System for Wind Turbine Based on SCADA Data. IEEE Trans.
Ind. Inform. 2022, 18, 986–995. [CrossRef]

23. Zhao, Y.; Li, D.; Dong, A.; Kang, D.; Lv, Q.; Shang, L. Fault prediction and diagnosis of wind turbine generators using SCADA
data. Energies 2017, 10, 1210. [CrossRef]

24. Chatterjee, J.; Dethlefs, N. Scientometric review of artificial intelligence for operations & maintenance of wind turbines: The past,
present and future. Renew. Sustain. Energy Rev. 2021, 144, 111051.

25. Li, B.; Tang, B.; Deng, L.; Wei, J. Joint attention feature transfer network for gearbox fault diagnosis with imbalanced data. Mech.
Syst. Signal Process. 2022, 176, 109146. [CrossRef]

26. Chatterjee, J.; Dethlefs, N. Deep learning with knowledge transfer for explainable anomaly prediction in wind turbines. Wind
Energy 2020, 23, 1693–1710. [CrossRef]

27. Tang, M.; Meng, C.; Wu, H.; Zhu, H.; Yi, J.; Tang, J.; Wang, Y. Fault Detection for Wind Turbine Blade Bolts Based on GSG
Combined with CS-LightGBM. Sensors 2022, 22, 6763. [CrossRef] [PubMed]

28. Desai, A.; Guo, Y.; Sheng, S.; Sheng, S.; Phillips, C.; Williams, L. Prognosis of Wind Turbine Gearbox Bearing Failures using
SCADA and Modeled Data. Annu. Conf. PHM Soc. 2020, 12, 10. [CrossRef]

29. Zhang, G.; Li, Y.; Jiang, W.; Shu, L. A fault diagnosis method for wind turbines with limited labeled data based on balanced joint
adaptive network. Neurocomputing 2022, 481, 133–153. [CrossRef]

30. Chatterjee, S.; Byun, Y.C. Highly imbalanced fault classification of wind turbines using data resampling and hybrid ensemble
method approach. Eng. Appl. Artif. Intell. 2023, 126, 107104. [CrossRef]

31. Sun, S.; Hu, W.; Liu, Y.; Wang, T.; Chu, F. Matching contrastive learning: An effective and intelligent method for wind turbine
fault diagnosis with imbalanced SCADA data. Expert Syst. Appl. 2023, 223, 119891. [CrossRef]

32. Qian, M.; Li, Y.F. A Weakly Supervised Learning-Based Oversampling Framework for Class-Imbalanced Fault Diagnosis. IEEE
Trans. Reliab. 2022, 71, 429–442. [CrossRef]

33. Qiu, Y.; Feng, Y.; Infield, D. Fault diagnosis of wind turbine with SCADA alarms based multidimensional information processing
method. Renew. Energy 2020, 145, 1923–1931. [CrossRef]

34. Nunes, A.R.; Morais, H.; Sardinha, A. Use of Learning Mechanisms to Improve the Condition Monitoring of Wind Turbine
Generators: A Review. Energies 2021, 14, 7129. [CrossRef]

35. Elreedy, D.; Atiya, A.F. A Comprehensive Analysis of Synthetic Minority Oversampling Technique (SMOTE) for handling class
imbalance. Inf. Sci. 2019, 505, 32–64. [CrossRef]

36. He, H.; Bai, Y.; Garcia, E.A.; Li, S. ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In Proceedings of
the 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), Hong
Kong, 1–8 June 2008; pp. 1322–1328. [CrossRef]

37. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
38. Zhang, D.; Qian, L.; Mao, B.; Huang, C.; Huang, B.; Si, Y. A Data-Driven Design for Fault Detection of Wind Turbines Using

Random Forests and XGboost. IEEE Access 2018, 6, 21020–21031. [CrossRef]
39. Peco Chacón, A.M.; Segovia Ramírez, I.; García Márquez, F.P. State of the Art of Artificial Intelligence Applied for False Alarms in

Wind Turbines. Arch. Comput. Methods Eng. 2021, 29, 2659–2683. [CrossRef]
40. Helbing, G.; Ritter, M. Deep Learning for fault detection in wind turbines. Renew. Sustain. Energy Rev. 2018, 98, 189–198.

[CrossRef]
41. Ahakonye, L.A.C.; Nwakanma, C.I.; Lee, J.M.; Kim, D.S. SCADA intrusion detection scheme exploiting the fusion of modified

decision tree and Chi-square feature selection. Internet Things 2023, 21, 100676. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TII.2021.3075239
http://dx.doi.org/10.3390/en10081210
http://dx.doi.org/10.1016/j.ymssp.2022.109146
http://dx.doi.org/10.1002/we.2510
http://dx.doi.org/10.3390/s22186763
http://www.ncbi.nlm.nih.gov/pubmed/36146110
http://dx.doi.org/10.36001/phmconf.2020.v12i1.1292
http://dx.doi.org/10.1016/j.neucom.2022.01.067
http://dx.doi.org/10.1016/j.engappai.2023.107104
http://dx.doi.org/10.1016/j.eswa.2023.119891
http://dx.doi.org/10.1109/TR.2021.3138448
http://dx.doi.org/10.1016/j.renene.2019.07.110
http://dx.doi.org/10.3390/en14217129
http://dx.doi.org/10.1016/j.ins.2019.07.070
http://dx.doi.org/10.1109/IJCNN.2008.4633969
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1109/ACCESS.2018.2818678
http://dx.doi.org/10.1007/s11831-021-09671-x
http://dx.doi.org/10.1016/j.rser.2018.09.012
http://dx.doi.org/10.1016/j.iot.2022.100676

	Introduction
	State of the Art and Motivation
	Materials and Methods
	Data Description
	Methods to Balance the Class Distribution
	ML Methods for Fault Detection
	Metrics Used to Quantify the Prediction Accuracy

	Results
	Data Resampling
	Performance of Classification Algorithms

	Conclusions
	References

