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Abstract: Distribution network scheduling (DNS) is the basis for distribution network management,
which is computed in a periodical way via solving the formulated mixed-integer programming (MIP).
To achieve the online scheduling, a provably robust learn-to-optimize approach for online DNS is
proposed in this paper, whose key lies in the transformation of the MIP-based DNS into the simple
linear program problem with a much faster solving time. It formulates the parametric DNS model to
construct the offline training dataset and then proposes the provably robust learning approach to learn
the integer variables of MIP. The proposed learning approach is adversarial to minor perturbation of
input scenario. After training, the learning model can predict the integer variables to achieve online
scheduling. Case study verifies the acceleration effectiveness for online DNS.

Keywords: distribution network scheduling; learn-to-optimize; online scheduling; machine learning

1. Introduction

To mitigate climate change, the power system supply relies on more renewable gener-
ation. However, the volatility and uncertainty of renewable resources pose new challenges
to the distribution system management. So the increasing penetration of distributed gener-
ation resources in the distribution networks leads to the focus on effective, efficient, and
economic operation of a distribution network. Distribution network scheduling (DNS)
is the basic scheduling technology of the distribution network management based on
optimization research theory. The mathematical form of DNS can be formulated as the
mixed-integer programming (MIP) problem and computed repeatedly daily to support the
safe and economic operation for distribution system operators [1]. To keep the system safe
and economic, DNS is solved for different input scenarios to reach the proper system deci-
sions repeatedly, where the upcoming scenario could be similar to the historical scenario.
However, repeatedly solving MIP for DNS could be time-consuming and energy-wasting,
because solving similar scenarios of DNS requires solving the corresponding MIP, which
is intractable and time-consuming [2–5]. For MIP, due to the complex features of integer
variables, current popular algorithms leverage the idea of branch and bound or benders cut,
and the corresponding solution time is unstable. Compared to MIP, linear programming
(LP) is more easy to solve due to its continuous variables and convex features, which could
be treated as tractable with a stable solution time. The online LP solution is easier than
the online MIP solution. So, to achieve the online scheduling via LP, this paper proposes
predicting the integer variables of DNS and leveraging the advanced machine learning (ML)
methods to learn from the historical solution of DNS for accelerating the similar new DNS
scenario solution, which can achieve the online DNS. The key idea behind online scheduling
lies in reducing the MIP to LP via ML for the effective distribution network scheduling.

There is growing interest in leveraging ML to advancing the solution of optimization
models from the ML area, which is called learn-to-optimize. This area is attracting the
interest from both machine learning areas and operation research areas, which can be

Energies 2024, 17, 1361. https://doi.org/10.3390/en17061361 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en17061361
https://doi.org/10.3390/en17061361
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-2401-7718
https://doi.org/10.3390/en17061361
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en17061361?type=check_update&version=2


Energies 2024, 17, 1361 2 of 13

categorized into two types: (1) learning the values of variables in the optimization models
via complex ML models, (2) and learning part of values of variables in the optimization
models via complex ML models. The dividing and neural branching neural networks are
proposed in Ref. [6] to learn how to branch-and-bound more efficiently by reinforcement
learning approaches. The DeepOPF model is proposed in Ref. [7] to learn the ACOPF
results more efficiently. End-to-end optimization proxies are proposed in Ref. [8] to achieve
a fast economic dispatch. Confidence-Aware Graph Neural Networks are further proposed
in Ref. [7] to learn the system reliability for online reliability assessments. However, the
above work focuses on the learning of optimization results. We focus on combining learning
and optimization for tractable online DNS.

To achieve online DNS in a provably robust way, we propose the provably robust
learn-to-optimize (PR-L2O) approach, whose key lies in the transformation of the MIP-
based DNS problem into the tractable corresponding convex form, where convex problems
are easier than MIP. Concretely, the parametric DNS model is first proposed to map the
input DNS scenarios to the values of MIP integer variables, and the DNS training/testing
datasets are sampled offline from the above offline model. In the model training process,
the provably robust learning approach is utilized to learn and predict the integer variable
values in a provably robust way, which is adversarial to the input scenarios difference.
The benefits of the provably robust learning method lies in the better generalization to
address the vulnerability of machine learning models. After learning, we predict the integer
variables of MIP-based DNS and solve the reduced convex problems. Traditional methods
solve the complex mixed-integer program of DNS directly, and in comparison, the proposed
method utilizes the learning models to identify the values of integer variables in MIP-based
DNS and solve the reduced easy linear programming problem.

We summarize the main contributions of this paper into two parts as follows: (1) Based
on the MIP-based DNS model, this paper investigates the similarity of integer values in
MIP and leverages the historical solutions to facilitate the upcoming solution for online
scheduling. (2) Considering the vulnerability of learning model, the provable robust
learning approach is proposed to learn the mapping between the scenario and integer
variables based on the convex outer bound formulation of the input scenario difference
perturbation, the dual network design, and provably robust loss function design. In
summary, the proposed PR-L2O approach can achieve the solution acceleration and enhance
the benefits of L2O due to data drift between training and testing datasets. The primary
objective of this research is leveraging the machine learning models to enhance the solution
of distribution network scheduling in a provably robust way. Compared to our previous
works [9,10], this paper leverages the provably robust learning [11,12] to achieve the online
regulation [13] with better generalization performance. In contrast, [9] focuses on unit
commitment, and [10] focuses on online voltage regulation without provably robustness
consideration.

The remainder of this paper is organized as follows. Section 2 presents the parametric
DNS formulation. Section 3 proposes the PR-L2O approach for online DNS. Section 4
verifies the effectiveness of this paper by numerical simulation. Section 5 summarizes and
concludes the total paper.

2. Parametric Distribution Network Scheduling Formulation

This section extends the conventional distribution network scheduling to the para-
metric distribution network scheduling (P-DNS) problem [14] and discusses the P-DNS
solving process [15,16], which achieves the mapping from input scenarios to output deci-
sion via MIP in an implicit way [17]. The key of P-DNS lies in achieving the mapping from
the parameters (load) to the optimal decisions via solving the corresponding scheduling
optimization problems implicitly [18–20].
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2.1. DNS Model

Traditional DNS models schedule the distributed energy resources with continuous
and discrete variables to minimize the system operating cost in an optimized way, which is
based on the prediction of uncertain parameters in the distribution network. DNS is usually
formulated as a mixed-integer convex program (MICP) mathematically. Furthermore,
commercial solvers can solve the formulated MICP problems to obtain the optimal decisions
under the various constraints embedded within the advanced algorithms, such as the
branch and bound (B&B) algorithm and bender algorithm.

However, the solving of MICP in DNS is intractable due to the complex features of
integer variables. To tackle this problem, firstly, we consider formulating a basis DNS
model under basic distribution networks with a set G of distributed generators, a set of B
buses, and a set of L distribution lines. DNS models optimize the integer variables si,t and
continuous integer power variables pg,t for the T load-ahead scheduling time-step.

min ∑
g∈G

∑
t∈T

fg(pg,t, sg,t) (1a)

s.t.(pg,t, sg,t) ∈ Gg g ∈ G (1b)

∑
j∈J (i)

pij,t − ∑
h∈H(i)

phi,t = ppv
i,t − pd

i,t, ∀i ∈ NB (1c)

∑
j∈J (i)

qij,t − ∑
h∈H(i)

qhi,t = qsvr
i,t + qcb

i,t + qpv
i,t − qd

i,t, ∀i ∈ NB (1d)

Vj,t = Vi,t −
rij pij,t + xij,tqij,t

V0
, ∀ij ∈ NL (1e)

Vmin ≤ Vi ≤ Vmax, i ∈ NB (1f)

V1,t = Vbase,t(rmin + ∑
s

rsσoltc
s,t ) (1g)

σoltc
m−1,t ≥ σoltc

m , m ∈ [2, Toltc
max] (1h)

Toltc
t = ∑

s
σoltc

s,t , Toltc
t ≤ Toltc

max (1i)

Toltc
t − Toltc

t−1 ≥ σoltc,in
t − σoltc,de

t Toltc
max (1j)

Toltc
t−1 − Toltc

t ≤ σoltc,in
t Toltc

max − σoltc,de
t (1k)

∑
t∈T

(σoltc,in
t + σoltc,de

t ) ≤ Noltc
max (1l)

σoltc,in
t + σoltc,de

t ≤ 1 (1m)

qcb
i,t = qtapTcb

i,t , i ∈ NCB (1n)

Tcb
i,t = ∑

s
σcb

s,t, Tcb
t ≤ Tcb

max, i ∈ NCB (1o)

Tcb
i,t − Tcb

i,t−1 ≥ σcb,in
i,t − σcb,de

i,t Tcb
max, i ∈ NCB (1p)

Toltc
t−1 − Tcb

t ≤ σcb,in
t Tcb

max − σcb,de
t , i ∈ NCB (1q)

∑
t∈T

(σcb,in
t + σcb,de

t ) ≤ Noltc
max, i ∈ NCB (1r)

σcb,in
t + σcb,de

t ≤ 1, i ∈ NCB (1s)

(ppv
i )2 + (qpv

i )2 ≤ (Spv
i )2, i ∈ NPV (1t)

qsvr
i,min ≤ qsvr

i ≤ qsvr
i,max, i ∈ NSVR. (1u)

The key variables are defined for clear delivery. pg,t and sg,t are the power output and
status of generation i in time t. Equations (1c)–(1e) formulate the linearized distflow model;
Equations (1h)–(1u) formulate the operation of OLTC, CB and PV. The other detailed
variables definitions are referred to in Ref. [1]. We unify the integer variables of (1) as sdns
for simplicity.
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2.2. P-DNS Model

Based on the DNS model, we formulate the parametric DNS (P-DNS) in a general form
by (2). The P-DNS model achieves the mapping from the load demand d to the generator
continuous power output varibles pg and binary decision variables sdns via the implicit MIP
optimization model of DNS. We denote the system load as input parameters and replaces
notation d with θ.

f (θ) = min
p,s ∑

g∈G
fg(pg, sdns; θ) (2a)

s.t. fi(pg, sdns; θ) ≤ 0, i = 1, . . . , m f (2b)

hj(pg, sdns; θ) = 0, i = 0, . . . , mh (2c)

pg ∈ RT , sdns ∈ {0, 1}T . (2d)

Obviously, the binary variable sdns are more “complicated” but less changing than
the continuous variables. Because (2) is reduced to a tractable convex problem with fixed-
integer variables. To achieve online regulation, we propose to predict the integer variables
of s∗dns based on the input parameters θ to achieve MIP-based DNS solution acceleration, as
shown below in (3).

ĉ(θ) = min
pg

∑
g∈G

cg(pg; s∗dns, θ) (3a)

s.t. fi(pg; s∗dns, θ) ≤ 0, i = 1, . . . , m f (3b)

hj(pg; s∗dns, θ) = 0, i = 0, . . . , mh (3c)

pg ∈ RT (3d)

s∗dns(θ) = f (θ) (3e)

where s∗dns(θ) refers to values of integer variables in the MIP-based DNS under θ, denoted
by policy; the f (·) in (3e) is the learning model, which is called the policy identifier and
learned from the historical solution dataset.

3. Provably Robust Distribution Network Scheduling

Based on the P-DNS formulation, the provably robust learn-to-optimize (PR-L2O)
approach is introduced to identify the integer values of P-DNS in MIP-based DNS model,
which is composed of data processing, PR-L2O learning and online implementation, as
shown in Figure 1.

As shown above, (1) in the data stage, we leverage the P-DNS model of (2) to generate
solution instances for different scenarios and construct the corresponding P-DNS dataset;
and (2) in the learning stage, we leverage the neural networks to construct the policy
identifier and leverage the P-DNS dataset to train the identifier in a provably robust way.
In online stage, for an upcoming scenario, the trained identifier predicts the integer values
from different groups, and the optimal decisions are obtained from the solving reduced
model of (3a). Compared to the solution of MICP, the reduced tractable convex problem is
much easier to solve and can satisfy the online solution form. It should be noted that due to
vulnerability of machine learning models, the prediction results of machine learning models
could be affected by input noise, and learning models should be trained to be adversarially
robust to these noises. In our online DNS case, the training set could be similar but different
from the upcoming instances. The integer variables from the prediction models should
be robust to these minor differences via the proposed provably robust training process,
based on the intuition that minor differences between the training and testing instances
do not change the values of integer variables. Compared to the solution of the tractable
convex problem, the solution of the mixed-integer program is much more complex due to
the existence of integer variables. So we propose to utilize the learning models to identify
the values of integer variables in MIP-based DNS, which transforms it into a tractable
convex problem.
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Figure 1. The online DNS framework via provably robust learning.

3.1. Provably Robust Learning Approach for Online DNS

Then, we go to the key of online DNS and leverage the provably robust learning
approach, whose key lies in learning and predicting the integer variables in the model.
The motivation behind the provable learning is that the upcoming scenarios may not be the
same as the historical solutions, but they can feature similarity, which can be formulated as
the input perturbation difference.

3.1.1. Motivation

Though the machine learning models feature a strong representational capacity, recent
machine learning research demonstrates the prevalence of adversarial examples, where
an adversarial example is a sample of input data which is modified very slightly in a
way that is intended to cause a machine learning classifier to misclassify. It is called the
“vulnerability” of machine learning models to the adversarial examples in real-life cases.
To address the above vulnerability in learning the integer variables of P-DNS, a provably
robust training approach for online DNS is proposed to learn the provably robust learning
models, which achieve the provably robust feature. It means that the learning model can be
adversarial to input scenario perturbation differences. The key of the perturbation robust
model is the robust loss function, which can be derived from the convex outer bound
formulation of the learning models under the input perturbation and dual network model.

3.1.2. Neural Networks for Online DNS

We leverage deep learning models to predict the integer variables of P-DNS of (2),
where a k-layer neural networks then is formulated in (4) as follows:

ẑi+1 = Wi,czi + bi,c, for i = 1, . . . , k − 1 (4a)

zi = ReLU(ẑi), 0, z1 = θ, ŝc = ẑk for i = 2, . . . , k − 1 (4b)

where Wi,c is the linear transformation matrix of layer i; bi,c is the bias of layer i; zi is the
input neuron set of layer i; ẑi is the output neuron set from the linear transformation;
ReLU(·) is the activation function, which is defined as max(·, 0); θ refers to the input
scenario of P-DNS; and ŝc refers to the predicted integer variables in P-DNS, compared to
the true integer variables of sc.

From a further model, in a function form, the multi-layer neural network of (4) can be
formulated in the ŝ = Iσc(θ). So σc represents the set of {Wi,c, bi,c}i∈[k] in (4).
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3.1.3. Convex Outer Bound Formulation of the Neural Network

Based on (4), we further perturb the input scenario θ by ∆ to construct the DNS input
polytope of ||∆|| and further construct the output polytope in (5) as follows:

Bϵ(θ) = {Iσ(θ + ∆) : ||∆||∞ < ϵ}, (5)

where ϵ is defined as the minor perturbation scale value, and Bϵ(θ) is the correspond-
ing output adversarial polytope, which is highly non-convex as shown in the pink area
of Figure 2.

It should be noted that the DNS input polytope Bϵ(θ) is a non-convex set as shown in
Figure 2, which is hard to be optimized over for the robust results.

So we construct a convex outer bound over the convex set to approximate Bϵ(θ) by
B̂ϵ(x), as shown in the extended blue, in Figure 2. Compared to Bϵ(θ), the relaxed B̂ϵ(x)
occupies more area, indicating higher conservativeness. Not only the pink area but the
extended area is considered. The benefits from the above transformation leads to the convex
area of the output area. Convex features lead to good optimization quality, which is the
basis of provably robust training.

Input     with 
allowable perturbation

Multi-layer 
network

Output with 
adversarial polytope

Convex outer 
bound

✓
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Figure 2. Input perturbation of networks.

The key of the above B̂ϵ(x) lies in the relaxation of the ReLU function in (4), which
is shown in Figure 3. The ReLU activation function of (4) can be bounded by its upper
envelope in the red area of Figure 3.

lb ub lb ub

Piecewise ReLU bound Convex relaxation

Figure 3. Convex upper envelope of ReLU activation function in multi-layer neural networks.

The above transformation formulation in Figure 3 can be further written mathemati-
cally in (6).

zi ≤
ui(ui − ẑi)

ui − li
, (6a)

zi ≥ ẑi, zi ≥ 0, (6b)
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where ui is the set of upper bound in layer i, and li is the set of lower bound in layer i.
Based on the upper envelope of (6) and the neural network model of (4), the B̂ϵ(x)

of (5) can be further formulated via an explicit way in the following (7).

ẑi+1 = Wizi + bi, for i = 1, . . . , k + 1 (7a)

zi ≤
ui(ui − ẑi)

ui − li
, for i = 1, . . . , k + 1 (7b)

zi ≥ ẑi, zi ≥ 0, for i = 1, . . . , k + 1 (7c)

z1 = θ + ∆, ŝ = ẑk, ||∆||∞ < ϵ (7d)

3.1.4. Robust Optimization in Online DNS via Dual Neural Network

Based on the upper envelope of B̂ϵ(x), we leverage the idea of robust optimization
to the prediction robustness of prediction models, which means that the worst prediction
from the B̂ϵ(x) will not lead to misclassification. The above intuition can be further written
as the following linear programming in (8).

min
ẑk

(ẑk)s∗ − (ẑk)star = cT
s∗ ŝ (8a)

s.t. ẑk ∈ B̂ϵ(θ) (8b)

c = es∗ − estar (8c)

where e(·) represents the category of the strategies. If the objectives under all perturbed
predictions are positive, the prediction model can achieve the provably robust under
various scenario perturbation difference.

For all possible predictions in B̂ϵ(x), the corresponding LPs are too many. So we
consider the worst prediction by leveraging the dual problem of the original LP from the
robust optimization perspective, where dual problems of LPs provide the lower bound of
the original LP. The dual problems of multi-layer neural network are formulated as the
maximum problem in (9).

max
α

Jϵ(θ, gσ(c, α)) (9a)

s.t. αi,j ∈ [0, 1] ∀i, j (9b)

where Jϵ(θ, v) =−
k−1

∑
k=1

vT
i+1bi − θT v̂1 − ϵ||v̂1||1 (9c)

+
k−1

∑
i=2

∑
j∈Li

li,j[vi,j]+. (9d)

Ref. [11] considers the above dual problems via the dual neural network in gθ(c, α)
and obtain the corresponding lower bound from the output of the dual neural network. So
the corresponding dual neural network is formulated in (10).

vk = −c (10a)

v̂i = WT
i vi+1, for i = k − 1, . . . , 1 (10b)

vi,j =





0 j ∈ L−
i

v̂i,j j ∈ L+
iui,j

ui,j−li,j
[v̂i,j]+ − αi,j[v̂i,j]− j ∈ Li

(10c)

We note that L−
i , L+

i , and L+
i refer to the set of activation functions with negative, both

positive, or span zero bounds.

3.1.5. Provably Robust Training of Learning Models for Online DNS

Based on the dual neural network for worst prediction, the provably robust loss
function is further designed to train neural networks in the provably robust way, which is
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called the provably robust neural network and adversarial to input perturbation difference.
The key of the provably robust learning model lies in the provably robust learning. The
key of provably robust learning lies in the provably robust learning loss function design.
The key of the provably robust loss function lies in that it measures the difference between
the worst prediction and the true prediction to achieve the robustness, as shown in (11).

min
θ

N

∑
i=1

max
||∆||∞<ϵ

L( fθ(θi + ∆), si). (11)

The above problem is a typical robust optimization in the min-max form, which is hard
to optimize directly. So we consider the dual form of the inner optimization problem in the
form of the minimization problem, leading to the minimization of the whole problem. Based
on the above intuition, the corresponding dual minimizing problem of inner maximum
problem is formulated in (12) as follows:

max
||∆||∞≤ϵ

L( fσ(θ + ∆), s) ≤ L(−Jϵ(θ, gσ(es1T − I)), s). (12)

The dual problem in the minimization form formulates the upper bound of the primal
maximization problems, leading to the provably robust training approach with conservative
guarantee. So, further, the provably robust loss function is further transformed into (13)
with a single layer.

min
σ

N

∑
i=1

L(−Jϵ(θ, gσ(esi 1
T − I)), si). (13)

The corresponding dual problem results can be formulated by the dual neural networks
of (10). So (13) can be minimized via the current stochastic gradient descent algorithms
from the state-of-the-art autograd optimizer. We leverage the dual neural networks to
achieve the minimization of provably robust loss by tuning the corresponding neural
network parameters. The trained neural networks can predict the integer variable values
for online DNS in a provably robust way. Based on the above, the total training process can
be summarized by the following process: (1) generate proper dataset with mapping from
input scenarios to optimal integer variables; (2) separate the total dataset into the training
and testing part; (3) sample mini batches from the total dataset, calculate the robust loss
function of (13), derive the corresponding gradients to update the parameters of neural
networks; (4) training until convergence; and (5) evaluate the performance of learning
models in testing to verify the generality of the proposed approach. The following case
study verifies the effectiveness of the proposed approach for online DNS from acceleration
and economy perspectives.

4. Case Study

We conduct a case study to verify the effectiveness of the online DNS by simulation
on IEEE 123-bus systems from the perspectives of training analysis and online performance
analysis. All models are written by Python 3.8; in particular, for the learning part, the neural
networks are coded by the Pytorch package to formulate the machine learning models and
robust loss function; and, for the optimization part, the corresponding P-DNS models are
coded by the Cvxpy package to formulate the distribution network scheduling models.
The total learning and optimization parts construct the total online distribution network
scheduling models. The organization of this section is composed of the following parts:
data sampling, simulation analysis, and discussion.

4.1. Data Sampling

Data are the basis of learning models, and the data sampling technique is the basic
technique to learn the proper mapping relationship. For online DNS, we propose to learn
the mapping relationship from the input scenarios to the values of integer variables in DNS
models. So the uncertain temporal load profile is taken as the parameter of (2) as “X”, and
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the corresponding MICP of DNS is solved to obtain the values of integer variables, as “Y”.
On top of that, we combine the “X” and “Y” to generate offline training dataset for learning
models for the training process.

We first formulate the base load profile as Dbase ∈ RNb×T ; then, we generate the
corresponding whole dataset from the uniform distribution by (14) from the lower bound
0.6dbase,ij and higher bound 1.4dbase,ij. The whole dataset can be further divided into training
and testing datasets.

{D|dij ∼ U(0.6dbase,ij, 1.4dbase,ij), i ∈ [Nb]j ∈ [T]}, (14)

where [Nb] is the set of power system buses; [T] is the set of scheduling time, which
could be set as different values for different scheduling types, such as intraday look-ahead
scheduling and day-ahead scheduling.

4.2. Experiment Results

We verify the effectiveness of the PR-L2O for online DNS on the case 123-bus system
from the training analysis and solution analysis perspectives in this part. The corresponding
renewable data can refer to [21].

The proposed provably robust loss (13) is compared with the conventional cross-
entropy loss in (15) to verify its robustness.

Lce(θ, s) = − 1
M

K

∑
k=1

M

∑
m=1

sk
m log( fσ(xm)) (15)

We note that M is the number of training samples, K is the number of possible classes,
and sk

m is the true policy for m instance for k class. We denote the model under (15) as the
learn-to-optimize (L2O) model.

4.2.1. Training Analysis

After data processing, Figure 4 compares the changing of robust loss under PR-L2O
and L2O; Figure 5 further compares the cross-entropy (CE) loss under PR-L2O and L2O.

Though with higher CE loss, the proposed robust-based learning features high CE.
In contrast, though with lower CE, the conventional learning method feature higher robust
loss especially with training number growth. This demonstrates the vulnerability of the
conventional learning method, which means the prediction results from conventional
learning could make the wrong prediction from the minor difference between the training
instances and testing instances. This vulnerability could further lead to the suboptimality
of reduced models, and the following part further verifies the deficiency.

Figure 4. Solving time box-plot under different methods in the 123-bus system.
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Figure 5. Solving time box-plot under different methods in the 123-bus system.

4.2.2. Online DNS Performance Analysis

After training, the learning models can predict the hard integer variables of P-DNS,
and the optimal decisions can be obtained from the reduced tractable convex problems.
For the solution time perspective, we compare the solution time of PR-L2O, L2O and B&B.
B&B means the solution of complex mixed-integer programming via commercial solvers
directly in the following Figure 6.

0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6

L2O PR-L2O Solver

Figure 6. Box-plot of solution time for B&B, L2O and PR-L2O in the 123-bus system.

PR-L2O and L2O features less and more stable solution time, compared with B&B,
because B&B is a search algorithm in essence.

After the figure analysis, the mean, variance and maximum solving time are further
analyzed in Table 1 in the case 123-bus system.

Table 1. Solution time comparison of B&B, L2O and PR-L2O in the 123-bus system.

Models B&B L2O PR-L2O

Mean 1.207 s 0.0149 s 0.0110 s
Maximum time 1.383 s 0.0182 s 0.0179 s

The learning-based methods achieve 77.3 times faster maximum solving time and
109.7 times faster mean solving time than B&B, which satisfies the requirement of on-
line DNS.

The solution optimality of the above three approaches is analyzed in Table 2. This
comparison takes the B&B as the benchmark with zero gaps, which leverages the metrics of
the mean and maximum gap for numerical analysis. L2O achieves the mean gap of 0.141%,
the maximum gap of 1.87% and average cost of $224.675; the proposed PR-L2O achieves the
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mean gap of 0.110%, the maximum gap of 0.72%, and average cost of $224.352. From Table 2,
PR-L2O achieves a lower mean and maximum gap than L2O. Obviously, the prediction
performance of PR-L2O features high benefits with the consideration of provable robustness.
More robustness prediction leads to lower operation of online operation. The above
demonstrate the generalization performance of the PR-L2O and proper policy identification
by considering the input perturbation difference for online regulation. Traditional methods
solve the complex mixed-integer program of DNS directly; and in comparison, the proposed
method utilizes the learning models to identify the values of integer variables in MIP-
based DNS and solve the reduced easy linear programming problem. The proposed
approach achieves a high solution speed, verifying the effectiveness of the proposed learn-
to-optimize approach.

Table 2. Performance comparison of B&B, L2O and PR-L2O in the 123-bus system.

B&B L2O PR-L2O

Mean gap 0% 0.141% 0.110%
Maximum gap 0% 1.87% 0.72%
Operation cost $225.610 $224.675 $224.352

4.3. Discussion

Based on the above analysis, we have two key results: (1) Predicting the integer
variables can accelerate the solving process of the distribution network scheduling by
reducing the complex MICP to simple CP, and the solution time is proper for online
setting. The results conform to our assumptions. (2) Considering the vulnerability of
machine learning models, leveraging the robust loss function in training learning models
can enhance the economy of online DNS performances, because the learning models can
make more proper decisions by considering the difference between the training scenarios
and testing scenarios. The results also conform to our assumptions. In summary, the
proposed PR-L2O approach can achieve the solution acceleration and enhance the benefits
of L2O due to data drift between training and testing dataset.

5. Conclusions

To achieve the online DNS, this paper proposes the PR-L2O approach to learn and
predict the integer variables of the MIP-based DNS problem. To address the vulnerability of
the learning model, the PR-DNS training approach is leveraged to train the policy identifier,
which is adversarial to the input difference perturbation in a provably robust way. The
case study verifies the better performance in the test dataset and acceleration performance
of PR-L2O. Future work may consider the further exploration and exploitation of history
solution results for enhancing future model solutions in various ways.
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Nomenclature
The main notations are provided below. Furthermore, other additional symbols are defined in the
paper when needed.

A. Abbreviation
DNS Distribution network scheduling;
MIP Mixed-integer programming;
P-DNS Parametric distribution network scheduling;
LP Linear programming;
ACOPF Alternate current optimal power flow;
PR-L2O Provably robust learn-to-optimize;
L2O Learn-to-optimize;
MICP Mixed-integer convex program;
B. Sets
t ∈ T Set of the time periods;
ij ∈ NB Set of the system branches;
i ∈ NPV Set of the system PV;
i ∈ NCB Set of the system CB;
i ∈ NSVR Set of the system SVR;
h ∈ H(i) Set of the parent buses of bus i;
j ∈ J (i) Set of the child buses of bus i.
C. Parameters
Spv

i PV i capacity;
rij, xij Resistance/reactance of branch ij;
V0 Base voltage at the substation;

T(·)
max Maximal OLTC/CB taps;

N(·)
max Allowed maximum switching changing time for the OLTC/CB during the

operation period;
qtap Reactive power supply of per unit CB;
qsvr

i,max, qsvr
i,min Upper/lower bounds of SVR reactive power supply;

Vmax, Vmin Upper/lower bounds of bus voltage.
D. Variables
ploss

ij,t Power loss of branch ij in time t;
pij,t, qij,t Power and var of branch ij in time t;
ppv

i,t , pd
i,t, qd

i,t Active PV/load active power/load reactive power;
Vi,t Bus voltage magnitude;

q(·)i,t Reactive load/power supply of PV/CB/SVR;

σ
(·),in
t , σ

(·),out
t Auxiliary binary variables of OLTC/CB.
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