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Abstract: The transition towards environmentally friendly transportation solutions has prompted a
focused exploration of energy-saving technologies within railway transit systems. Energy Storage Sys-
tems (ESS) in railway transit for Regenerative Braking Energy (RBE) recovery has gained prominence
in pursuing sustainable transportation solutions. To achieve the dual-objective optimization of energy
saving and investment, this paper proposes the collaborative operation of Onboard Energy-Storage
Systems (OESS) and Stationary Energy-Storage Systems (SESS). In the meantime, Non-dominated
Sorting Genetic Algorithm-II (NSGA-II) is applied to optimize the ESS capacity and reduce its re-
dundancy. The simulation is programmed in MATLAB. The results show that the corporation of
OESS and SESS offers superior benefits (70 kWh energy saving within 30 min operation) compared
to using SESS alone. Moreover, the OESS plays a significant role, emphasizing its significance in
saving energy and investment, therefore presenting a win–win scenario. It is recommended that
the capacity of OESS be designed to be two to three times that of SESS. The findings contribute to
the ongoing efforts in developing more sustainable and energy-efficient transportation solutions,
with implications for the railway industry’s investment and broader initiatives in energy saving for
sustainable urban mobility.

Keywords: rail transit; ESS; SESS; OESS; SMES; Lithium-ion battery; regenerative braking; NSGA-II;
energy recovery; energy management

1. Introduction

This research aims to achieve multi-objective optimization of energy consumption
and cost in rail transit by coordinating OESS’s and SESS’s capacity. Therefore, NSGA-II is
applied and works well, as expected.

In general, the pantograph-catenary is the primary energy supply for a train’s op-
eration in rail transit [1,2]. To improve the diversity and stability of energy supply in
emergencies, renewable energy sources like photovoltaic power have also been introduced
in rail transit [3]. On the other hand, as a supplement to the primary energy supply system,
one key area of focus is the recovery and efficient utilization of RBE in railway transit by ESS.
Regarding the construction of ESS, there are three types: power-density ESS, energy-density
ESS, and hybrid energy-storage systems (HESS). The rated output power divided by the
storage device’s volume yields the power density (W/kg or W/liter). Power-density ESS
like SMES and supercapacitors appropriate for high discharge current have quick response
power quality applications. Similarly, stored energy divided by the volume refers to the
energy density (Wh/kg or Wh/liter). Energy-density ESS like Li-ion holds higher energy
density than conventional batteries, excelling in space reduction, mobility increase, and
operating time extension [4]. Ratniyomchai introduced the application of ESS in electrified
railways, especially batteries, flywheels, electric double-layer capacitors, and HESS. The
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storage and reuse of RBE is managed by energy-storage devices depending on the purpose
of each system [5,6]. By lowering the frequency of battery charge and discharge and con-
trolling battery peak current, Li introduced HESS with Superconducting Magnetic Energy
Storage (SMES) and batteries in electric buses, extending battery life [7].

The efficient management and storage of energy have become integral to sustainability
goals. In general, according to the allocation of ESS, there are also three types: SESS,
OESS, and both. Unlike OESS, SESS is not confined to the train itself but is distributed
strategically along the railway network. SESS plays a crucial role in capturing and storing
the excess energy generated during regenerative braking events to improve efficiency and
reliability in urban rail systems [8]. Lamedica demonstrates the utilization of Particle Swarm
Optimization (PSO) in developing an optimal siting and sizing methodology for designing a
SESS tailored for railway lines and maximizing the investment’s financial return [9]. On the
other hand, Andres Ovalle proposed the optimal energy storage sizing formulation, taking
the characteristics of different modern battery and supercapacitor technologies into account,
and the objective function to minimize the trade-off between energy-storage capacity and
charging rates based on a real-time simulation [10]. At the same time, Dupré developed
a methodology that divides installation into stages with different budgets and periods
to obtain optimum installation of ESSs in a railway line, balancing energy saving and
profit [11]. Also, simulations in different conditions managed by different algorithms have
been conducted by many authors, all of which prove that installing SESS will lead to energy
saving for the railway system [12–16]. Also, real examples have been commercially applied
around the world [17–20]. This paper proposes the utilization of a hybrid energy-storage
system (HESS) combining SMES and conventional batteries in rail transit.

SMES is a high-power-density energy-storage technology that relies on the principle
of superconducting magnets. SMES takes advantage of the unique properties of supercon-
ducting materials, which exhibit zero resistance at low temperatures. A strong magnetic
field is generated by passing an electric current through a superconducting coil, allowing
for the storage of electrical energy. In addition, it exhibits a fast response in milliseconds. It
is mainly applied for network stability applications [21,22]. While in rail transit, thanks to
its unique characteristics, SMES is well-suited for recovering the intermittent and random
nature of RBE. However, the negative impact of strong magnetic fields on the environment
and their high cost are the main obstacles to deploying SMES devices.

Lithium-ion battery (LIB) presents a rechargeable characteristic. Electrical energy is
stored and released through the embedding and de-embedding of lithium ions in its chem-
ical reactions. This innovative technology has gained widespread adoption, positioning
itself as one of the most prevalent energy-storage solutions available in commercial markets
today. On the other hand, the high-energy-density characteristic distinguishes Lithium-ion
batteries (LIBs) from SMES, which allows them to store more electrical energy in a light
and small form. Consequently, LIB has become the preferred energy-storage technology
for electric vehicles and mobile devices. Furthermore, successful commercialization and
significant global investments have led to a considerable reduction in its cost. Although
LIBs offer high energy density, they can still be relatively heavy compared to alternative
ESS technologies like ultracapacitors [4]. In railway transit applications, weight directly
impacts energy consumption and vehicle performance.

By utilizing a combination of several energy-storage technologies, the HESS system ef-
fectively delivers and controls energy. The two complementary technologies that constitute
HESS’s core are LIB and SMES. While LIB is distinguished by its high energy density and
wide applicability, SMES is recognized for its quick reaction in milliseconds, exceptional
power density of up to 2000 W/kg, and extended life expectancy. The HESS system may
efficiently utilize the advantages of both LIB and SMES to accomplish efficient energy
delivery and storage. Meanwhile, SMES can be regarded as a buffer for temporary energy
storage to reduce the load of the battery, thus reducing the energy exchange frequency of
the battery and extending its lifespan. One challenge is the specification of power-density
ESS and energy-density ESS. Integrating both effectively requires careful design. In the
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meantime, higher capacity does not always lead to more significant energy savings [23].
Optimal sizing is crucial.

A consistent power-supply infrastructure is frequently absent in remote or isolated re-
gions. Under such circumstances, trains may face challenges relying directly on an external
power source. OESS serves as a solution, enabling trains to provide energy independently
in areas lacking power supply. OESS enables trains to capture RBE immediately and store
it in real time. It also allows the train to utilize this energy as soon as needed. Batteries
and supercapacitors are commonly applied in OESS [24]. However, it is regarded that high
input and output power models are only sometimes feasible for battery energy systems
to operate at [25]. In the meantime, OESS introduces an extra burden on the train along
with more energy consumption [26,27]. In addition, the converter is a massive burden
on driving range and design as well [28]. Ahmad proposed a chopper topology that re-
duces mass and volume with high chopper efficiency [29]. Miyatake investigated electric
double-layer capacitors as an OESS due to their high energy density. A mathematical
model is formulated using a widely applicable optimization technique known as sequential
quadratic programming, which can determine optimal acceleration/deceleration and cur-
rent commands at each sampling point, maintaining fixed transfer time and distance [30].
Wu introduced OESS with on-route constraints to model the real-world scenario. Based on
the proposed MILP model, degradation of the OESS influences discharge/charge strategy,
and the energy consumption is reduced by 11.6% with the introduction of OESS recovering
RBE [31]. González-Gil considered Lithium-ion battery (LIB) and nickel-metal hydride
(NiMH) batteries as viable options for OESS [8]. In addition, Pulazza proposed that the
energy transmission congestion resulting from renewable energy can be managed by in-
stalling OESS, which proves the advantage of the installation of OESS [32]. Similarly,
different types of OESS are also applied in commercial operation [33–39].

On the other hand, the application of OESS improves the efficiency of train power
delivery because the energy does not need to be delivered through the catenary to a SESS
but is embedded directly in the train itself. It is important to note that this does not mean
that SESS is useless. Combination applications of SESS and OESS are usually installed in
smart grids, microgrids, wind farms, etc. [25,40,41]. The cooperation between SESS and
OESS is just part of this paper’s proposal. They can work together to optimize the recovery
and utilization of RBE throughout the rail transit system. OESS can capture energy quickly
on the train, while SESS can distribute stored energy more evenly throughout the rail
network to be shared and utilized when needed. Considering that the weight of OESS
influences the energy consumption of the train, LIB is adopted as OESS. From a cost–benefit
perspective, due to the introduction of OESS, the quantity and capacity of all the SESSs will
be decreased, compared with the case only equipped with SESS [42], leading to substantial
gains in energy savings and electricity cost reduction [43].

Besides the concern of SESS and OESS, capacity optimization of ESS is of great sig-
nificance. Pang applied NSGA-II to address the capacity configuration of Energy-Storage
Systems (ESS) in rail transit, considering two objectives: minimizing braking resistor en-
ergy consumption and configuration cost [44]. Similarly, Mundra also takes advantage
of NSGA-II, achieving dual-objective optimization for the peak-to-average ratio of the
total energy demand and electricity usage charge in smart grid [45]. On the other hand,
Qayyum adopted PSO to minimize the nano grid energy trading cost while meeting energy
demand [46]. Meanwhile, Li utilized Improved Particle Swarm Optimization (IPSO) to
balance system economy and stability in the distribution grid [47]. On the other hand, to
enhance the coordination between Transit-Oriented Development (TOD) and station-area
land use in developing a potential city transit, Pishro employed Multiple Linear Regres-
sion (MLR) to establish Node–Place–Ridership–Time (NPRT) equations. This approach
surpasses the accuracy of the earlier Node–Place (NP) and Node–Place–Ridership (NPR)
models, delivering more precise outcomes [48]. Similarly, Pishro develops eight Multiple
Linear Regression (MLR) equations for each hub by combining mathematical techniques
and machine learning. It yields valuable insights that guide decision-making and facilitate



Energies 2024, 17, 1426 4 of 18

the development of transportation systems [49]. Boukerche proposed machine-learning
(ML)-based methods for building traffic-prediction models that are less restrictive to the
prediction task as they require less prior knowledge of the relationships between different
traffic modes and can better fit the nonlinear features in the traffic data [50]. Hitachi created
and implemented an AI-driven hybrid railway traffic-management system to aid in the
automation of the intricate process of planning train schedules [51]. Essien suggested a
novel urban traffic-prediction model using deep learning. The model integrates insights
from tweets along with traffic and weather data to enhance accuracy and reliability in
predicting urban traffic patterns [52].

All in all, this paper adopts HESS configuration as SESS, combining high-power-
density ESS, SMES, and high-energy-density ESS, LIB. To explore the combination of SESS
and OESS in rail transit energy management, OESS utilizes LIB. To optimize the ESS
capacity, minimize redundancy, and balance trade-offs between multi-objectives, cost, and
energy consumption, NSGA-II is applied [53]. This is because of its ability to achieve a
notably enhanced distribution of solutions and improved convergence closer to the Pareto-
optimal front across various problem scenarios. The Parallel Computing Toolbox has been
introduced to save computation time.

2. Methodology
2.1. Topology

A practical simulation of the SESS in rail transit involves designing a specific network
configuration, as depicted in Figure 1. In this setup, three trains with OESS travel from
Station A to Station E, while another three trains with OESS travel in the opposite direction,
from Station E to Station A. The entire operation adheres to a predefined timetable, outlined
in Figure 2. There are two substations strategically placed along the railway line. Each
substation is equipped with a SESS comprising a SMES and a set of LIBs in parallel.

Figure 1. Topology of the Railway.

Figure 2. Timetable.

The simulation encompasses modeling the feeding system, trains, and substations. It
is worth mentioning that the feeding system presents the connected nodes adopting the
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term “tie nodes”. This approach offers a significant benefit as it eliminates the necessity
for a comprehensive modification of the circuit topology whenever there is a change in the
feeding system, as depicted in Figure 3. The tie nodes can make the different node voltages
identical to connect the feeders for different directions under the substations. This technique
enables simple modeling of feeding circuits and avoids using the conductance matrix. On
the other hand, the train model is constructed by voltage, current, and notch. The notch
simulates a driver’s or Automatic Train Operation’s (ATO) command to accelerate or
decelerate. The whole operation is based on a timetable. In the meantime, the substation
model is represented by current and voltage. It is detailed in Reference [54].

Figure 3. Circuit Topology.

2.2. NSGA-II

Non-dominated Sorting Genetic Algorithm-II (NSGA-II) is a multi-objective optimiza-
tion algorithm for solving problems with multiple objective functions. It is an extension
of the genetic algorithm that aims to find a non-dominated (non-inferior) solution in the
objective space and form a Pareto front, i.e., no other solution can outperform this set
of solutions on all objectives. Meanwhile, the fast non-dominated sorting approach is
introduced with significant improvement over the complexity of other algorithms in the
same category. On the other hand, by incorporating elitism, NSGA-II ensures that the best
solutions are carried over to the next generation, improving the convergence towards the
true Pareto-optimal front [53].

The operation of NSGA-II follows the flowchart Figure 4. First, a set of potential
solutions to the optimization problem is generated. These solutions are usually represented
as chromosomes in a genetic algorithm context. Then, for each solution in the population,
the objective functions are calculated, which evaluate how ‘fit’ or ‘good’ the solution is.
Next, the best solutions from the current population to parents are selected to create a
new generation of solutions. Crossover combines two parents to produce children for the
next generation. Mutation introduces random changes to some of the children to maintain
genetic diversity. Finally, the algorithm selects the best solutions based on their fitness,
and these become the new population for the next iteration until there is no significant
improvement between generations or when a satisfactory solution is found. However,
NSGA-II also meets some challenges. In this paper, SESS and OESS capacity allocation are
the solutions. To further optimize the energy management of the transportation system and
discover the balance between investment and energy consumption, NSGA-II is applied.
NSGA-II involves sorting individuals based on non-domination, with a time complexity
of O(MN2), where N is the population size, and M is the number of objectives. This can
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become computationally expensive for large populations or high-dimensional problems.
In the meantime, storing and maintaining the non-dominated fronts over generations can
increase memory usage. Therefore, a server equipped with high computation ability and
large RAM is of great necessity. On the other hand, the algorithm aims to discover and
maintain a diverse set of solutions that approximate the entire Pareto front. However, due
to the complexity of the search space and the inherent characteristics of the optimization
problem, the algorithm might converge to or focus on specific regions of the Pareto front,
forming what is known as local Pareto fronts [55]. One solution combines multiple algo-
rithm runs with different random seeds or initial conditions. The ensemble of runs can
provide more comprehensive coverage of the Pareto front, reducing the risk of converging
to local Pareto fronts.

Figure 4. Flowchart of NSGA-II.

The objective function F consists of two sub-objectives: cost minimum (represented
by f 1) and energy consumption minimum (represented by f 2), shown in Equation (1). In
Equation (2), the composition of cost function f 1 is associated with the number of battery
modules in each SESS (Ki) and each OESS (Kp), as well as the fixed costs for different
components like SMES (costsc), DCDC converters (costdcdc), battery (costbt), and the cost of
electricity (coste). On the other hand, the sub-objective ( f 2) is a measure of the total energy
consumption aggregating the energy supplied across substation (Esub), SESS (Esess), and
OESS (Eoess) associated with the train system. The energy supplied by the substation is
mainly for the train’s operation. The energy supplied from SESS and OESS is calculated by
the difference in energy capacity between the beginning and end of the operation, shown in
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Equations (3) and (4). In addition, the cost of electricity is based on the energy consumption
in all substations, as shown in Equation (5).

Objective : F(Ki, Kp, Esub, Esess, Eoess) = [ f1(Ki, Kp), f2(Esub, Esess, Eoess)] (1)

Sub − Objective :


f1(Ki, Kp) = ∑N

i=1(costsc + 2 × costdcdc + costbt × Ki + coste)

+∑M
p=1(costbt × Kp)

f2(Esub, Esess, Eoess) = Esub + Esess + Eoess

(2)

Esess =
N

∑
i=1

(Esinitiali − Esendi) (3)

Eoess =
M

∑
p=1

(Eoinitialp − Eoendp) (4)

costalle = Esub × coste (5)

Ki: Amount of battery modules in SESS i
Kp: Amount of battery modules in OESS p
i: Order of substations
p: Order of trains
Esub: Energy consumption in all substations
Esess: Energy consumption in all SESS
Esinitiali: Energy stored in SESS i in the beginning
Esendi: Energy stored in SESS i in the end
Eoess: Energy consumption in all OESS
Eoinitialp: Energy stored in OESS p in the beginning
Eoendp: Energy stored in OESS p in the end
N: Amount of substations
costsc: Cost of SMES
costdcdc: Cost of DCDC converter
costbt: Cost of a battery module
costalle: Total electricity fee
coste: Cost of electricity fee per kWh
M: Quantity of trains

Table 1 outlines the predetermined parameters on which the algorithm runs.

Table 1. NSGA-II Parameter Settings.

Setting Value

Amount of Population 30
Amount of Variable 5
Variable Range [1100]
Iteration Count 40
Selection Strategy Binary Tournament
Crossover Strategy Simulated Binary
Crossover Factor 20
Crossover Probability 100%
Mutation Strategy Polynomial
Mutation Factor 20
Mutation Probability 20%

Table 2 [56], Tables 3 and 4 provide specifics of the predetermined parameters for train,
costs, SESS, and OESS. Specifically, the operating period is set at 30 min, from 2 p.m. to
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2:30 p.m., under the timetable outlined in Figure 2. This timetable dictates when trains
travel between stations, ensuring that the simulation accurately reflects the timing and
scheduling constraints of an actual railway system. Within 30 min of simulation, three
trains with OESS travel from Station A to Station E, while another three trains with OESS
operate in the reverse way. The schedule influences the operation of these substations,
as they must manage the energy flow to and from the trains according to their arrival
and departure times. These parameters play a crucial role in the simulation, influencing
the capacity allocation, cost assessment, and energy consumption within the specified
time frame.

Table 2. Specifications for Train.

Setting Value

Mass 310.4 (tons)
Occupant Capacity 60%
Braking Mechanism Regenerative braking
Terminal velocity in Constant Torque 50 (km/h)
Terminal velocity in Constant Output 80 (km/h)
Max Acceleration Rate 2.5 (km/h/s)
Max Deceleration Rate 3 (km/h/s)
Nominal Voltage 1500 (V)
Max Regenerative Current 3000 (A)
Starting/Cutoff Voltages for Regenerative Current Restriction 1750 (V), 1800 (V)

Table 3. Initial Investment.

Expenditure Value

SMES Module 50,000,000 (JPY) [57]
Battery Module 645,337 (JPY)
DCDC Converter Module 4,302,250 (JPY)
Electricity Cost 15.65 (JPY/kWh) [58]

Table 4. Specifications for SESS and OESS.

Setting Value

Inductance of SMES (L) 0.1 (H)
Maximum Superconductor Current Limit (Isc_max) 3000 (A)
Initial Superconductor Current (Isc) 2625 (A)
Minimum Superconductor Current Limit (Isc_min) 2250 (A)
DCDC Converter Efficiency 95%
Battery Output Power (P) 500 (W)
Battery Capacity 10 (Ah)
Initial Battery State of Charge (SOC) 50%
SOC Limit 30–80%

It is worth mentioning that the deceleration corresponds to a stop in the power supply
to the motors. However, as the train continues to move with inertia, the axle reacts on the
motor rotor to produce an induced current due to electromagnetic induction, i.e., the motor
becomes a generator. At the same time, the torque generated by the rotation of the drive
motor acts on the wheels to slow down the vehicle, which is called regenerative braking [59].
Utilizing the electrical energy generated by electromagnetic induction is called regenerative
braking energy recovery. In the meantime, due to the regenerative energy output, the
pantograph voltage increases. To avoid unpredictable damage to the catenary-connected
appliances, which cannot withstand voltages exceeding the rated value, the regenerative
current restriction is conducted in accordance with the catenary voltage, shown in Figure 5
and Table 2. In addition, the RBE is first consumed by auxiliary applications. If the auxiliary
application cannot consume all RBE, then the OESS stores most of the RBE to power
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the train in the next acceleration. The excess RBE that OESS cannot store transmits and
stores in nearby SESS. Calculation of the distance between the train and SESS induces the
nearest SESS. By sizing capacity and allocating priority of OESS and SESS based on the
train’s energy demand and operational state, utilization of RBE is fully optimized, energy
consumption decreases, and the system’s economic benefit is enhanced.

Figure 5. Regenerative Current Output Control.

3. Results and Discussion

In this study, MATLAB is employed as the simulation tool for modeling rail transit
scenarios. Meanwhile, the Parallel Computing Toolbox and a server equipped with an
AMD Ryzen Threadripper 3970X 32-Core CPU and 64 GB of RAM are applied to save
simulation time. The cases under examination are categorized into five parts.

3.1. Case A

Neither SESS nor OESS is introduced into the rail transit system in Case A. The
topology is depicted in Figure 6, and the predefined parameters for substations, trains, and
capital costs are detailed in Tables 2–4. The operation period is 30 min from 14:00 to 14:30,
according to the timetable shown in Figure 2. The simulation results are shown in Figure 7
and Table 5. The cost only consists of the electricity fee.

Table 5. Case A: Simulation Result of Railway System without ESS.

Energy Consumption Cost Capacity of All SESSs Capacity of All OESSs

1196.28 (kWh) 18721.84 (JPY) 0 (kWh) 0 (kWh)

Figure 6. Topology of the Railway without ESS.
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Figure 7. Cases Comparison: A and B.

3.2. Case B

In Case B, only SESS is integrated, and the capacity of all LIBs is tailored through
customization using NSGA-II. The energy consumption varies from 1183.63 to 1187.47 kWh.
The cost varies from 1.04 × 108 to 5.56 × 107 JPY. They are shown in Figure 7. On the other
hand, the capacity distribution is depicted in Figure 8. Clearly, with the integration of SESS,
the more the investment increases, the more energy is saved. However, energy savings are
not apparent with a double investment. It was analyzed that there was a transmission loss
from the regenerative braking device to SESS. At the same time, the SMES’s capacity is
fixed and limited due to its complicated construction to optimize its capacity.

Figure 8. Case B: Capacity Distribution and Energy Consumption.

3.3. Case C

In Case C, both SESS and OESS are implemented in rail transit. Simultaneously, the
capacities of LIBs for both SESS and OESS are optimized for uniformity through NSGA-
II. Energy consumption varies from 1054.72 to 1111.30 kWh. And the cost varies from
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1.84 × 109 to 5.94 × 107 JPY. They are depicted in Figure 9. Meanwhile, the relationship
between capacity distribution and energy consumption is presented in Figure 10. Compared
with case B, with the introduction of OESS, there is approximately 76.2 kWh of energy
saving when the investment is around 5.94 × 107 JPY. And with more investment increases,
there are further energy savings.

Figure 9. Pareto front cases comparison: C,D,E.

Figure 10. Case C: Capacity Distribution and Energy Consumption.

3.4. Case D

In Case D, both SESS and OESS are installed. However, due to the difficulty of equip-
ment manufacturing, the SESS capacities may vary between stations, while OESS capacities
remain uniform across all trains. Consequently, only SESS LIB capacities undergo cus-
tomization, while OESS LIB capacities are optimized for uniformity. Energy consumption
varies from 1056.48 to 1110.50 kWh. And the cost varies from 6.60 × 108 to 7.05 × 107 JPY.
They are depicted inFigure 9. Simultaneously, the relationship between capacity distribu-
tion and energy consumption is presented in Figure 11.
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Figure 11. Case D: Capacity Distribution and Energy Consumption.

3.5. Case E

In Case E, similarly, both SESS and OESS are installed, but as a comparison, the
capacities of LIBs for both SESS and OESS undergo customization using NSGA-II. Energy
consumption varies from 1045.70 to 1088.83 kWh. And the cost varies from 3.74 × 108 to
1.33 × 108 JPY shown in Figure 9. On the other hand, the relationship between capacity
distribution and energy consumption is presented in Figure 12. With the application of
SESS and OESS, energy consumption decreased. It is noticeable that compared with OESS,
the capacities of SESSs vary relatively flat in different cases. It further proves that the
capacities of OESSs play a significant role in saving energy and investment.

Figure 12. Case E: Capacity Distribution and Energy Consumption.
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3.6. Cases Comparison

Table 6 summarizes the case comparison in configuration, impact on energy saving,
and cost. As illustrated in 3.2 Case B, introducing SESS (Capacity Customization) has a
limited impact on energy saving. On the contrary, the cost increased significantly, which is
not a beneficial solution for rail transit construction.

Table 6. Cases Configuration and Impact Comparison.

Case Configuration Impact on Energy Saving Impact on Cost

A No SESS or OESS Baseline for comparison Baseline for comparison

B Only SESS integrated Limited energy savings Increased due to SESS investment

C SESS and OESS with uniform capacities Notable energy savings Highest cost suggesting redundancy

D SESS with customized capacities and uniform OESS Notable energy savings A balance in cost

E SESS and OESS with customized capacities Notable energy savings Lowest cost. Not practical in
manufacturing train

Comparing Cases C, D, and E reveals that including OESS alleviates the rail transit’s
reliance on SESS capacity for energy management. Moreover, despite the increased invest-
ment, more energy savings are achieved compared to Case B. It is noteworthy that when
energy consumption is similar in Cases C, D, and E, Case E incurs the highest cost among
the three. This suggests potential redundancy in the Energy-Storage Systems (ESS) capacity.
Conversely, Case D, which pragmatically optimized SESS and OESS capacity, presents a
more reasonable outcome.

Moreover, the depicted Figure 13 demonstrates that with the introduction of the
utilization rate of RBE into energy-cost Pareto front of Case D, as cost rises, the utilization
rate of RBE also increases in a trend, therefore promoting efficient energy management.
Additionally, Figure 11 represents the SESS1, SESS2, and OESS’s capacity proportion in
each optimal non-dominated solution of Case D, named Case 1 to Case 30. It is clear that
the capacity of SESS1 and SESS2 have a minimal impact on the RBE utilization rate. Instead,
the OESS predominantly plays a crucial role in recovering RBE. Therefore, by optimizing
the capacities and configurations of SESS and OESS, rail transit systems can significantly
reduce energy consumption and operational costs. In particular, the uniform capacity of
each OESS should be two to three times the average capacity of each SESS.

Figure 13. Case D: Cost Energy Regenerative Braking Energy Utilization rate.
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4. Conclusions

Through the capacity optimization of LIB using NSGA-II, the integration of SESS
proves effective in recovering RBE. Nearly 30 kWh is saved within 30 min of operation. In
the meantime, the HESS configuration of SESS, combining SMES and LIB, ensures rapid
response and high power exchange while providing a relatively large energy storage capac-
ity to store regenerative braking energy. Furthermore, the collaborative implementation
of both SESS and OESS emerges as a superior strategy for recycling. This approach not
only achieves significant energy savings (approximately 100 kWh) but also demonstrates a
mutually beneficial outcome for both energy consumption and investment efficiency within
30 min of operation.

Particularly noteworthy is the vital role played by OESS in this integrated system. The
capacity of OESS is recommended to be two to three times that of SESS. The OESS empha-
sizes its significance in realizing a win–win scenario for optimizing energy consumption
and investments in the rail transit system.

5. Possible Directions for Future Studies

The findings of our study on the coordination of SESS and OESS in rail transit for
achieving multi-objective optimization in energy and cost suggest several promising av-
enues for future research. In this section, we outline challenges and potential directions for
further investigation based on the insights gained from our study.

5.1. Optimization of SMES Capacity

Unlike conventional battery-based ESS, SMES presents unique challenges due to its
complexity. A possible exploration is optimizing SMES’s capacity within the rail transit
operations. By delving deeper into determining optimal SMES capacity parameters, re-
searchers can refine energy management strategies and maximize cost savings. Future
studies could employ advanced optimization techniques to systematically evaluate the im-
pact of varying SMES capacities on system performance metrics, such as energy efficiency
and operational costs.

5.2. Application and Comparison of Different Energy-Storage Systems (ESSs)

Comparative studies involving diverse Energy-Storage Systems (ESSs) offer another
avenue for exploration. By evaluating the performance of different ESS technologies, such
as lithium-ion batteries, flywheels, and compressed air energy storage, researchers can
identify the most suitable solutions for specific rail transit applications. Future research
could involve comprehensive assessments of each ESS type under varying operating
conditions, considering factors such as energy capacity, response time, and lifecycle costs.
Furthermore, conducting sensitivity analyses and scenario-based simulations can provide
valuable insights into the robustness and resilience of different ESS technologies in real-
world deployment scenarios.

5.3. Validation Experiment

Validation experiments represent a critical step toward confirming the efficacy and
feasibility of proposed coordination strategies in practical settings. Future research efforts
could focus on conducting field trials and pilot implementations to empirically validate
the performance of the developed models and methodologies. Researchers can gain access
to real-world data and infrastructure by collaborating with industry partners and transit
agencies, facilitating the validation process.
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Abbreviations
The following abbreviations are used in this manuscript:

RBE Regenerative Braking Energy
ESS Onboard Energy-Storage Systems
ESS Stationary Energy-Storage Systems
NSGA-II Non-dominated Sorting Genetic Algorithm-II
HESS Hybrid Energy-Storage Systems
SMES Superconducting Magnetic Energy Storage
PSO Particle Swarm Optimization
LIB Lithium-ion Battery
NiMH Nickel-Metal Hydride
IPSO Improved Particle Swarm Optimization
ATO Automatic Train Operation
L Inductance
Isc Initial Current in Superconductor
Isc_max Upper Limit of Current
Isc_min Lower Limit of Current
SOC Initial State of Charge for Battery
Ki Quantity of battery modules in each SESS
Kp Quantity of battery modules in each OESS
i Order of substations
p Order of trains
Esub Energy consumption in all substations
Esess Energy consumption in all SESS
Esinitiali Energy stored in SESS i in the beginning
Esendi Energy stored in SESS i in the end
Eoess Energy consumption in all OESS
Eoinitialp Energy stored in OESS p in the beginning
Eoendp Energy stored in OESS p in the end
N Quantity of substations
costsc Cost of SMES
costdcdc Cost of DCDC converter
costbt Cost of battery per module
costalle All cost of electricity fee
coste Cost of electricity fee per kWh
M Quantity of trains
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