
Citation: Mohammed, D.; Horváth, B.

Assessing the Paradox of

Autonomous Vehicles: Promised Fuel

Efficiency vs. Aggregate Fuel

Consumption. Energies 2024, 17, 1589.

https://doi.org/10.3390/

en17071589

Academic Editor: Francesco

Calise

Received: 16 February 2024

Revised: 21 March 2024

Accepted: 23 March 2024

Published: 26 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Assessing the Paradox of Autonomous Vehicles: Promised Fuel
Efficiency vs. Aggregate Fuel Consumption
Dilshad Mohammed 1,2,† and Balázs Horváth 2,∗,†

1 Department of Civil Engineering, University of Duhok, Duhok 42001, Iraq; dilshadmohammed@uod.ac
2 Department of Transport, Széchenyi István University, Egyetem tér 1, 9026 Győr, Hungary
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Abstract: As autonomous vehicles (AVs) continue to evolve and approach widespread adoption in
the near future, the touted benefits of improved fuel efficiency at an individual level come under
scrutiny when considering the overall impact on fuel consumption. This research delves into the
paradoxical relationship between the promising technology of AVs, their impact on traffic capacities,
travel demand, and the subsequent influence on aggregate fuel consumption. While AVs have
demonstrated enhanced fuel efficiency when considered as a singular mode of transportation, our
study reveals a contrasting trend when scaled to a broader societal context. Through comprehensive
analysis of the literature, we discovered that, at lower limits of energy savings achievable by a single
AV, the overall fuel consumption increases by a staggering 42% compared to conventional human-
driven vehicles. This counterintuitive outcome is a result of the aggregate effect of increased AV usage,
leading to higher traffic volumes and travel demands. Conversely, at higher thresholds of energy
savings by individual AVs, the percentage of fuel consumption increment diminishes, but remains
notable. Even with advanced energy-saving features, the overall fuel quantity still experiences a
substantial 30% increase compared to conventional vehicles when scaled up to widespread AV use.
Our findings emphasize the importance of considering the holistic impact of AVs on transportation
systems and energy consumption. As society transitions towards AV-dominated traffic, policymakers
and stakeholders must address the challenges associated with increased travel demand, potential
traffic congestion, and the resultant implications on fuel consumption.

Keywords: autonomous vehicle; energy saving; travel demand; aggregate fuel consumption

1. Introduction

Autonomous vehicles (AVs) are revolutionizing the transportation landscape, promis-
ing safer and more efficient journeys [1–3]. The focus is specifically on AVs within the
context of road transportation, primarily considering autonomous cars. While acknowl-
edging the existence of other types of AVs, like drones and sea surface craft, the analysis
centers on their impact within the road transportation sector. However, AVs impact on
fuel consumption is a critical aspect that demands attention. This exploration delves into
how AVs may influence fuel usage, considering technological advancements and systemic
changes. Understanding this relationship is vital as we navigate a future where AVs play a
prominent role in shaping the automotive industry and its environmental footprint. This
aspect has evolved significantly over the last 25 years, in which advancements in technol-
ogy, including the adoption of cleaner energy sources and more efficient manufacturing
processes, have led to a notable reduction in emissions and resource consumption. How-
ever, the emergence of AVs introduces new dynamics that may necessitate a reassessment
of our understanding of the environmental impact of the automotive industry.

It is believed that a comprehensive assessment of fuel consumption in the era of
automated driving must consider the overall impact of increased travel demand, facil-
itated by AVs [4,5]. While AVs can improve fuel efficiency at the vehicle level through
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powertrain operation, as stated by Sigle and Hahn [6], and driving pattern planning, as
suggested by Wang et al. [7]. The potential surge in travel due to increased convenience
and accessibility may counteract these gains [8,9]. Additionally, the introduction of AVs
may lead to transformative shifts in traffic dynamics, affecting capacities and congestion
patterns [10–13]. AVs can streamline traffic flow through communication and coordination,
potentially optimizing fuel use [14]. However, uncertainties arise regarding the coexistence
of AVs with human-driven vehicles, which may impact overall traffic capacities [15]. Yet, it
is worth considering that this surge in travel may not necessarily be entirely novel; some
drivers may transition to becoming AV users, potentially mitigating some of the anticipated
increase in traffic congestion. Furthermore, innovative strategies such as implementing
shared AV schemes could offer a promising solution, allowing multiple commuters sharing
the same route to benefit from a single AV. Additionally, acknowledging the shift towards
electric propulsion in many AVs, such as Waymo’s utilization of the fully electric Jaguar
I-PACE SUV, highlights the potential for reducing overall emissions and fuel consumption
in the transportation sector. This transition from human-driven vehicles equipped with
internal combustion engines to electric AVs presents a compelling prospect for sustainabil-
ity. In essence, a holistic evaluation of fuel consumption in the era of automated driving
necessitates an exploration of the macroscopic implications arising from changes in travel
demand and the evolving landscape of traffic flow dynamics.

In the domain of projecting future expected fuel consumption, the advent of AVs has
introduced a large number of methodologies, ranging from simulation models [16–18], to
surveys gauging public perceptions [19] and development of analytical frameworks [20,21].
While these approaches have provided valuable insights, the landscape remains marked
by a scarcity of real-world applications. However, conducting an in-depth investigation is
crucial to estimate fuel consumption on a large scale, as it involves the intricate interplay
between traffic flow, capacity, and travel demand on one side, and the corresponding
anticipated total fuel consumption on the other side. The selection of these key factors
is based on their significance. Traffic capacity provides insights for planners regarding
the maximum load a transportation system can bear, while real-time traffic flow data
measures the system’s efficiency. Additionally, considering travel demand ensures a holistic
understanding of the population’s transportation needs. As we stand at the intersection
of technological advancements and transportation dynamics, appreciating the intricate
interplay between these variables is essential for crafting effective policies and strategies
to navigate the dynamic landscape of fuel consumption in the age of AVs. This research
endeavors to explore the uncharted territory of forthcoming fuel consumption patterns
amid advancements in autonomous vehicular technology. It aims to estimate future fuel
consumption in the presence of AVs, building upon the data and findings from prior
research to enhance and complete the overall objectives of the study.

The remainder of this paper is organized as follows: Section 2 outlines the detailed
methodology used in providing data and presenting the findings of the literature review
used for the analysis in this study. In Section 3, we present the results of total fuel consump-
tion attributed to the use of AVs, drawing connections to the findings from our previous
studies. Section 4 discusses the reported results and presents the final percentages of
increment and decrement in fuel consumption. Finally, in Section 5, we conclude with some
final remarks and a discussion of the future directions of this paper.

2. Methodology

The methodology employed in this study to determine the overall fuel consumption
by AVs in our societies relies on changes in traffic capacities and travel demand resulting
from the introduction of these vehicles. For this purpose, the following main types of
data have been used: On-Board Diagnostic (OBD) data to calculate fuel consumption for
individual vehicles, the percentage increment or decrement of fuel consumption for an
individual AV compared to a Human-Driven Vehicle (HDV), and the traffic capacity and
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travel demand for both HDVs and AVs. In the following subsections, the procedures used
in this study are explained in detail.

2.1. On-Board Diagnostics for Measuring Human-Driven Vehicle Fuel Consumption Rates

The study relies on the data obtained from the experiments presented in [22]. In the
conducted experiment, a fleet of 15 passenger vehicles, each equipped with data acquisition
hardware, was employed. The in-vehicle fuel data were collected using OBD-II standard
interfaces available in most modern vehicles. While OBD-II primarily focuses on detecting
and reporting faults and malfunctions, it can also provide valuable information related to
fuel consumption rates. It is noteworthy that, to prevent redundancy, fuel data from only
15 vehicles was utilized in our study, as outlined below in Table 1. An important finding
from the data of the experiment is that the maximum recorded driving speed was 50 km/h.

Table 1. Make, model and year of the tested vehicles, based on [22].

Vehicle Number Year Make Model

1 2013 Chevrolet Silverado
2 2013 Dodge Grand Caravan
3 2015 Chevrolet Malibu
4 2012 Chevrolet Malibu
5 2012 Dodge Grand Caravan
6 2014 Chevrolet Malibu
7 2016 Chevrolet Malibu
8 2013 Chevrolet Impala
9 2016 Chevrolet Malibu Limited

10 2015 Chevrolet Suburban
11 2014 Chevrolet Silverado
12 2014 Dodge Grand Caravan
13 2016 Dodge Grand Caravan
14 2016 Chevrolet Suburban
15 2009 Ford Escape Hybrid

This level of speed is of particular significance, and will be further elaborated upon in
subsequent sections of this paper, aligning with our proposed approach. Figure 1 illustrates
the tested vehicles along with the corresponding fuel rate, obtained from an average of
10,000 OBD-II readings for each vehicle. The peak of each curve corresponds to the highest
number of observations for the respective fuel consumption rate.

Figure 1. Tested vehicles and corresponding fuel consumption rates, based on [22].
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2.2. Fuel Consumption Saving Rates Using Single AVs

In this subsection, a diverse range of existing literature has been leveraged to assess
the potential fuel consumption savings associated with the transition from human-driven
vehicles to AVs for individual movements. Recognizing the inherent challenges posed
by the continuously expanding body of literature on this emerging topic, the analysis
in the study focused on four distinct areas of energy impact: car-following, platooning,
powertrain, and intersection control. Motivated by Noroozi et al. [9], this categorization fa-
cilitated a systematic exploration of the impact of AV technology on fuel efficiency, enabling
a comprehensive understanding of the associated fuel savings percentages. Organizing our
investigation into these key domains allowed us to address the complexities of estimating
fuel consumption savings in the context of AVs and contribute valuable insights to the
existing literature.

2.2.1. Car-Following

Car-following behavior in an AVs involves dynamically adjusting its speed and main-
taining a safe following distance from the vehicle ahead, based on real-time sensor inputs,
optimizing traffic flow and ensuring safety. Additionally, car-following models, such as
adaptive cruise control (ACC), cooperative ACC (CACC), and intelligent driver model
(IDM), have been used to evaluate the impact of AVs on fuel consumption savings. Studies
have shown that AVs equipped with ACC and CACC modes have lower fuel consumption
compared to HDVs [23–26]. However, the fuel consumption of AVs may be influenced
by factors such as headway settings, speed ranges, and traffic conditions [27,28]. Even
though this may represent a small influence, knowing that HDVs are also affected by the
factors mentioned, our study considered the same conditions when comparing fuel con-
sumption between HDVs and AVs. Through presenting the literature results, Zhu et al. [29]
found that, when traveling at similar conditions, the fuel consumption rates for vehicles
using ACC mode was about 7% lower than those vehicles in non-ACC mode. Similarly,
Mersky et al. [18] indicated that AV following algorithms developed without prioritizing
efficiency may lead to a fuel economy reduction of up to 3%. In contrast, control strategies
focused on efficiency could match or slightly surpass the current Environmental Protection
Agency (EPA) fuel economy test results by as much as 10%. Khosravinia et al. [30] pre-
sented a bi-level model predictive control strategy in their study to optimize energy savings.
The simulation results show a 6.18% reduction in the fuel economy. Some researchers have
used the vehicle-specific power (VSP) model presented in [31] to calculate the fuel economy.
Shi et al. [32] demonstrated that 7.16% of fuel could be saved using VSP model when
driving at ACC headway setting 1. Along the same line, Zhang et al. [33] reported an
approximate average saving of fuel 10% for driving speeds 20 km/h to 40 km/h, calculated
using the VSP model. Overall, while there are a few studies suggesting a potential increase
in fuel consumption when AVs are in operation [16,34], the majority of research papers
confirm that there will likely be a reduction in fuel consumption for single AV driving.

2.2.2. Platooning

This strategy refers to coordinated and synchronized driving formation, where a
group of vehicles travel closely together in a convoy, to enhance aerodynamic efficiency
and reduce fuel consumption. Reduced drag resulting from platooning relies on factors like
the shapes of the vehicles, their arrangement, and the following distances between them.
Energy savings are more significant for vehicles positioned in the middle of the convoy;
thus, the average savings rise as the number of vehicles in the platoon increases. It is
worth mentioning that platooning is an applicable procedure that could be applied for both
vehicles and trucks. In vehicles platooning, like cars, vans, or AVs, the following distances
may exhibit greater variability due to differences in braking capabilities, acceleration rates,
and overall vehicle sizes. Smaller vehicles often necessitate shorter following distances,
owing to their superior braking capabilities and reduced stopping distances compared to
larger ones. Conversely, in truck platooning, involving closely following commercial trucks,
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following distances tend to be more standardized and optimized, considering factors such
as truck size, weight, and braking performance. These distances are carefully calibrated
to strike a balance between safety and aerodynamic efficiency. Studies proved that vehi-
cles facilitated by automated control systems achieved higher fuel savings than human
driven vehicles. Song et al. [35] showed that an average fuel-saving of 3.8–8.9% could be
achieved when two autonomous truck platoons are used. Hoef et al. [36] concluded that
coordinated platoons led to 7.6% reduction in fuel consumption. Yang et al. [37] reported a
9.5% improvement in fuel consumption for the Connected Autonomous Vehicles (CAVs)
compared to the HDVs. Tsugawa [38] conducted experiments on a convoy comprising
three automated trucks traveling at 80 km/h. The decrease in energy usage amounted
to 13% with a 10 m gap when the penetration rate reached 40% for heavy automated
trucks. Lu and Shladovar [39] also investigated a platoon of three trucks with 6 m gaps.
The findings indicate potential fuel savings of 4.3%, 10%, and 14% for the lead, second,
and third trucks, respectively. In general, by consolidating findings from multiple studies
in the literature, it becomes apparent that the primary factor contributing to energy savings
is the inter-vehicles distances in the platoon.

2.2.3. Powertrain

In the powertrain-free approach, the energy indicator focuses solely on the tractive
power demand exerted on the wheels [40,41]. Chen et al. [42] determined that in an
optimistic AV Level 5 scenario, there could be energy economy improvements ranging
from 4% to 8%, while a pessimistic AV Level 5 scenario might lead to an increase in
energy economy ranging from 10% to 15%. Huang et al. [43] found from the simulation
results that driving at different cycles with CAVs led to 5–15% improvement in the fuel
economy. Zhang et al. [44] introduced was a flexible energy management strategy utilizing
an equivalent consumption minimization strategy (ECMS) framework. This approach
focuses on optimizing gearshift commands and torque distribution for an automated
Hybrid Electric Vehicle (HEV), considering both drivability and fuel economy. The ECMS
implementation resulted in an average 5% reduction in fuel consumption. Xu et al. [45]
presented an engine-in-the-loop (EIL) hierarchical predictive controller model for a Level 1
automated truck. It is indicated that half-loaded trucks in urban/suburban settings can
yield 14.63% fuel reduction. For fully-loaded trucks, the savings increases to 16.42%. Based
on the aforementioned results, the influence of powertrain control on the fuel consumption
of AVs can be clearly understood.

2.2.4. Intersection Control

The evolution of connectivity in both vehicle-to-vehicle (V2V) and vehicle-to-
infrastructure (V2I) domains has ushered in a transformative era for CAVs. In this dy-
namic landscape, intersections become pivotal points where CAVs showcase their ability
to navigate with heightened safety, improved efficiency, and a greater degree of mobility.
The simulation results from Nei et al. [46] revealed that 3.13% of hydrogen consumption
could be saved using proposed strategy for connected and automated fuel cell hybrid vehi-
cles at signalized intersections. Shao and Sun [47] demonstrated that in real world traffic
scenarios, empirical findings demonstrate that having two connected leading vehicles can
result in a 6.9% improvement in fuel efficiency. Moreover, when there is accurate prediction
involved, the fuel benefits increase to 11.2% by CAVs. Similarly, Zhang et al. [48] used the
proposed eco-approach and departure (EAD) algorithm in passing intersections that led to
an energy saving of 12.1% by autonomous driving. Du et al. [49] presented a hierarchical
distributed coordination strategy for CAVs that are traveling through multiple unsignalized
intersections. The simulation results revealed an average fuel consumption saving of 8.7%
for CAVs. Finally, Jiang et al. [50] recorded the minimum fuel consumption benefit of 2.02%
use under a partial CAV environment at an isolated signalized intersection.

By summarizing the fuel savings percentages documented in the literature for AVs,
we can depict the variation in average fuel consumption between HDVs as derived from
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Figure 1, and various categories of AVs representing different areas of energy impact.
The illustration of this comparison is presented in Table 2, which will be further employed
in the results analysis section. Under each area of energy impact, the upper and lower
limits of fuel savings due to the use of AVs are presented.

Table 2. Fuel consumption rates [L/h] of HDVs and different energy impact areas using AVs.

Nr. HDV
(AV) Car-Following (AV) Platooning (AV) Powertrain (AV) Int. Control

3% 10% 3.8% 14% 4% 16.42% 2.02% 12.1%

1 5.51 5.34 4.96 5.30 4.74 5.29 4.61 5.40 4.84
2 3.66 3.55 3.29 3.52 3.15 3.51 3.06 3.59 3.22
3 3.89 3.77 3.50 3.74 3.35 3.73 3.25 3.81 3.42
4 3.63 3.52 3.27 3.49 3.12 3.48 3.03 3.56 3.19
5 3.21 3.11 2.89 3.09 2.76 3.08 2.68 3.15 2.82
6 3.51 3.40 3.16 3.38 3.02 3.37 2.93 3.44 3.09
7 3.69 3.58 3.32 3.55 3.17 3.54 3.08 3.62 3.24
8 3.32 3.22 2.99 3.19 2.86 3.19 2.77 3.25 2.92
9 2.69 2.61 2.42 2.59 2.31 2.58 2.25 2.64 2.36

10 6.02 5.84 5.42 5.79 5.18 5.78 5.03 5.90 5.29
11 5.55 5.38 5.00 5.34 4.77 5.33 4.64 5.44 4.88
12 3.19 3.09 2.87 3.07 2.74 3.06 2.67 3.13 2.80
13 3.85 3.73 3.47 3.70 3.31 3.70 3.22 3.77 3.38
14 5.41 5.25 4.87 5.20 4.65 5.19 4.52 5.30 4.76
15 2.63 2.55 2.37 2.53 2.26 2.52 2.20 2.58 2.31

2.3. Traffic Capacities and Travel Demand for HDVs and AVs

The data from our earlier studies have been utilized to assess the overall fuel con-
sumption associated with the capacity and demand of HDVs and AVs. Three key previous
studies have been incorporated into the current work. The outcomes reported in these
published papers complement each other, as they were completed within a short timeframe
and specifically examine the impact of AVs on our road network transport. The studies
with short descriptions are as follows:

• Driver behavior [51]: In this study, the Wiedemann microsimulation model was
applied to investigate the impact of AVs on real traffic. Two driver behavior parameters
were studied: driving errors due to distractions and possible interactions with vehicles
ahead of the driver. Different AV penetration rates and various percentages of driving
errors were also included in the study. As a result, an increase in capacity was achieved
due to the use of AVs.

• Travel demand [52]: This research discloses the outcomes of investigating the rise
in travel demand attributed to the adoption of AVs. This was achieved through an
extensive and densely populated survey conducted in Győr City and the Győr Ag-
glomerations. The questionnaire, administered to a total of 5679 individuals, aimed to
collect comprehensive and representative data, shedding light on potential challenges
that could affect the sustainability of future transportation systems. The findings of
the study indicate a noteworthy surge in the utilization of AVs for commuting in both
examined regions.

• ACC at steady speeds [53]: This study included empirical tests conducted on the
ZalaZONE Proving Ground. The tests included driving at various consistent speeds
to assess how well ACC systems can maintain safe distances between vehicles. Our
results suggest that ACC systems reliably achieve optimal following distances, show-
casing their effectiveness in controlling vehicle spacing. Nevertheless, a significant
drawback became apparent in terms of their negative influence on road capacities.
The findings reveal a reduction in capacity percentages for the three categories of
ACC-equipped vehicles when compared to human drivers.
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Based on the three methodology subsections, the last step includes calculating the over-
all fuel consumption for both human-driven vehicles and AVs the following
equations [51–53]:

HDV total fuel by driver error = HDV Average fuel rate × HDV Traffic capacity, (1)

AV maximum total fuel by driver error = AV Average fuel rate (lower limit) × AV Traffic capacity, (2)

AV minimum total fuel by driver error = AV Average fuel rate (upper limit) × AV Traffic capacity, (3)

HDV total fuel by travel demand = HDV Average fuel rate × HDV Travel demand, (4)

AV maximum total fuel by travel demand = AV Average fuel rate (lower limit) × AV Travel demand, (5)

AV minimum total fuel by travel demand = AV Average fuel rate (upper limit) × AV Travel demand, (6)

HDV total fuel at steady speeds = HDV Average fuel rate × HDV Traffic capacity, (7)

AV maximum total fuel by ACC at steady speeds = AV Average fuel rate (lower limit) × AV Traffic capacity, (8)

AV minimum total fuel by ACC at steady speeds = AV Average fuel rate (upper limit) × AV Traffic capacity, (9)

3. Results

This section presents an in-depth analysis of the fuel consumption findings, along
with the corresponding results derived from our original research encompassing driver
behavior, travel demand, and ACC performance at steady speeds. The findings are elu-
cidated in detail, providing a comprehensive overview of the outcomes derived from
these investigations.

3.1. Total Fuel Consumption with Respect to Diver Behavior

Table 3 displays the outcomes of traffic capacity at a signalized intersection derived
from both human-driven vehicles and AVs, as obtained from [51]. The study encompasses
four distinct levels of driver error (10%, 30%, 50%, 70%), each contributing to varying traffic
capacities. Notably, the analysis addresses scenarios involving HDVs, as well as a scenario
with 100% AV penetration.

Table 3. Traffic capacities [Veh/h] at signalized intersection for HDVs and AVs [51].

Human Driver Error 10% 30% 50% 70%

HDV 3962 3853 3745 3660
AV 4047 4047 4047 4047

By utilizing the above traffic capacities, Figures 2–9 visually depict the aggregate
fuel consumption data for the fifteen vehicles. This analysis considers scenarios where
the vehicles are categorized as HDVs and, alternatively, as AVs. The evaluation extends
to both lower and upper limits within the four defined energy impact areas, offering a
comprehensive view of the variations in fuel consumption under different conditions.

Figure 2. Aggregate fuel consumption by driver behavior for lower limits of car-following.
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Figure 3. Aggregate fuel consumption by driver behavior for lower limits of platooning.

Figure 4. Aggregate fuel consumption by driver behavior for lower limits of powertrain.

Figure 5. Aggregate fuel consumption by driver behavior for lower limits of intersection control.

Figure 6. Aggregate fuel consumption by driver behavior for upper limits of car-following.

In the context of lower-limit fuel savings, it is noteworthy that the total fuel consump-
tion for HDVs marginally underperforms compared to AVs. However, it is imperative to
acknowledge that these findings are specific to a single intersection, and the fuel consump-
tion differentials may vary across multiple intersections. Conversely, when exploring the
upper bounds of fuel economy savings, HDVs exhibit a higher aggregate fuel consumption
than their AV counterparts. This observation aligns with expectations, considering that
individual AV fuel consumption, as documented in the literature, has been reported to
achieve a remarkable 16.42% reduction.
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Figure 7. Aggregate fuel consumption by driver behavior for upper limits of platooning.

Figure 8. Aggregate fuel consumption by driver behavior for upper limits of powertrain.

Figure 9. Aggregate fuel consumption by driver behavior for upper limits of intersection control.

3.2. Total Fuel Consumption with Respect to Travel Demand

The travel demand for both HDVs and AVs in terms of the number of trips per hour,
sourced from [52], is presented in Table 4. It is evident that the integration of AVs into
our conventional vehicle landscape will lead to an increase in travel demand. Moreover,
enhancing knowledge about AVs is expected to further escalate this demand.

Table 4. Travel demand [trips/h] in Győr City and its agglomeration using HDVs and AVs [52].

Travel Mode Győr City Agglomeration

Current trips by HDVs 3923 2436
Future trips by AVs 4493 2397
Future trips by AVs with increased knowledge about AVs 5021 3573

Figures 10–17 visually illustrate the impact of increased travel demand on total fuel
consumption. While AVs present an opportunity to save fuel on an individual basis, the rise
in AV travel demand, particularly among older and disabled individuals, results in an
overall increase in fuel consumption compared to traditional human-driven vehicles [4].
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Figure 10. Aggregate fuel consumption by travel demand for lower limits of car-following.

Figure 11. Aggregate fuel consumption by travel demand for lower limits of platooning.

Figure 12. Aggregate fuel consumption by travel demand for lower limits of powertrain.

Figure 13. Aggregate fuel consumption by travel demand for lower limits of intersection control.

Despite the potential for fuel savings at both lower and upper limits, the rising demand
for travel, particularly among those with advanced knowledge of AV technologies, has not
mitigated the high rate of fuel consumption associated with AV usage.

In assessing the lower limits of fuel efficiency, it is apparent that the differences
among the four categories of fuel consumption areas are minimal, making it challenging
to discern significant variations. This challenge arises due to the narrow range between
these categories in terms of percentage of savings. Conversely, in upper limit categories,
distinctions are more discernible owing to comparatively greater disparities in energy
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savings. Moreover, findings from the travel demand analysis reveal a higher volume of fuel
consumption compared to that resulting from driver behavior, measured in liters consumed
per hour, for both cases.

Figure 14. Aggregate fuel consumption by travel demand for upper limits of car-following.

Figure 15. Aggregate fuel consumption by travel demand for upper limits of platooning.

Figure 16. Aggregate fuel consumption by travel demand for upper limits of powertrain.

Figure 17. Aggregate fuel consumption by travel demand for upper limits of intersection control.

3.3. Total Fuel Consumption with Respect to ACC Performance at Steady Speeds

At this stage, we drew upon our earlier research, which aimed to offer perspectives
on the prospective utilization of AVs by empirically investigating the following distances
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covered in different driving conditions. Controlled experiments were conducted using three
vehicles equipped with diverse ACC sensors, and equivalent scenarios were duplicated
with human drivers. However, one of the tested ACC equipped vehicles, which represented
an electric vehicle, has not been considered in the current study. The reason behind that is
that the study focused on comparing the fuel consumption between automated driving
modes AV and HDV, specifically emphasizing vehicles with internal combustion engines
(ICE) as the energy source. It was also aimed to provide a direct comparison between
these two driving modes within the context of conventional fuel-powered vehicles, as they
constitute the majority of vehicles on the road and are central to current transportation
systems. Including an electric vehicle in the analysis would introduce a significant deviation
from the primary focus of our study, potentially confounding the comparison between
AV and HDV in terms of fuel consumption. The experiments encompassed driving at
various constant speeds to assess the effectiveness of ACC in upholding secure following
distances. The results for the traffic capacities are derived from [53] and presented in Table 5.
Nevertheless, only the capacity data obtained at constant speeds of 30, 40, and 50 km/h is
utilized for the purpose of fitting the current research data.

Table 5. Traffic capacities [Veh/h] at different driving speeds for HDVs and AVs [53].

Driving Speed 30 km/h 40 km/h 50 km/h

HDV 2505 2796 2962
AV1 1970 2436 2675
AV2 2417 2417 2703

Figures 18–25 present an overview of the total fuel consumption across the fifteen
vehicles in three distinct scenarios: one involving HDV and two featuring AVs. To delve
deeper into the ACC performance during the experiments in [53], AV1 relies on a vision-
based camera sensor for the ACC in the car-following procedure. While AV2 utilizes a
combined camera-radar sensor integrated into the ACC system.

Figure 18. Aggregate fuel consumption by ACC at steady speeds lower limits of car-following.

Figure 19. Aggregate fuel consumption by ACC at steady speeds lower limits of platooning.
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Figure 20. Aggregate fuel consumption by ACC at steady speeds for lower limits of powertrain.

Figure 21. Aggregate fuel consumption by ACC at steady speeds for lower limits of intersection control.

Figure 22. Aggregate fuel consumption by ACC at steady speeds for upper limits of car-following.

Figure 23. Aggregate fuel consumption by ACC at steady speeds for upper limits of platooning.

The mentioned figures vividly depict the variations in total fuel consumption observed
with HDVs, AV1, and AV2, considering both the lower and upper limits of energy savings.
As a result, it is evident from the presented data that HDVs at a constant driving speed
of 50 km/h exhibit the highest rates of fuel consumption. In contrast, AV1 at a speed of
30 km/h demonstrates the lowest rate of fuel consumption among all scenarios. This is due
to the large capacities resulting from HDV when shorter following distances are maintained
ahead of the leading vehicles, especially at higher speeds. In contrast, camera-based and
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combined camera-radar-based ACC systems provide longer and safer following distances,
thus resulting in fewer vehicles per hour and, ultimately, lower fuel consumption per
hour. Additionally, human drivers tend to drive more aggressively compared to ACC
systems, which operate with smoother acceleration and deceleration rates, resulting in a
more reasonable amount of fuel consumption.

Figure 24. Aggregate fuel consumption by ACC at steady speeds for upper limits of powertrain.

Figure 25. Aggregate fuel consumption by ACC at steady speeds for upper limits of intersection control.

4. Discussion

This study investigates the potential fuel consumption associated with the presence
of AVs in the real world. The study’s results reveal two main branches of fuel savings,
as outlined in the literature, that may impact the overall fuel consumption. The first part of
the obtained results shown in Figures 2–5, an analysis of lower limits of energy savings,
indicates nearly identical traffic capacities for HDVs and AVs at a low percentage of human
driver error. Consequently, fuel consumption is considered to be at the same level. Contrast-
ingly, a higher error percentage results in lower traffic capacity for HDVs, leading to the
vehicle engine being more likely in the idling state. Consequently, lower fuel consumption
rates are expected compared to the scenario of AVs navigating through interactions. On the
other hand, at the upper limit of fuel consumption by AVs, the generated capacities surpass
those of HDVs at all levels of human driver error, as illustrated in Figures 6–9. It is worth
mentioning that, while the study primarily focuses on the fuel consumption rates under
different scenarios, incorporating a comparison of total consumption in predefined trips
would provide a more comprehensive understanding of overall efficiency between AVs
and HDVs.

The second part of the results raises concerns regarding the anticipated increase in
fuel consumption corresponding to the rising demand for travel. Both the lower and
upper bounds of energy savings, derived from the analysis of AVs single driving scenarios,
contribute to a higher overall fuel consumption level as shown in Figures 10–17. Various
factors contribute to this trend, including the integration of new user groups, such as the
elderly, disabled individuals, and those under the age of 18 who lack a driving license.
These demographics collectively amplify the demand for travel by AVs. However, it is
important to consider the previous modes of transportation for these groups. For instance,
if they primarily utilized taxis before, the shift to AVs could potentially have a positive
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impact on fuel consumption, as AVs may offer more efficient and direct routes. On the
other hand, if they relied on public transportation, like buses or trains, the transition to AVs
could result in a negative impact on fuel consumption. Therefore, it is crucial to recognize
that not every AV user would be a new transportation user; some may simply switch from
existing modes of transport. Moreover, an additional surge in trips is expected due to
heightened public awareness of AVs and an increasing acceptance rate of this emerging
technology. The mitigation of safety concerns within the public’s perception is likely to
further boost the adoption of AVs in the near future.

The final segment of the results reveals a significantly lower total fuel consumption
during the longitudinal behavior of AVs compared to HDVs. This can be attributed to
the consistent speeds maintained throughout the experiment. During the track runs,
the acceleration and deceleration for AVs were minimized, resulting in higher overall
fuel consumption rates for HDVs in comparison to both AV1, simulated by a vision-
based ACC system, and AV2, simulated by a radar-based ACC system, as illustrated in
Figures 18–25. While this analysis and its results may appear logical due to the disparities
in traffic capacities resulting from the mentioned scenarios, it is important to note that
the study’s primary focus was to investigate the quantity of fuel consumption and gain
a comprehensive understanding of the potential future advantages and disadvantages
associated with both driving modes in terms of energy efficiency.

Finally, to gain a more comprehensive understanding of the relative impact of AVs
on overall fuel consumption within low and high energy savings limits, Figures 26 and 27
present the percentage of total fuel consumption attributed to AVs in comparison to HDVs
across all scenarios. These scenarios align with the outcomes of our earlier investigations
into driver behavior, travel demand, and ACC performance at constant speeds.

Figure 26. Percentage of total fuel consumption of AVs to HDVs at lower energy savings limits.

Figure 27. Percentage of total fuel consumption of AVs to HDVs at upper energy savings limits.
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5. Conclusions

This study explored the potential impact of AVs on fuel consumption, drawing upon
a comprehensive review of existing literature that employed simulation models, road
test models, and laboratory experimental models. The investigation encompassed four
key areas of energy impact, analyzing factors such as car-following behavior, platooning,
powertrain control, and intersection control, to provide a thorough coverage of the liter-
ature. The findings revealed an intricate relationship between AV technology and fuel
consumption. Notably, the study underscored that various factors contribute to the total
fuel consumption by AVs. These include the potential change in traffic capacity due to the
elimination of human driver errors, as well as improvements in car-following behavior.
Additionally, the study considered the impact of public preferences for AV travel. For this
reason, our previous studies were selected to integrate their results, providing a cohesive
understanding of the topic and yielding significant insights.

Despite the promising potential of vehicle automation technology to yield energy
savings, in the analysis of individual AVs, the study demonstrated that the average percent-
ages of total fuel consumption by AVs compared to HDVs exhibited a varied pattern. While
some scenarios showcased records of fuel consumption mitigation, there was a notable
increment in fuel consumption, especially at low limits of individual AV energy savings.
Specifically, the study disclosed fuel consumption mitigation ranging from 1.13% to 23.88%
in pessimistic scenarios and 2.01% to 30.31% in optimistic scenarios. In contrast, the range
of fuel consumption increment varied between 1.67% and 41.97% at lower limits of energy
savings and 1.5% to 29.98% at upper limits. These outcomes underscore the complexity of
the relationship between AV behavior and fuel consumption. Importantly, these findings
bear significance for the sustainability of transportation and offer valuable insights for plan-
ners venturing into the burgeoning industry of vehicle automation. By shedding light on
the potential energy savings and challenges associated with AVs, this study contributes to
a clearer vision for future transportation planning, guiding decision-makers in navigating
the path towards a more sustainable and efficient transport system.

Author Contributions: Conceptualization, D.M. and B.H.; methodology, D.M.; formal analysis, D.M.;
investigation, D.M.; writing—original draft preparation, D.M.; writing—review and editing, B.H.;
visualization, D.M.; supervision, B.H. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to the interests of those providing the
location and conditions of the measurement.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AV Autonomous Vehicle
CAV Connected Autonomous Vehicle
OBD On-Board Diagnostics
HDV Human-Driven Vehicle
ACC Adaptive Cruise Control
CACC Cooperative Adaptive Cruise Control
IDM Intelligent Driver Model
EPA Environmental Protection Agency
VSP Vehicle-Specific Power
ECMS Equivalent Consumption Minimization Strategy
HEV Hybrid Electric Vehicle
EIL Engine In the Loop
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