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Abstract: Water electrolysis to generate green hydrogen is the key to decarbonization. Tracking
the state-of-health of electrolyzers is fundamental to ensuring their economical and safe operation.
This paper addresses the challenge of quantifying the state-of-health of electrolyzers, which is
complicated by the influence of operating conditions. The existing approaches require stringent
control of operating conditions, such as following a predefined current profile and maintaining a
constant temperature, which is impractical for industrial applications. We propose a data-driven
method that corrects the measured voltage under arbitrary operating conditions to a reference
condition, serving as a state-of-health indicator for electrolyzers. The method involves fitting a
voltage model to map the relationship between voltage and operating conditions and then using
this model to calculate the voltage under predefined reference conditions. Our approach utilizes an
empirical voltage model, validated with actual industrial electrolyzer operation data. We further
introduce a transfer linear regression algorithm to tackle model fitting difficulties with limited data
coverage. Validation on synthetic data confirms the algorithm’s effectiveness in capturing the true
model coefficients, and application on actual operation data demonstrates its ability to provide stable
state-of-health estimations. This research offers a practical solution for the industry to continuously
monitor electrolyzer degradation without the need for stringent control of operating conditions.

Keywords: hydrogen; electrolyzer; degradation; condition monitoring; state-of-health; transfer
learning

1. Introduction

Environmental urgency is pushing governments toward a radical rethinking of carbon-
intensive energy supply and storage. To this end, electrolysis technology producing H2 from
renewable energy represents a potential solution for a reliable and flexible decarbonization
of modern industry.

Electrolysis systems use electricity to convert water molecules into hydrogen and
oxygen. This process undergoes performance degradation over time. One of the direct
consequences of degradation is the voltage increase, because a higher voltage needs to be
applied to the electrolyzer to maintain hydrogen production [1]. Consequently, this implies
a lower efficiency in hydrogen generation. In addition, degradation poses safety risks.
For example, high voltage causes high heat release, potentially damaging the auxiliary
equipment within the electrolysis system [2]. Therefore, continuously tracking the state-
of-health of electrolyzers is crucial. It not only reveals their efficiency, enabling dispatch
optimization, but also facilitates effective maintenance planning to assure safe operation.

There are two types of state-of-health indicators for degradation state quantification:
physical and synthetic indicators [3]. Examples of physical indicators include

• for batteries: capacity [4], characteristics of the discharge capacity curve [5], charging
duration for a predefined voltage range [6], normalized voltage [7];
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• for fuel cells: normalized voltage [8], internal resistance [9];
• for gas turbines: normalized power output [10];
• for rolling bearings: root mean square of vibration signals [11], maximum power

spectral density [12].

In contrast to physical state-of-health indicators, synthetic indicators do not have clear
physical meanings. They are obtained through statistical techniques such as multiple linear
regression—linearly combining multiple sensor measurements [13,14], principal compo-
nents analysis—reducing the original multi-dimensional input data to a small number
of variables that capture patterns in the data [15,16], and autoencoders—using a neural-
network-based model to learn features in an unsupervised manner [17,18].

For electrolyzers, studies have been relying on rigorously controlled experiments to
obtain physical state-of-health indicators. This is because although degradation causes a
voltage increase, the measured voltage cannot be directly used as a degradation indicator
due to its dependency on operating conditions (such as current and temperature). Hence,
to accurately quantify degradation, the operating conditions must be rigorously regulated.
The most commonly used degradation indicator is the polarization curve—a curve that
plots the electrolyzer voltage against current densities [19]. The curve is obtained by mea-
suring the voltage at different current densities under constant temperature and pressure.
It provides information on the reaction kinetics, ohmic resistance, and mass transportation
resistance of the electrolyzer. This method was applied in [20] to analyze the degradation
caused by iron ions and in [21] to investigate the impact of intermittent operation. Other
electrolyzer degradation characterization techniques include electrochemical impedance
spectroscopy to investigate the high-frequency and low-frequency resistance, as well as the
current interrupt technique to determine the ohmic resistance [22].

However, such experiment-based approaches have three main drawbacks for in-
dustrial applications. First, they do not provide continuous degradation quantification.
Instead, such tests can only be performed sporadically, for example, on the demands of
the electrolyzer owner. Second, they require the operation of the electrolyzer following
a predefined procedure, which might conflict with other operational constraints and is
time-consuming. Third, it is difficult to ensure that the tests run under strictly comparable
and reproducible conditions. A small deviation, for example, of only 1 ◦C in temperature,
can already cause a large measurement bias.

To overcome the limitations of such experiment-based approaches, we propose a data-
driven degradation estimation method that corrects the measured voltage to the reference
condition (Uref). This is achieved by first building a model that maps the relationship
between the voltage and operating conditions, then using the fitted model to calculate the
voltage under the reference condition (Figure 1). However, this method faces challenges
when the data coverage is limited, as illustrated in Figure 2b. In such cases, the relationship
between voltage and operating conditions is ambiguous, causing unstable Uref estimations.
(See Section 2 for a detailed problem description).

The approaches to address the limited data coverage can be broadly classified into
data- and model-level approaches. Data-level approaches involve adding new data. This
can be achieved by identifying the data gap and then collecting additional data in a targeted
manner for the underrepresented group [23]. However, such data collection is only possible
if one has control over the data source. Another way to add new data is to generate synthetic
data with data augmentation techniques. This has been widely used for image data [24] but
is less researched for time-series data [25], especially for multivariate time-series data [26].
Demir et al. [26] proposed using autoencoders, variational autoencoders, and generative
adversarial networks (GAN) to augment multivariate time-series data. However, training
such neural network-based algorithms on a daily basis—a typical frequency for machine
health monitoring—is computationally expensive. Therefore, data augmentation is not
a suitable solution for our use case, which is based on multivariate time-series data and
requires a daily update.
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Model-level approaches use the limited data to train a model without altering the
dataset. (For classification problems, this is named few-shot learning [27]). One technique
is transfer learning. It transfers a model trained with abundant data from the source
domain to the target domain with limited data [28]. Most transfer learning studies are
for neural-network-based models [28], which are computationally expensive and not
easily explainable. The lack of explainability is a huge barrier for industrial applications
due to safety concerns [29]. However, transfer learning for simple, transparent models
such as linear regression is much less explored. Chen et al. [30] made a step toward this
direction. They developed a data-enriched linear regression algorithm, which built a linear
regression model for a small dataset with the help of a large dataset. These two datasets
have similar, but not identical, statistical characteristics. This algorithm is the basis for our
study and is introduced in detail in Section 3.1. Gross and Tibshirani [31] extended the
data-enriched linear regression algorithm to a data shared lasso algorithm, which can build
linear regression models simultaneously for multiple datasets. Bouveyron and Jacques [32]
introduced a family of transformation models in which the regression coefficients of the
target dataset originate from a linear transformation of the coefficients for the source dataset.
The most suitable transformation model was selected based on the criteria, including cross-
validation error. Dar and Baraniuk [33] focused on over-parameterized linear regression
models and analyzed the generalization error with respect to factors such as the number of
free parameters. Obst et al. [34] highlighted the fine-tuning technique for transferring a
linear regression model and proposed a metric to quantify the benefit of transfer.

This study applies transfer learning to train an empirical linear voltage model over
time to provide continuous state-of-health indicators for industrial electrolyzers. Our
contributions include

• voltage under the reference condition (Uref) as a state-of-health indicator for electrolyz-
ers operated under arbitrary conditions,

• an empirical model for electrolyzer voltage validated with the operation data of
industrial electrolyzers,

• a transfer learning algorithm for linear regression models,
• iterative application of the algorithm to time-series data for continuous state-of-health

estimation for industrial electrolyzers.

Figure 1. Calculate the state-of-health indicator Uref from operation data. Step 1: fit a voltage model
for each interval. Step 2: use the fitted model to calculate Uref with the predefined reference condition.
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Figure 2. Case (a): I covers a wide range, then the U-I relation can be well modeled so that Uref can
be estimated. Case (b): I varies within a limited range, then the U-I relation is ambiguous, causing
uncertain Uref estimation.

The remainder of this paper is organized as follows. Section 2 introduces the empirical
voltage model used in this study and demonstrates the difficulty in model fitting with
limited data coverage. Section 3 presents the proposed transfer linear regression algo-
rithm to address the problem of limited data coverage. Section 4 evaluates the proposed
algorithm using synthetic and actual industrial operation data. Section 5 discusses the
validity of the voltage model and the potential of including prior degradation knowledge
from other electrolyzers. Section 6 summarizes the contributions and points out future
research directions.

2. Problem Description

In this section, we explain in detail the difficulty of state-of-health estimation for
industrial H2 electrolyzers under a limited operation range. We first introduce the industrial
operation data used for this research (Section 2.1), then, an empirical model for electrolyzer
voltage (Section 2.2). In the end, we show that the model coefficients cannot be well
identified when the operation range is limited (Section 2.3).

2.1. Operation Data of an Industrial Electrolyzer

The electrolyzer operation data used in this study are from an industrial proton ex-
change membrane (PEM) multicell electrolyzer stack, with a nominal power above 0.5 MW.
It is operated under atmospheric pressure, around 60 ◦C. The temperature variation during
normal operation is within several degrees. It is operated at medium current density, result-
ing in a linear voltage–current relationship. The operation profile is not standardized but
business-driven, which includes periods of volatile and constant operation. The analyzed
data cover a duration of 2 years with a 1-min. resolution. The following measurements are
used in this study. Due to confidentiality reasons, more detailed technical specifications
cannot be provided.

• Voltage: the average of the single-cell voltages of all electrolyzer cells in a stack,
measured with sensors attached to the bipolar plate of each cell.

• Current: the direct current (DC) output of the rectifier supplying power to the elec-
trolyzer stack.

• Temperature: the average stack temperature derived from the mean of the inlet and
outlet temperature measurements.

This study focuses on voltage as the degradation indicator for electrolyzers, because it
is widely used and easily measurable. There are other possible degradation indicators, such
as hydrogen production rate, gas purity, and fluoride release rate, but they are either related
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to voltage degradation or difficult to measure in industrial setups. This limits the choice of
degradation indicators. However, if another easily measurable degradation indicator is of
interest, our proposed method in Section 3 can still be applied, as long as the indicator can
be expressed in a linear form similar to the Equation (1).

2.2. An Empirical Model for Electrolyzer Voltage

As shown in Figure 1, the first step to derive Uref is to fit a voltage model. There are
different types of models for electrolyzer voltage, from simple empirical equations describ-
ing voltage as a linear function of current [35,36] to physics-based models considering
detailed electrical and thermal effects [37,38]. Empirical models often have simple model
structures. The disadvantage is that they are only accurate for a certain operating range and
electrolyzer design [39]. In contrast, physics-based models have complex model structures
based on physical laws. The disadvantage is that the parameters are difficult to determine.

Since this study focuses on industrial electrolyzers, which are typically designed for a
specific operation range, it is not necessary to use an intricate physics-based model. Instead,
a model that effectively describes the voltage within the typical operation range is sufficient.
Therefore, a simple linear empirical voltage model is adopted:

U = c1 I + c2T + c3 ln(OH) + c4 (1)

where voltage (U) is a linear function of current (I), temperature (T), and the natural
logarithm of operating hours since the last start (OH). c1–c4 are unknown coefficients that
need to be fitted for each interval (Step 1 in Figure 1).

This model is developed by analyzing the operation data of an industrial electrolyzer
(Section 2.1). We examined multiple operation intervals with different characteristics. Three
examples are shown in Figure 3: (a) constant operation with several starts, (b) volatile
operation, and (c) a mixture of constant operation, volatile operation, and starts. The
examined intervals have a duration of several days. The operation data are resampled to a
1-min. resolution. The data beyond the normal operation range (e.g., data during standstill,
data with extremely low or high current) are excluded. The proposed empirical model (1)
is tested on each examined interval; it is trained with 75% of the data and evaluated on the
remaining 25% of the data. The results show that the model can accurately describe the
voltage with mean squared errors (MSE) at magnitudes of 10−5 or 10−6. Further discussion
on the validity of this model can be found in Section 5.1.

(a) (b) (c)

Figure 3. Model electrolyzer voltage with Equation (1) for three exemplary intervals with different
operation characteristics. For confidentiality reasons, the scales are hidden. (a) Interval with constant
current input and several starts. MSE: 8.0 × 10−5. (b) Interval with strongly volatile operation. MSE:
1.1 × 10−5. (c) Interval with a mixture of constant operation, moderately volatile operation, and starts.
MSE: 1.4 × 10−6.
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The unknown coefficients c1–c4 need to be fitted for each interval (Step 1 in Figure 1).
After that, we can calculate the voltage under the predefined reference operating condition
(Step 2 in Figure 1) with

Uref = c1 Iref + c2Tref + c3 ln(OHref) + c4, (2)

where the subscript “ref” denotes the reference condition. The Uref can then be used
as a state-of-health indicator for H2 electrolyzers because the influence of the operating
conditions on the voltage is removed by statistically correcting the measured voltage to the
reference condition.

2.3. Limited Operation Range

Now we examine the distribution of the actual operation data. Figure 4 shows the
voltage–current distribution of three 24-hour intervals. First, it is observed that the slope
changes, which is clear evidence of degradation. This requires the model (1) to be updated
regularly to capture the change. In addition, the data spread is different. This is a major dif-
ference between industrial operations and laboratory experiments. Industrial electrolyzers
are controlled by the operator based on their business needs, without a predefined pattern.
Any operation pattern, such as with constant current input (example day 2) or with varying
current input (example day 1 and 3), could occur. Time intervals similar to example day
2, in which the operation range is very limited, can make model fitting cumbersome, as
illustrated in Figure 2b. This problem applies to all the right-hand-side variables I, T, and
ln(OH) in the model (1).

To further demonstrate the problem of the limited operation range, we fit the model
(1) on each day independently without applying any transfer learning technique. Figure 5
shows that the fitted coefficient c1 increases in general, which aligns with our physical
understanding of degradation, but the coefficient at periods with constant current in-
put (similar to example day 2 in Figure 4) cannot be easily identified due to the limited
data coverage.

Figure 4. Voltage–current distribution of three example days. Voltage is a function of several variables.
To simplify the visualization, only the electric current is plotted on the x-axis here.
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As mentioned in Section 1, transfer learning can mitigate the problem of limited data
coverage. In the next section, we introduce the transfer linear regression algorithm that
uses a fitted voltage model to assist the model fitting process.

Figure 5. The linear coefficient for current (c1) cannot be well estimated during constant operation
periods. For confidentiality reasons, the coefficient is shown on a percentage scale.

3. Method

The transfer linear regression (TLR) algorithm is inspired by the data-enriched linear
regression algorithm proposed in [30]. This is introduced first as the foundation for the
TLR algorithm.

3.1. Data-Enriched Linear Regression

The data-enriched linear regression algorithm was proposed by Chen et al. in 2015 [30].
It aims to build a linear regression model for a small dataset with the help of a second large,
but possibly biased, dataset. This use case is very similar to ours, as our main purpose is to
build a model for intervals with a limited operation range (the small dataset) with the help
of historical data that cover a larger operation range but have another degradation state
(the second large but biased dataset), and our base model (1) also has a linear form.

As illustrated in Figure 6a, the data-enriched linear regression algorithm assumes that
the small dataset follows a linear regression model

Y1 = X1β + ϵ1 (3)

where X1 and Y1 are the independent and dependent variables, β is the linear coefficient,
and ϵ1 is the error. The second dataset follows the model

Y2 = X2(β + γ) + ϵ2 (4)

where X2 and Y2 are the independent and dependent variables, ϵ2 is the error, and the
linear coefficients are shifted by γ. The parameter γ corresponds to the drift and rotation of
the model.

The parameters β and γ are estimated by minimizing the loss function

∥Y1 − X1β︸ ︷︷ ︸
ϵ1

∥2 + ∥Y2 − X2(β + γ)︸ ︷︷ ︸
ϵ2

∥2 + λ∥XTγ∥2︸ ︷︷ ︸
control γ

. (5)
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The first two terms in the loss function are the squared errors of (3) and (4). This is sim-
ilar to the ordinary least squares regression technique, which estimates model coefficients
by minimizing the fitting error. The third term controls the coefficient drift γ. The reason
for controlling γ is to restrict the shape of the model (Figure 6a). Without this controlling
term, the model is unstable when the data coverage is limited (Figure 2b).

Figure 6. Illustration for (a) data-enriched linear regression algorithm and (b) transfer linear
regression algorithm.

Two hyperparameters λ and XT are required to control γ. λ ∈ [0, ∞] controls the
overall size of γ. To provide some further understanding: setting λ = 0 means no constraint
on γ; therefore, β and β + γ are fitted separately with the two datasets; in contrast, setting
λ = ∞ forces γ = 0, which is equivalent to fitting β with two datasets jointly. The second
hyperparameter XT can be used to control each value in the vector γ in detail, but the
paper [30] does not provide concrete instructions on how to construct the XT matrix.

As a result, the estimated parameters β̂ and γ̂, by minimizing the loss function (5), are(
β̂
γ̂

)
= arg min

β,γ
(∥Y1 − X1β∥2 + ∥Y2 − X2(β + γ)∥2 + λ∥XTγ∥2)(

β̂
γ̂

)
= (χTχ)−1χTΥ

where χ =

X1 0
X2 X2

0 λ
1
2 XT

 and Υ =

Y1
Y2
0

 [30].

3.2. Transfer Linear Regression
3.2.1. Mathematical Formulation

The TLR algorithm is a modification of the data-enriched linear regression algorithm
(Figure 6b). The difference is that the data-enriched linear regression algorithm uses two
datasets to estimate two parameters β and γ, whereas the TLR algorithm uses only one
dataset to estimate γ, assuming that the parameter β is already known (e.g., fitted with
historical data or derived from expert knowledge). This setup enables the inclusion of an
existing model without requiring a second database and is computationally cheaper by
handling smaller data matrices.

The TLR algorithm aims to estimate the parameter γ in the equation

Y = X(β + γ) + ϵ,
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where X and Y are the data from the target dataset, and β is already known. Analogous to
the data-enriched linear regression algorithm, the unknown parameter λ can be estimated
by minimizing the loss function

∥Y − X(β + γ)︸ ︷︷ ︸
ϵ

∥2 + λ∥XTγ∥2︸ ︷︷ ︸
control γ

. (6)

This gives

γ̂ = arg min
γ

(∥Y − X(β + γ)∥2 + λ∥XTγ∥2) (7)

= (XTX + λXT
T XT)

−1XT(Y − Xβ). (8)

The derivation process is detailed in Appendix A. The hyperparameters λ and XT control
the size of γ in the same manner as the data-enriched linear regression. Their impacts are
further detailed in Section 3.2.4.

In summary, the TLR algorithm is proposed for state-of-health estimation because

• it can capture the model drift caused by degradation,
• it tackles the problem of limited data coverage due to constant operation,
• it is suitable for a linear model,
• it is computationally efficient by not including a second dataset,
• and its model transfer mechanism is easy to interpret.

3.2.2. Application on Time-Series Data

To realize continuous state-of-health estimation along the lifetime of electrolyzers, we
propose an iterative model fitting process that continuously updates a linear regression
model along a time series. Algorithm 1 shows a minimum example of a time-series
application. Several modifications can be implemented in practice. For example, one
can set λ and/or XT flexibly for each interval instead of fixing a global value for all
intervals; one can also add a fitting quality check for each interval—if the fitting accuracy
is not satisfactory, one can use βi = βi−1 instead of βi = βi−1 + γi (i.e., not updating the
coefficients). Section 4 presents the detailed procedure for the evaluation cases.

Algorithm 1 Apply TLR on time-series data

Input: Initial coefficients β0, hyperparameters λ and XT , time series data X and Y seg-
mented into n intervals (X1, Y1), ... (Xn, Yn)

Output: Coefficients for all n intervals β1, ... βn
for i = 1 to n do

γi = arg min
γ

(∥Yi − Xi(βi−1 + γ)∥2 + λ∥XTγ∥2) (9)

= (XT
i Xi + λXT

T XT)
−1XT

i (Yi − Xiβi−1) (10)
βi = βi−1 + γi (11)

end for

3.2.3. Setting Initial Coefficients β0

Algorithm 1 requires an initial coefficient β0. There are different methods to obtain
β0: it can be derived from the initial time-series data, data from other similar systems, or
expert knowledge. For the evaluation cases in this study (Section 4), β0 is derived from the
initial (first 10%) time-series data.
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3.2.4. Impacts of Hyperparameters λ and XT

Hyperparameters λ and XT need to be set before model fitting. Same as in the data-
enriched linear regression algorithm [30], λ is a constant that controls the overall size of γ.
Its impact can be seen from the following examples of setting extreme values for λ (also
summarized in Table 1):

• Setting λ = ∞ forces γ = 0. This leads to βi = βi−1; that is, the linear coefficients do
not change over time; therefore, we expect high fitting errors along the time series.

• In contrast, setting λ = 0 implies no constraint on the size of γ. Equation (9) becomes

γi = arg min
γ

(∥Yi − Xi(βi−1 + γ)∥2);

that is, γi is estimated freely by minimizing the fitting error. The freedom of γi leads
to the freedom of βi (11), meaning that βi is not influenced by the previous coefficient
βi−1. This is equivalent to independent fitting for each interval. In this case, we expect
fluctuating β and low fitting errors along the time series.

Regarding XT , the original paper on data-enriched linear regression [30] does not
provide concrete instructions on how to construct XT . For TLR, we define XT as a diagonal
matrix with dimensions p × p (p is the dimension of β and γ):XT1

. . .
XTp

.

The term XTγ in (6) and (9) is then XT1γ1
. . .

XTpγp

.

This shows that the diagonal elements XT1 − XTp can control the individual values γ1 − γp
in the vector γ separately. The impact of the diagonal elements XTp is similar to that of λ
(Table 1).

Table 1. Impacts of setting extreme values for hyperparameters λ and XT .

Impact on

Values of
λ or XT p 0 ∞

Coefficient shift γ Not constrained Shrink to 0

Coefficient βi
βi is flexibly fitted with data in
interval i, not influenced by βi−1.

βi = βi−1

Trend of β overtime Fluctuating Constant

Fitting error Low High

Table 1 summarizes the impacts of setting extreme values for λ and XT . It shows that
setting small values for λ and XT results in a low fitting error but fluctuating coefficients,
whereas setting high values has the opposite impact. Balancing the trade-off between the
fitting accuracy and coefficient stability is key to setting proper values for λ and XT . This is
introduced in the following subsections.

3.2.5. Setting λ

As explained above, setting λ involves a trade-off between the fitting accuracy and
coefficient stability. In practice, we can test different λs on multiple intervals and choose



Energies 2024, 17, 1374 11 of 19

a suitable value by observing the coefficient distribution and fitting accuracy. This is
demonstrated in Section 4.

3.2.6. Setting Diagonal Elements in XT

Recall that XTp is a p × p diagonal matrix, and p is the dimension of β and γ, namely,
the number of variables. Table 1 shows that for any variable p, setting XTp = ∞ leads to
βi,p = βi−1,p, i.e., the linear coefficient stays constant along the time series; whereas setting
XTp = 0 leads to flexible βp. That means, if the coefficient for variable p is allowed to
have a large variation, the corresponding XTp should be small. Large variations should be
allowed when

• (a) the coefficient βp varies largely by nature over time.
• (b) the variable p covers a wide range during an interval. (In this case, βp can be easily

identified because of the wide data coverage, so we allow it to be fitted flexibly with
the data. On the contrary, if the variable p covers only a small range in interval i, such
as in example day 2 in Figure 4, we fix βi,p toward βi−1,p).

Applying these principles in the electrolyzer context, we design the XT matrix as in
Algorithm 2. The calculations can also be customized for other use cases.

Algorithm 2 Setting diagonal elements in XT for electrolyzers

1. Following (a): Fit the model (1) for all n intervals. We obtain n coefficients cp,1...cp,n
for each variable p, where p = 1, 2, 3. The variations of cp,1...cp,n represent the expected
variation of βp through time. Calculate the 1st term for XTp, which decreases with the
expected variation of βp over time:

1st term =
1

75th−25th percentile of cp,n

2. Following (b): For each interval i and each variable p, calculate the 2nd term for XTp,
which decreases with the data coverage of Xp:

2nd term =
Normal operation range of variable p

75th−25th percentile of Xp

3. For each interval i and each variable p,

XTp,i = 1st term × 2nd term

4. Evaluation

The TLR algorithm is evaluated in two settings: (1) with synthetic data (Section 4.1),
where the ground truth is known, and (2) with real operation data from industrial elec-
trolyzers (Section 4.2), where the ground truth (measured Uref) is sparsely known due
to volatile operation. In both settings, the TLR algorithm is compared with plain linear
regression (PLR), to highlight the necessity and effectiveness of transfer learning. The TLR
algorithm is executed as shown in Figure 7.
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Figure 7. The execution process of the TLR algorithm. The dashed boxes are only for the evaluation
case with real operation data (Section 4.2).

4.1. Method Validation with Synthetic Data

The synthetic data are generated using the model y = c1x1 + c2x2 + c3 + noise. The
coefficient c1 grows linearly from −50 to 50, c2 grows linearly from 0 to 5, and c3 remains
constant at 5. We simulate 90 intervals, with 100 data points per interval. Each interval
has different variation levels for x1 and x2. x1 varies between 0 and 10 at high variation
intervals, 3 and 7 at middle variation intervals, or 4.9 and 5.1 at low variation intervals. x2
varies between 0 and 100 at high variation intervals, 30 and 70 at middle variation intervals,
or 49 and 51 at low variation intervals. The noise is random within ±5%. The reference
condition is set at x1 = 8 and x2 = 80, so y under the reference condition is calculated with
yref = 8c1 + 80c2 + c3. The synthetic data are shown in Figure 8.

Figure 8. Synthetic data for 90 intervals with various data coverage.
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As described in Section 3.2.5, we test 9 different λ values from 10−6 to 102 (Figure 9).
This range allows us to observe the changes in the coefficient stability and fitting error; as λ
increases, the coefficients become more stable (the heights of the box plots become shorter)
and MSE increases, which aligns with our expectations in Table 1. We select λ = 10 as a
trade-off between coefficient stability and model accuracy.

Figure 9. Different λs ranging from 10−6 to 102 are tested. As λ increases, the coefficients c1–c3

become more stable (the spreads of the box plots become smaller), and fitting error MSE increases,
which aligns with Table 1.

Using the selected λ, we run the transfer linear regression process (Algorithm 1) and
compare the results with PLR (Figure 10). The comparison shows that the TLR algorithm
can capture the true coefficients and yref with significantly smaller errors than PLR. This
demonstrates the effectiveness of the transfer learning technique.

Figure 10. TLR can capture the ground truth with significantly smaller errors than PLR.
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The full process of model validation with synthetic data is available in the Jupyter
Notebook in the Supplementary Material.

4.2. Method Validation with Industrial Operation Data

Now we apply the transfer linear regression algorithm to the actual operation data of
an industrial electrolyzer (Section 2.1). We first fit the empirical voltage model (1) with the
TLR algorithm (Algorithm 1) for each day and then use the fitted model to calculate the
state-of-health indicator Uref (2).

To execute the TLR algorithm (Algorithm 1), the hyperparameter λ needs to be selected.
As described in Section 3.2.5, we test 10 different λ values from 10−8 to 10 (Figure 11). This
range allows us to observe the changes in the coefficient stability and fitting error; as λ
increases, the coefficients become more stable (the heights of the box plots become shorter)
and MSE increases, which aligns with our expectations in Table 1. We select λ = 10−3 as a
trade-off between coefficient stability and model accuracy.

Figure 11. Different λs ranging from 10−8 to 10 are tested. As λ increases, the coefficients c1–c4

become more stable (the spreads of the box plots become smaller), and the fitting error MSE increases,
which aligns with Table 1. For confidentiality reasons, the y-axis scales for the coefficients are hidden.
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Using the selected λ, we run the TLR process (Algorithm 1) and compare the results
with PLR. Figure 12 shows that PLR produces unstable coefficients, which contradicts
the gradual degradation process. This further leads to a fluctuating and inaccurate Uref
calculation in Figure 13 (left). In contrast, the coefficients estimated with TLR evolve much
more smoothly (Figure 12), and the calculated state-of-health indicator Uref is also more
stable and accurate (Figure 13, right). This shows the necessity and effectiveness of the
transfer learning technique in handling actual industrial operation data.

Figure 12. Coefficients fitted with the TLR algorithm evolve smoothly with much less fluctuation
than with PLR. For confidentiality reasons, the coefficients are shown in percentage scale.

Figure 13. Uref calculated with PLR process (left) and TLR process (right) under 3 different reference
conditions. They are compared with the raw data filtered at the reference conditions. Note that the
raw data are only sparsely available because the operating conditions are volatile and rarely at the
reference condition. This is the motivation to derive the health indicator Uref for continuous condition
monitoring. In addition to its sparsity, the raw data also have a different time resolution than the
calculated Uref. Therefore, for calculating MSE, data are first resampled to the same time resolution
and gaps are filled with linear interpolation. For confidentiality reasons, the axes scales are hidden.
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In addition to the methodological comparison between TLR and PLR, we also eval-
uate the quality of Uref derived from TLR against the quality of the actual measurement.
Specifically, the error magnitude in Uref should not exceed that in the actual measurement.
The measurement error of the voltage sensor is below 0.01 V, which translates to a squared
error of 10−4. The MSE of Uref computed with TLR (Figure 13, right) is consistently below
this threshold. This signifies that the overall quality of Uref is satisfactory and within
acceptable bounds.

5. Discussion
5.1. Validity of the Empirical Voltage Model

In this study, we use the empirical voltage model (1) to map the relationship between
voltage and operating conditions. Its simple linear structure ensures rapid computation
and still provides good accuracy for the studied industrial electrolyzers (Figure 3). How-
ever, due to the nature of an empirical model, its accuracy cannot be guaranteed for other
electrolyzer designs or other operation schemes. For example, model (1) implies a linear
relationship between U and I. This is valid for electrolyzers operated at medium cur-
rent density, where the ohmic overpotential dominates, resulting in a linear U-I-relation;
whereas for electrolyzers operated at low current density, where the non-linear activation
overpotential dominates, the non-linear U-I-relation must be considered in the voltage
model. Therefore, the accuracy of this model needs to be checked when it is applied to
other electrolyzer systems. If the accuracy is insufficient, the model needs to be adapted.

5.2. Use Prior Degradation Knowledge to Assist Model Fitting

Although the evaluation cases in Section 4 demonstrate the capability of TLR in model
estimation for varying data coverages, it should be applied with caution if an electrolyzer is
under constant operation for a long period: if a variable has a small coverage in an interval
due to constant operation, the coefficient for this variable tends to be the same as in the last
interval. If such constant operation lasts continuously over a long period, the coefficient
fitted with the TLR process drifts from the true value. To overcome this limitation, one can
try to include prior knowledge (e.g., from the degradation history of similar electrolyzers)
in the fitting process. Prior knowledge can provide additional information that helps to
update the model coefficients even under extensively long periods of constant operation.

6. Conclusions

Tracking the degradation states of electrolyzers is essential for economical and safe
operation. One of the direct consequences of degradation is the increase in voltage. How-
ever, due to the impact of operation conditions, the measured voltage cannot be directly
used as a degradation indicator. The existing approaches to measure degradation (such
as polarization curve tests) require strict control of the operating conditions, and thus, are
impractical for industrial application. To solve this problem, we propose a data-driven
degradation estimation method suitable for industrial H2 electrolyzers operated under
arbitrary conditions.

The key to this method is to convert the measured voltage under arbitrary operating
conditions to a reference condition—Uref. The calculation of Uref consists of two steps:
(1) fitting a voltage model for each interval and (2) using the fitted model and predefined
reference conditions to calculate Uref. An empirical voltage model is used, which is devel-
oped based on the operation data of industrial electrolyzers and can accurately model the
voltage with an MSE at a magnitude of 10−5. The model fitting step can be challenging with
a limited operation range. To address this problem, we propose the TLR algorithm, which
transfers a pre-existing model to the target interval. The essence of TLR is to constrain the
change in the model coefficients, enabling stable estimation of these coefficients even in
intervals with a limited operation range.

The TLR algorithm is first validated with synthetic data, showing that the algorithm
can capture the ground truth with significantly lower errors than plain linear regression.
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The TLR algorithm is also applied to 2 years of actual operation data from an industrial
electrolyzer. The results show that the TLR algorithm can smoothly estimate the coefficients
of the voltage model and provide stable Uref values.

Further research could focus on integrating prior knowledge into the fitting process.
The prior knowledge can be derived from the degradation history of similar electrolyzers.
By integrating prior knowledge, the model fitting relies not only on the fitted model from
the last interval of the same electrolyzer but also on the long-term degradation experience
of multiple electrolyzers. Further research might also explore various empirical models to
attain a more universally applicable yet simple model.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/en17061374/s1, Jupyter Notebook for method validation with
synthetic data (Section 4.1).
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PLR Plain linear regression
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Appendix A. Derivation of Equation (8)

The minimization in (7) can be computed by setting the partial derivative of the loss
function (6) with respect to γ to zero:

∂(∥Y − X(β + γ)∥2 + λ∥XTγ∥2)

∂γ
= 0.

The loss function can be written as

∥Y − X(β + γ)∥2 + λ∥XTγ∥2

= (Y − X(β + γ))T(Y − X(β + γ)) + λ(XTγ)T(XTγ)

= YTY − 2(β + γ)TXTY + (β + γ)TXTX(β + γ)

+ λγTXT
T XTγ.

Its derivative with respect to γ is

∂(∥Y − X(β + γ)∥2 + λ∥XTγ∥2)

∂γ

= −2XTY + 2XTX(β + γ) + 2λXT
T XTγ.

https://www.mdpi.com/article/10.3390/en17061374/s1
https://www.mdpi.com/article/10.3390/en17061374/s1
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Setting it to zero yields

− 2XTY + 2XTX(β + γ) + 2λXT
T XTγ = 0

− XTY + XTXβ + (XTX + λXT
T XT)γ = 0

γ = (XTX + λXT
T XT)

−1XT(Y − Xβ)

This is Equation (8) in the main text.
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