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Abstract: The drum water level plays a crucial role in the safety and economy of heat recovery boilers.
However, the control of the drum water level faces many challenges, such as external disturbances
and system uncertainties. To enhance the control performance of the drum water level, a modified
active disturbance rejection control (MADRC) optimized with sensitivity constraint is proposed in
this paper. Firstly, the control structure of the three-element control system for the drum water level is
introduced and analyzed. Based on the regular active disturbance rejection control (ADRC) structure,
the structure of the MADRC is introduced and the convergence of the proposed MADRC is proven.
Then a modified whale optimization algorithm (MWOA) with sensitivity constraint is applied to
optimize the parameters of the MADRC. With different sensitivity constraints, the parameters of the
MADRC and comparative controllers are obtained, and their control performance for tracking and
disturbance rejection abilities is compared. Moreover, the ability to handle system uncertainties is
analyzed. Simulation results and performance indexes show that the proposed MADRC can obtain
the best tracking and disturbance rejection abilities with satisfactory robustness. The satisfactory
control performance shows that the proposed MADRC has wide application potential for heat
recovery boilers and other industrial processes.

Keywords: modified active disturbance rejection control; drum water level; sensitivity constraint;
modified whale optimization algorithm; control performance

1. Introduction

With more and more renewable energy sources, such as wind power and photovoltaics,
integrating into the power grid, heat recovery boilers combing gas turbines with fast load
response speed and environmental friendliness are playing crucial roles for the stability
and safety of the power grid [1]. However, the drum water level, as the most important
subsystem, is facing many challenges caused by fluctuations of the steam flow and feed
water flow [2].

To improve the stability of the drum water level, the drum water level control plays
the most important role, considering that the drum water level faces many external dis-
turbances and system uncertainties [3]. To enhance the control performance of the drum
water level for heat recovery boilers, different control strategies have been studied and
designed. The classical proportional-integral-derivative (PID) controllers, with a simple
structure and reliable control performance, have been designed widely for the drum water
level [4,5]. Modified PID controllers, such as the adaptive PID controller [6] and fuzzy PID
controller [7], also have been optimized to enhance the ability of a PID to handle system
nonlinearity of the drum water level. However, the implementation difficulties of modified
PID controllers are the main limitations of their extensive applications [8]. In addition,
the fractional-order PID (FOPID) controller, as the generalization of a PID controller, with
the advantage of more freedom degrees for parameter tuning, is also being tried to apply
to the drum water level of heat recovery boilers [9,10]. Note that the FOPID controller is
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facing implementation difficulties, where the FOPID is approximated by high-order integer
order transfer functions in a distributed control system (DCS). Simulation results have
illustrated the improvement of the control performance of the drum water level, while rare
on-site applications have been reported. A robust controller, with a small dependency on
the accurate mathematical model, is also applied to the drum water level [11,12], where
the worst-case condition is also considered in the process of controller design [13]. The
relatively conservative control performance makes the robust controller highly adaptable to
model uncertainties [14]. However, the relatively conservative control performance is the
main shortcoming. A sliding mode controller has strong robustness against the variation
of system parameters and disturbances, but at the same time, variable structure control
technology also has a serious drawback: the jitter of the control signal. This would cause
irreversible wear of the actuator and have a significant impact on the economic operation of
the drum water level system [15,16]. With advantages in handling multivariable coupling
and system nonlinearity, the model predictive control (MPC) controller is also structured
for the drum water level system and satisfactory control performance can be obtained
under the nominal operating condition [17,18]. Unfortunately, the control performance
would seriously decline if operating conditions work far from the nominal operating condi-
tion. With the development of computer hardware and artificial intelligence technology,
complex control algorithms, such as fuzzy controller [19], neural network controller [20]
and reinforcement learning controller [21], are also proposed for the drum water level.
Although satisfactory control performance can be achieved, theoretical convergence proof
of these controllers is lacking.

Considering that the drum water level faces many challenges, such as external distur-
bances and system uncertainties, the suitable controller of the drum water level should have
the following features: strong robustness, weak independence of the accurate mathematical
model and strong ability to reject multi-source disturbances [22]. The active disturbance
rejection control (ADRC), with the features mentioned above, is receiving more and more
attention. With the online estimation and real-time compensation disturbances by extended
state observer (ESO), the ADRC can track the set point and reject disturbances well. With
the strong ability of ESO to estimate and compensate for the total disturbance, the ADRC
has strong robustness to handle system uncertainties [23]. With comprehensive theoret-
ical analysis and rich parameter tuning methods [24], the excellent control performance
has been verified in different applications, such as applications in robotic systems [25],
main steam pressure systems [26], superheater temperature systems [27], particleboard
glue systems [28], aircraft anti-skid braking systems [29] and compression liquid chiller
systems [30].

In fact, the ADRC also has been tried to apply to the drum water level for heat recovery
boilers [31–33]. Considering the limitations on the upper limit of the observer bandwidth
of ESO, the control performance of the drum water level is limited, and this paper proposes
a modified ADRC (MADRC) to increase the upper limit of observer bandwidth inspired
by Ref. [27]. Moreover, how to select the reasonable parameters of the ADRC also is a
non-negligible problem. To tune the appropriate controller parameters, a modified whale
optimization algorithm (MWOA) [34] with sensitivity constraint is applied to optimize
the parameters of the MADRC, where the maximum sensitivity function is applied to
guarantee that the controller has the specified robustness. The main contributions of this
paper are summarized as follows:

(1) An MADRC is proposed, and the convergence of the proposed MADRC is proven;
(2) An MWOA with sensitivity constraint is applied to optimize the parameters of the

MADRC, where the bandwidths of the controller and ESO can be selected with
sensitivity constraint;

(3) The effectiveness of the proposed MADRC optimized by the MWOA is verified by
comparative simulations.

The rest of this paper is arranged as follows: The structure of the drum water level is
introduced in Section 2. The introductions of the regular ADRC and MADRC are presented
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in Section 3. In addition, the convergence analysis of the MADRC is also carried out.
The MWOA is applied to optimize the parameters of the MADRC, where the maximum
sensitivity function is used as the robustness constraint in Section 4. Section 5 presents
the comparative simulation results in the nominal condition with different sensitivity
constraints and uncertain conditions. Section 6 provides some conclusions of the paper.

2. Control Structure of Drum Water Level and Control Objective

The operational quality of the drum water level is significant for the safety of the water
circulation. The steam would carry water if the drum water level is too high. Similarly, the
boiler would dry out if the drum water level is too low. Therefore, the drum water level
should be controlled in a reasonable range. Strong abilities to track and disturbance rejection
are critical factors for the high-quality operation of the drum water level. The classical
and universal control structure of the drum water level is called the three-element system,
where the control structure contains a cascade structure and a feedforward controller as
presented in Figure 1. r, y1 and y2 are the set point of y1, the drum water level and the
feed water flow, respectively. d1 and d2 are the external disturbance (measurement error of
drum water level etc.) and inner disturbance (steam flow disturbance etc.), respectively. D
is the steam flow.
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Figure 1. The control structure of the drum water level.

The dynamic process from y2 to y1 is depicted by

.
y1 + 30

..
y1 − 0.037y2 = 0. (1)

The dynamic process from the valve opening u2 to y2 is depicted by

5
.
y2 + y2 − 20u2 = 0. (2)

The dynamic process from D to y1 is depicted by

.
y1 + 15

..
y1 − 3.045

.
D2 + 0.037D2 = 0. (3)

Equations (1)–(3) can be equivalent to the following transfer functions (Gw(s), Gv(s)
and Gd(s)) as

Gw(s) =
0.037

(30s + 1)s
, (4)

Gv(s) =
20

5s + 1
, (5)

and
Gd(s) =

3.6
15s + 1

− 0.037
s

. (6)

In addition, Gc1(s) and Gc2(s) are the master controller and slave controller, respec-
tively. αD = 0.0174, αw = 0.0174 and αH = 1 are the transmission coefficients of D(s), y2
and y1, respectively.

To ensure the high-quality operation of the drum water level, the parameters of
Gc1(s) and Gc2(s) should be tuned reasonably and optimally. Considering that the inner
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loop has the fast dynamic characteristic, the PID controller can be selected as Gc1(s) =
kp1 + ki1/s + kd1s.

The closed-loop of the inner loop as presented in Figure 2 can be obtained as

Gin−loop(s) =
Gc2(s)Gv(s)

1 + Gc2(s)Gv(s)αw
. (7)
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Then, the transfer function for the outer loop from r to y1 can be obtained as,

Y1(s) = Gw(s)D1(s) + Gd(s)D(s) + Y2(s)Gw(s), (8)

where
Y2(s) = Yu1(s) + Yd2(s) + YD(s), (9)

Yu1(s) = Gin−loop(s)(R(s)− αHY(s))Gc1(s), (10)

Yd2(s) =
Gin−loop(s)

Gc2(s)
D2(s), (11)

YD(s) = αDGin−loop(s)D2(s). (12)

With the equivalent structure in Figure 3, the definition of Gin−loop(s) and the PID of
Gc1(s), one can have the outer controlled plant as

Gout−loop(s) = Gin−loop(s)Gw(s) =
Y1(s)
U1(s)

. (13)
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Further,

Gout−loop(s) =
0.74

(
kd1s2 + kp1s + ki1

)
s(30s + 1)

[
(0.348kd1 + 5)s2 +

(
0.348kp1 + 1

)
s + 0.348ki1

] . (14)

To enhance the control performance of the drum water level in Figure 1, a second-
order ADRC, as the master controller, can be designed for this system, considering that
the relative order of Gout−loop(s) is 2. With tuned Gc1(s), one can have Gin−loop(s) ≈ 1 as
discussed in Ref. [27], and Equation (13) can be approximated as

Gout−loop(s) ≈
1

s(30s + 1)
. (15)
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Moreover, the control signal of u2 is recommended as [−20, 20] to protect the feed pump.
The control objective of the control structure of the drum water level can be listed as

follows:

• y1 tracks r as fast as possible with small overshoot;
• The closed-loop system can quickly recover to the steady state when D(s), d1 or d2

occurs;
• The closed-loop system should have a strong ability to handle system uncertainties.

To guarantee the robustness of the ADRC, i.e., the ability to handle system uncer-
tainties, the maximum sensitivity function, a widely used indicator for controllers [35],
is selected as the robustness measurement indicator. The definition of robustness con-
straint, the maximum sensitivity value of the maximum sensitivity function, i.e., Ms, can
be depicted as

Ms = max
0≤ω<∞

∣∣∣∣∣ 1
1 + αHGc1(jω)Gin−loop(jω)

∣∣∣∣∣, (16)

where Ms can be regarded as the reciprocal of the nearest distance from the Nyquist curve
of the open-loop system to (−1, 0j) as presented in Figure 4, i.e., the reciprocal of the
distance from point A to the (−1, 0j). The recommended range of Ms is [1.2~2.0], where a
larger Ms means weaker robustness and vice versa [36].
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The objective to optimize parameters of Gc1(s) can be depicted by

Min control performance of Gout−closedloop(s) with respect to x
Subject to: Ms ∈ [q−, q+]

(17)

where the control performance of the closed-loop Gout−closedloop(s) =
Gc1(s)Gin−loop(s)

1+αH Gc1(s)Gin−loop(s)
can be defined as the integral of absolute error (IAE), the integral of time absolute error
(ITAE), the integral of error (IE), etc.

3. Modified Active Disturbance Rejection Control and Convergence Analysis
3.1. Regular Active Disturbance Rejection Control

Considering the controlled plant, Gout−loop(s), in Equation (15) for Gc1(s), the con-
trolled plant can be equivalent to

..
y1 = −

.
y1
30

+
1

30
u1. (18)

In order to maintain generality, Equation (18) can have the general form

..
y1 = g

( .
y, y, ω, d

)
+ bu1, (19)
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where t, ω and d are the time variation, system uncertainties and external disturbances,
respectively. In addition, b is the gain of u and b = 1/30 for Equation (15). Note that
Equation (15) is an approximation of Equation (14) and the accurate gain has some changes.
Therefore, b0, defined as the estimation of b, is used in Equation (19), and Equation (19)
becomes

..
y1 = g

( .
y, y, ω, d

)
+ (b − b0)u1︸ ︷︷ ︸

f (·)

+ b0u1, (20)

where f (·) = g
( .
y, y, ω, d

)
+ (b − b0)u1 is called the total disturbance of the controlled plant,

and it contains external disturbances and internal uncertainties.
To estimate f (·), ESO is proposed for Equation (20), which is depicted by

.
z1 = z2 + β1(y1 − z1).
z2 = z3 + β2(y1 − z1) + b0u1.
z3 = β3(y1 − z1)

, (21)

where z1, z2 and z3 are the outputs of ESO. β1, β2 and β3 denote parameters of ESO, and
the parameter-bandwidth method is proposed to simplify parameter tuning as [37]:

β1 = 3ωo
β2 = 3ω2

o
β3 = ω3

o

, (22)

where ωo is the bandwidth of ESO. Note that z1, z2 and z3 can track y,
.
y and f (·) well when

β1, β2 and β3 are tuned reasonably [23].
A feedback control law is designed to obtain the control signal as

u1 =
kp(r − z1)− kpz2 − z3

b0
, (23)

where kp and kd are parameters of the feedback control law, which can be decided by{
kp = ω2

c
kd = 2ωc

, (24)

where ωc is the bandwidth of the feedback control law. The structure of the regular ADRC
can be seen in Figure 5.
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3.2. Modified Active Disturbance Rejection Control

Due to the inertial link in Equation (15), the inputs of ESO, i.e., u1 and y1, are un-
synchronized, and this can limit the upper limit of ESO. To resolve the issue, a synchronized
part, i.e., Gcp(s) = 1

30s+1 , is added to u1 before u1 is sent to ESO as presented in Figure 6.
Thus, u1, as one input of ESO, is replaced by the output, i.e., u f , of Gcp(s). ESO and the
feedback control law are the same as those of the regular ADRC. Note that the parameter-
bandwidth method for ωo and ωc is still effective for the MADRC.
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The controlled plant in Equation (14) becomes,

Y1(s) =
0.74

(
kd1s2 + kp1s + ki1

)
s
[
(0.348kd1 + 5)s2 +

(
0.348kp1 + 1

)
s + 0.348ki1

]u f (s), (25)

which is equivalent to
..
y1 = f (·) + b̃0u f . (26)

Note that b0 in the ESO and the feedback control law of the regular ADRC is replaced
by b̃0. The structure of the modified ADRC in Figure 6 is equivalent to a typical two-
degrees-of-freedom structure as presented in Figure 7, where GP(s), GF(s) and Gc(s) are
the controlled plant, feedforward controller and feedback controller, respectively.
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Without loss of generality, Equation (20) is considered, and the synchronized part
becomes

Gcp(s) =
1

Ts + 1
. (27)

By equivalent transformation, GF(s) and Gc(s) can be obtained as

GF(s) =
s3 + β1s2 + β2s + β3

(k1β1 + k2β2 + β3)s2 + (k1β2 + k2β3)s + k1β3
, (28)

and

GC(s) =

kp

b̃0

((
kpβ1 + kdβ2 + β3

)
s2 +

(
kpβ2 + kdβ3

)
s + kpβ3

)
s3 +

(
β1 + kdGcp(s)

)
s2 +

(
β2 + kdβ1Gcp(s) + kpGcp(s)

)
s + β3

(
1 − Gcp(s)

) . (29)

Thus, one has the following theorem of the stability analysis for the MADRC as
follows:

Theorem 1. Suppose that f is bounded, and r is independent of time. Based on the controlled plant in
Equation (20) and the equivalent structure in Equations (28) and (29), the sufficient condition of the
bounded tracking error |y − r| is that all roots of

[
kp + kds + s2(Ts + 1)

](
s3 + β1s2 + β2s + β3

)
= 0

locate in the left plane.

Proof of Theorem 1. The state space representation of the synchronized part can be
obtained as

.
u f = − 1

T
u f +

1
T

u1. (30)
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Considering that r is set to zero, the closed-loop system becomes

..
y = b̃0u f + f
.
u f = − 1

T u f +
1
T u1.

z1 = z2 + β1(y1 − z1)
.
z2 = z3 + β2(y1 − z1) + b̃0u f.
z3 = β3(y1 − z1)

u1 =
kp(r−z1)−kdz2−z3

b̃0

. (31)

By defining the tracking error as ez = y − r and state estimation error as e1 = y − z1,
e2 =

.
y − z2 and e3 = f − z3, one can obtain

.
ez =

.
y − .

r =
.
y (32)

and 
.
e1 = e2 − β1e1.
e2 = e3 − β2e1
.
e3 =

.
f − β3e1

. (33)

Combining Equations (31)–(33), the overall closed-loop system becomes

.
ez = ỹ
.
y = ỹ
.
ỹ = b̃0u f + f
.
u f = − 1

T u f −
kp

b̃0T
ez +

kp

b̃0T
e1 − kd

b̃0T
ỹ + kd

b̃0T
e2−

.
e1 = e2 − β1e1.
e2 = z3 − β2e1 + f
.
z3 = β3e1

1

b̃0T
z3. (34)

The characteristic equation of the closed-loop system in Equation (34) can be ob-
tained as [

kp + kds + s2(Ts + 1)
](

s3 + β1s2 + β2s + β3

)
= 0. (35)

When all roots of Equation (35) locate on the left plane, it can be learned the all eigen-
values of the closed-loop system in Equation (34) are located on the left plane. Considering
that f is bounded, |ez| = |y − r| is bounded. □

3.3. Distributions of Ms for MADRC

Theorem 1 verifies the convergence of the proposed MADRC, where the tracking error
is decided by the parameters of the MADRC. To guarantee the ability to handle system
uncertainties, the robustness index, Ms, should be a key constraint. To better analyze the
influence of parameters on Ms, the three-dimensional distributions of Ms with different
{ωc, ωo}, {ωc, b̃0} and {ωo, b̃0} are obtained and presented in Figures 8–10, respectively.
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It can be learned that the distributions of Ms obviously change with different {ωc,
ωo}, {ωc, b̃0} and {ωo, b̃0}. This means that the parameters of the MADRC should be tuned
appropriately to obtain satisfactory control performance of the drum water level for heat
recovery boilers.

4. Modified Whale Optimization Algorithm with Sensitivity Constraint for MADRC

To optimize the parameters of the proposed MADRC, i.e., Gc1(s), for the drum water
level, MWOA is proposed to tune these parameters, considering its simplicity, efficiency
and fast convergence as presented in Figure 11.
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Figure 11. The diagrammatic sketch of MWOA applying to the drum water level.

The WOA is a novel swarm intelligence optimization algorithm that mimics the
predatory behavior of whales in nature [34], and the predatory behavior of whales can be
mainly divided into two categories: (1) searching for food on the bubble net and (2) random
search [38].

Searching for food on the bubble net: In the WOA, the position of each whale in the
search space represents a solution. Assuming that the individual closest to the objective
function value in the current population is the optimal whale position, based on the position
information of the global optimal solution, other whale individuals in the population
update their own positions by surrounding the optimal whale position. The behavior of
whales surrounding prey is shown in Equation (36) as

xt
new = xt

∗ − A × D, (36)

where D =
∣∣C · xt

∗ − xt
∣∣, t is the current iteration number, xt

∗ is the global optimal whale
position vector, and xt the current whale position vector.

When updating the position in a spiral, the distance between the current position and
the optimal whale individual is calculated, and then the current whale swims towards the
optimal individual in a spiral motion. The mathematical model is described by

xt
new = xt

∗ + Dp × ebl × cos(2τl), (37)

where Dp =
∣∣xt

∗ − xt
∣∣, b is a constant to constrain the shape of a helix, and l ∈ [−1, 1] is a

random number.
Whales swim in a spiral shape towards their prey while also approaching it in a

contracting manner, known as bubble-net foraging. When |A| < 1, whales search for local
optima within the enclosure and implement surround prey behavior with a probability of
0.5., and spiral renewal behavior is as follows:

xt
new =

{
xt
∗ − A × D, p1 < 0.5

xt
∗ + Dp × ebl × cos(2τl), p1 ≥ 0.5

, (38)

where p1 is a random locating [0, 1].
Random search: When |A| ≥ 1, whales search for optimization outside the contraction

envelope and perform a random search. The algorithm randomly selects a whale individual
from the current whale population as the global optimal solution, and other whales in the
population gather towards it. By updating the position of the population in this way, the
diversity of the whale population is enhanced, and the global search ability of the algorithm
is enhanced. The mathematical model depicted by

xt
new = xt

rand − A × D′, (39)

where D′ =
∣∣C × xt

rand − xt
∣∣ and xt

rand is a randomly selected whale position vector.
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To enhance the solution accuracy and convergence speed of the WOA, the WOA is
modified in the following areas:

1. Heuristic probability p1

To balance the global and local search capabilities of the WOA, the heuristic probability,
i.e., p1, can be calculated by

p1 =

{
0.66ti < 0.5 × maxIter
0.44ti ≥ 0.5 × maxIter

, (40)

where ti and maxIter are the current number of iterations and the maximum number of
iterations, respectively;

2. Linear control parameter l

MWOA employs the linear control parameter l by

l =
(

t
maxIter

− 1
)
× rand + 1 − 2 × t

maxIter
; (41)

3. Lévy flight strategy

The position of a whale individual can be updated by Lévy flight strategy as

Xi
new = Xi + A1 ×

υ

|µ|1/β
⊕

(
Xi − C1 × Xrand

)
, (42)

where Xi
new is the updated position of Xi, ⊕ is the dot product, and Xrand is the randomly

selected whale individual in the current population. In addition, A1 and C1 are two
parameters [34];

4. Elementary knowledge-acquisition-sharing algorithm

The position of a whale individual can be updated by the elementary knowledge-
acquisition-sharing algorithm as

Xi
new =

{
Xi + k f ×

[(
Xi−1 − Xi+1)+ (

Xr − Xi)] m
(
Xi) > m(Xr)

Xi + k f ×
[(

Xi−1 − Xi+1)+ (
Xi − Xr)] m

(
Xi) ≤ m(Xr)

, (43)

where Xr, m
(
Xi) and k f are the randomly selected individuals, the fitness function of Xi

and knowledge factor parameters, respectively;

5. Position update method based on correction spiral

The position of a whale individual can be updated by the position update method
based on the correction spiral as

Xi
new = Xi

∗ +
(

Xi
∗ − Xi

worst +
∣∣∣Xi

m − Xi
∣∣∣)el cos(2πl), (44)

where Xi
∗, Xi

worst and Xi
m are the best, worst and medium whale individuals, respectively;

6. Quadratic interpolation method

The position of a whale individual can be updated by the quadratic interpolation
method as

Xi
new = 0.5 ×

[(
Xi)2 − (Xr)2

]
× m

(
Xi
∗
)
+

[
(Xr)2 −

(
Xi
∗
)2
]
× m

(
Xi)+ [(

Xi
∗
)2 −

(
Xi)2

]
× m(Xr)(

Xi − Xr
)
× m

(
Xi∗

)
+

(
Xr − Xi∗

)
× m

(
Xi

)
+

(
Xi∗ − Xi

)
× m(Xr)

. (45)

The flowsheet of the MWOA can be seen in Figure 12, where more meaning of variables
can be seen in Ref. [34].
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Figure 12. The flowsheet of MWOA.

With the same sensitivity constraint, i.e., Ms = 1.5, the WOA and MWOA are applied
to optimize the parameters of the MADRC for the drum water level, and the convergence
curves of the control performance, i.e., IAE, can be obtained as shown in Figure 13, where
the MWOA has fast convergence. In addition, the IAE with the WOA and MWOA are 30.94
and 28.17, respectively. The solution accuracy and convergence speed of the MWOA can be
verified.
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5. Simulation Illustrations

To validate the effectiveness of the proposed MADRC optimized by the MWOA, the
control performance with the fixed sensitivity constraint is carried out in this scenario.
Moreover, the PID, regular ADRC (“ADRC” in this paper) and disturbance observer-based
control (“DOBC” in this paper) are selected as comparative controllers.

To comprehensively compare the performance of the MADRC, three scenarios are
selected: (1) Scenario 1—the simulations with fixed sensitivity constraints are carried out to
analyze the control performance under different constraints in this scenario; (2) Scenario
2—In this scenario, the sensitivity constraint is selected as a reasonable range to obtain
better control performance; (3) Scenario 3—In this scenario, Monte Carlo simulations are
carried out to compare the different controllers’ ability to handle system uncertainties.

In addition, the IAE is selected as the indicator to measure the control performance of
these controllers considering that it can balance control accuracy and convergence speed
well [36]. The definition of IAE can be depicted by

IAE =
∫ tend

tstart
|r(t)− y(t)|dt, (46)

where tstart and tend are the start time and end time of the calculation process, respectively.
If tstart and tend are selected as the start time and end time of the tracking process, the
IAE becomes the set-point tracking performance IAEsp. Similarly, the IAE becomes the
disturbance rejection performance IAEdr if tstart and tend are selected as the start time and
end time of the disturbance rejection process. The IAE becomes the total performance
IAEtotal if tstart and tend are selected as the start time and end time of the simulation process.

5.1. Scenario 1: Fixed Sensitivity Constraint

Select a fixed sensitivity constraint, i.e., Ms = 1.2, and the parameters of the inner
controller, i.e., Gc2(s), are given as Gc2(s) = 0.8 + 0.01/s. Then MWOA is applied to the
MADRC, PID and ADRC. The parameters of the MADRC are obtained as b̃0 = 0.00198,
ωc = 0.168 and ωo = 0.996. The parameters of the ADRC are obtained as b0 = 0.102,
ωc = 0.0172 and ωo = 0.899. The parameters of the PID are obtained as kp = 0.148,
ki = 0.00497 and kd = 5.489. The parameters of the DOBC are obtained as kp = 1.193,
ki = 0.0272, kd = 107.1210 and Q(s) = 1/(8s + 1)2. The control performance under the
sensitivity constraint, i.e., Ms = 1.2, is shown in Figure 14, where the set point of y1 has
a step change at 10 s from 0 to 1. d2, d1 and D(s) have a step change from 0 to 1 at 400 s,
1200 s and 1600 s, respectively, during all simulations. It can be learned that the MADRC
has the smallest IAEsp, IAEdr and IAE. In addition, the overshoot of the MADRC is still
the smallest.
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Figure 14. The control performance under the sensitivity constraint, i.e., Ms = 1.2. (a) The outputs
with different controllers; (b) the control performance indexes with different controllers.
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With different sensitivity constraints, i.e., Ms = 1.4 and Ms = 1.6, the control perfor-
mance is shown in Figures 15 and 16, respectively. It can be observed that the MADRC still
has the best control performance compared with the ADRC, PID and DOBC, where the
MADRC has the fastest tracking performance and strongest disturbance rejection ability.
Note that the output of the MADRC has severe oscillations with increasing Ms = 1.6 and
this may cause wear and tear on the actuators, which is not conducive to the long-term safe
operation of the drum water level for heat recovery boilers.
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Figure 15. The control performance under the sensitivity constraint, i.e., Ms = 1.4. (a) The outputs
with different controllers; (b) the control performance indexes with different controllers.
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Figure 16. The control performance under the sensitivity constraint, i.e., Ms = 1.6. (a) The outputs
with different controllers; (b) the control performance indexes with different controllers.

5.2. Scenario 2: Sensitivity Constraint with a Range

In this scenario, the sensitivity constraint is selected as a range, where Ms ∈ [1.2, 2.0]
is selected. However, due to the severe oscillations with Ms = 1.6 as discussed in scenario
1, Ms is selected as a smaller range of Ms ∈ [1.2, 1.35] to protect actuators. With the range
of the sensitivity constraint, parameters of the MADRC, PID and ADRC are optimized by
the MWOA, where the parameters of the MADRC are obtained as b̃0 = 0.00208, ωc = 0.214
and ωo = 1.589. The parameters of the ADRC are obtained as b0 = 0.0973, ωc = 0.0493
and ωo = 3.02. The parameters of the PID are obtained as kp = 2.10, ki = 0.0199 and
kd = 30. The parameters of the DOBC are obtained as kp = 3.07, ki = 0.0310, kd = 120
and Q(s) = 1/(8s + 1)2. The control performance under a range sensitivity constraint is
shown in Figure 17. It can be learned that the MADRC has the smallest IAEsp, and the
MADRC has smaller IAEdr and IAE than the PID and ADRC. In addition, the overshoot of
the MADRC is still the smallest. In addition, the Nyquist plots of different controllers are
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presented in Figure 18, where the MADRC has the smallest Ms, while the DOBC, ADRC
and PID have a larger Ms.
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Figure 17. The control performance under the sensitivity constraint, i.e., Ms ∈ [1.2, 2.0]. (a) The
outputs with different controllers; (b) the control performance indexes with different controllers.
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5.3. Scenario 3: Uncertain Systems

Considering that system uncertainties always exist with changing operating conditions
and model simplification, to analyze the abilities of the MADRC, DOCB, ADRC and PID to
handle system uncertainties for the drum water level, Monte Carlo simulations are carried
out in scenario 3.

All coefficients in Figure 1 are perturbed in the [−20%, 20%] range of their original
values randomly, and then simulations in Figure 14 are carried out for perturbed systems
with fixed parameters. During each simulation, the IAEsp, IAEdr and IAE are recorded. By
repeating simulations 200 times for scenarios 1 and 2, the distributions of the IAEsp, IAEdr
and IAE are presented in Figure 19.

Commonly, the control performance is better if the controller has smaller IAEsp, IAEdr
and IAE; similarly, the robustness is strong if the controller has a greater concentration of the
IAEsp, IAEdr and IAE. It can be learned that the MADRC has the best control performance
and strongest robustness for uncertain systems, which means that the MADRC has the
strongest ability to handle system uncertainties.

Based on simulation results, the MADRC obtains obvious advantages in terms of
tracking performance and disturbance rejection ability with satisfactory robustness.
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6. Conclusions

This paper focuses on the controller design for the drum water level, where external
disturbances and system uncertainties are the main challenges to the control of drum water
level. An MADRC optimized by an MWOA with sensitivity constraint is proposed. Based
on the control structure of a three-element control system for the drum water level and the
regular ADRC structure, the structure of an MADRC is introduced and the convergence of
the proposed MADRC is derived. Then a modified whale optimization algorithm (MWOA)
with sensitivity constraint is applied to optimize the parameters of the MADRC. Simulation
results and performance indexes show that the proposed MADRC can obtain the best
tracking and disturbance rejection abilities with satisfactory robustness. The satisfactory
control performance shows that the proposed MADRC has wide application potential for
heat recovery boilers and other industrial processes.
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