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Abstract: Wind prediction has consistently been in the spotlight as a crucial element in achieving
efficient wind power generation and reducing operational costs. In recent years, with the rapid
advancement of artificial intelligence (AI) technology, its application in the field of wind prediction
has made significant strides. Focusing on the process of AI-based wind prediction modeling, this
paper provides a comprehensive summary and discussion of key techniques and models in data
preprocessing, feature extraction, relationship learning, and parameter optimization. Building upon
this, three major challenges are identified in AI-based wind prediction: the uncertainty of wind data,
the incompleteness of feature extraction, and the complexity of relationship learning. In response to
these challenges, targeted suggestions are proposed for future research directions, aiming to promote
the effective application of AI technology in the field of wind prediction and address the crucial
issues therein.

Keywords: wind prediction; artificial intelligence; data preprocessing; feature extraction; parameter
optimization

1. Introduction

With the development of society and economy, the issues of energy shortage and
environmental pollution become increasingly prominent, making it imperative to promote
the transformation from traditional fossil energy to renewable energy [1]. Wind energy, as
a widely distributed and pollution-free renewable energy, has been widely used around
the world [2,3]. In the past 30 years, global wind energy technology and industry have
experienced rapid development, achieving significant progress in both theoretical and
applied research [4,5]. The future outlook indicates a promising trend for further advance-
ment. According to the Global Wind Report 2023 published by the Global Wind Energy
Council [6], 77.6 GW of new wind power capacity was connected to power grids in 2022,
bringing total installed wind capacity to 906 GW, a growth of 9% compared with 2021 (as
shown in Figure 1a). The world’s top ten markets for new installations in 2022 are depicted
in Figure 1b, from which China contributes 16% of its 2022 additions, followed by the
United States with 11%. Moreover, the report anticipates that by 2024, the global installed
capacity of onshore wind power will exceed 100 GW for the first time, and the newly added
capacity for offshore wind power worldwide will also reach a new record high by 2025.

Due to the high randomness and volatility of wind, accurate wind prediction is of
great significance for improving the efficiency and quality of wind power generation,
reducing fatigue loads, and extending the service life of wind turbines [7,8]. AI-based
wind prediction can assist in achieving maximum wind energy capture, thereby improving
power generation efficiency. Accurate wind forecasting helps avoid unnecessary starts and
stops of wind turbines, subsequently enhancing turbine lifespan and reducing operational
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costs. Wind prediction mainly includes wind speed prediction (WSP) and wind power
prediction (WPP), and the prediction methods are general, so a unified discussion is chosen.
Many methods have been proposed for WSP/WPP, which can be classified into several
groups according to different classification criteria [9], as shown in Figure 2. According to
the time scale [10], they are divided into ultra-short-term (a few seconds to 30 min ahead),
short-term (30 min to 6 h ahead), medium-term (6 h to 1 day ahead) and long-term (1 day
to 1 week or more ahead) models [11–13]. This classification reflects a focus on the time
span of predictions and provides more specific time frameworks for different application
scenarios. Ultra-short-term prediction is primarily utilized for real-time control and load
tracking. By providing accurate predictions within a short time frame, it enables timely
adjustments to cope with momentary changes in wind speed. Short-term prediction, on the
other hand, provides support for load scheduling planning in scenarios with a larger time
span. This is crucial for efficiently organizing the operation and scheduling of the power
system in the coming hours. When conducting short-term data-driven wind predictions
at the wind farm level, it may be particularly important to consider the impact of other
turbines, such as wake effects [14,15] or the spatiotemporal correlation among turbines [16].
Medium-term prediction extends over a longer time span and is mainly applied in energy
trading and power system management. Wind prediction several hours to a day in advance
facilitates better planning for the supply and demand balance in the electricity market.
Long-term forecasting is employed to guide optimal maintenance plans to allow for the
proper planning of maintenance and repair work, ensuring the reliability and stability of
the system. According to the prediction objective, they are divided into wind turbines [17]
and wind farms [18] WSP/WPP. The prediction for wind turbines primarily focuses on the
output of individual wind turbines, while the prediction for wind farms is more intricate,
requiring consideration of the collaborative operation of multiple wind turbines within the
entire wind farm [19]. According to the prediction types, WSP/WPP models are divided
into deterministic models and probabilistic models [20,21]. The former provides only
certain prediction results, but its prediction performance is easily limited by the complexity
of the environment. The latter characterizes uncertainty through prediction intervals, which
can often provide more information to decision makers [22,23]. Liu et al. [24] coupled the
light gradient boosting machine (LGB) model and the Gaussian process regression (GPR)
model. The LGB model provided high-precision deterministic wind speed prediction
results, while the GPR model provided reliable probabilistic prediction results. Zhang
et al. [25] proposed a probabilistic prediction model of wind power based on quantile
regression and evaluated the uncertainties with different confidence levels.
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According to modeling theory, they can be divided into three categories [26]: physical
models, traditional statistical models, and artificial intelligence (AI)-based models. Classical
physical models (such as numerical weather forecasting (NWP) [27] and weather research
forecasting (WRF) [28], etc.) typically incorporate various meteorological factors (such
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as temperature, humidity, and air pressure) and terrain, combining atmospheric science
and fluid mechanics, to predict wind speed or wind power through complex calculations.
In contrast to physical models, traditional statistical models establish linear statistical
relationships between input and predicted output by analyzing historical wind speed data,
including autoregressive moving average (ARMA) [2], autoregressive integrated moving
average (ARIMA) [29], etc. However, both physical models and traditional statistical
models struggle to handle the complex nonlinear relationships in wind data.
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With the rapid development of AI technology, there is increasing attention to its
advantages in handling complex nonlinear problems in WSP/WPP [30]. AI-based data-
driven [31] models include various machine learning (ML) algorithms [32,33], such as
support vector machine (SVM), extreme learning machines (ELM), and various traditional
artificial neural networks (ANNs) represented by back propagation neural network (BPNN).
In many studies [34–36], AI-based models have shown better predictive accuracy and
robustness in complex nonlinear problems [37]. Li et al. [38] successfully achieved accurate
wind power prediction using the proposed enhanced crow search algorithm optimization-
extreme learning machine model, keeping root mean square error (RMSE) and mean
absolute percentage error (MAPE) values below 20% and 4%, respectively, effectively
reducing the impact of large-scale wind power integration on the grid. Tan et al. [28]
used a multi-input single-output ANN to correct the WRF model, and upon validation,
it was demonstrated to enhance the WPP performance for a power plant in western
Turkey. However, ML algorithms often require manual feature selection, which demands
domain knowledge and expertise. In recent years, deep learning (DL) models such as
recurrent neural networks (RNN) and convolutional neural networks (CNN) have gradually
gained prominence and proven their effectiveness in the field of wind prediction [39].
Benti et al. [40] provided a detailed review of the progress and prospects of ML and DL
technologies in the renewable energy generation field, discussing their advantages and
limitations. Compared to ML models, DL models can automatically learn features from
raw data, alleviating the burden of feature engineering. It is noteworthy that DL models
excel in capturing and representing complex nonlinear relationships in large datasets but
may suffer from overfitting when data are limited. Additionally, integrating multiple single
models into hybrid models through serial (stacking) and parallel (weighted) methods can
compensate for the limitations of individual models, improving overall performance and
robustness across different types of data and prediction tasks. Qu et al. [41] employed
a stacking integration algorithm to combine bagging, long short-term memory (LSTM),
and random forest (RF) for high-precision prediction of target wind farm power. Huang
et al. [42] generated preliminary predictions using five single models, namely k-nearest
neighbors, RNN, LSTM, support vector regression, and random forest regression. By
optimizing their weight distribution based on a population-based intelligent algorithm,
this combination model surpassed individual models in prediction accuracy.

In summary, with the continuous development of AI technology, significant con-
tributions have been made to the further development and utilization of wind energy,
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particularly in the context of WSP and WPP. Over the past three years, numerous AI-based
WSP/WPP studies have been published, and it is necessary to systematically classify and
analyze these articles. The contributions of this paper are summarized as follows:

• This paper systematically summarizes and organizes AI-based wind prediction re-
search conducted from 2021 to 2023 to promote the effective application of AI technol-
ogy in the field of wind prediction and address key challenges;

• This paper, focusing on critical steps, including data preprocessing, feature extraction,
relationship learning, and parameter optimization, delves into in-depth analysis and
discussion of the key technologies and models involved in these crucial processes;

• This paper highlights the challenges faced by AI technology in wind prediction, such
as data uncertainty, model complexity, and hyperparameter selection. Specific recom-
mendations for future research directions are provided to address these challenges.

The remaining sections are arranged as follows: Section 2 describes how to select
and screen the literature in detail. Section 3 provides reviews of the essential methods and
technologies in key steps of WSP/WPP, including data preprocessing, feature extraction,
relationship learning, and parameter optimization, respectively. Section 4 presents the
predictive performance evolution metrics. Section 5 discusses the challenges in AI-based
wind prediction over the past three years and future trends. Lastly, Section 6 concludes
this review.

2. Literature Selection and Screening

The dataset utilized in this study was extracted from journals indexed in the Web
of Science (WOS). The WOS database encompasses over 20,000 authoritative and high-
impact academic journals and conference proceedings. Its inclusion criteria are rigorous,
considering various factors such as expert evaluations and measurement metrics. Users can
search for data in WOS by specifying topics and publication periods, followed by reliable
data collection through keyword or term co-occurrence analysis.

To obtain articles relevant to wind prediction, we initially conducted searches in
the database using the primary keyword “wind prediction”, covering articles related to
both WSP and WPP. The search period was set from 2021 to 2023, resulting in a total of
13,349 articles. Recognizing that AI is a broad concept encompassing machine learning
and deep learning methods, using “AI” as a keyword for searching was deemed less
prudent. Instead, we separately used the keywords “data preprocessing”, “feature ex-
traction”, and “parameter optimization”, corresponding to the AI-based wind prediction
modeling process, resulting in 3026, 258, and 630 articles, respectively. These articles were
comprehensively summarized and classified. As “relationship learning” is integral to the
prediction process, it did not need a separate keyword search. During the search for the
aforementioned three keywords, the same article might appear in different search results.
However, through keyword and abstract analysis, we could better understand the focal
points of the articles, providing valuable insights for further quality screening.

Subsequently, Zotero 6.0.30 was utilized to deduplicate and rank articles obtained from
searches with different keywords. This software not only has deduplication functionality
but also extracts keywords and abstracts. Given potential duplications in articles applying
similar methods, analyzing keywords and abstracts helped identify research emphases and
provided better references for subsequent high-quality article selection.

3. Methods and Technologies

In the modeling process of AI-based wind prediction, data preprocessing, feature
extraction, relationship learning, and parameter optimization are crucial steps. Firstly, data
preprocessing is considered the cornerstone of the entire modeling process. The quality
of input data are ensured through outlier detection and other operations, and then the
data structure is analyzed by decomposition methods. Secondly, classical methods such
as correlation analysis or approaches based on neural networks (NNs) are employed to
extract effective features from the input data. Relationship learning is a central element
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in the modeling process, utilizing either a single prediction model or a combination of
prediction models to learn the mapping relationship between input features and target
outputs. Finally, parameter optimization aims to further enhance the performance of the
prediction model by adjusting model parameters using various optimization algorithms.
The framework of this research review is primarily illustrated in Figure 3.
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3.1. Data Preprocessing

Due to the complexity of the environment and stochastic factors such as equipment
failures, the quality of collected wind data may be significantly influenced, leading to
issues such as missing values, noise, and outliers. To mitigate the uncertainty in the data
and accurately extract features for training precise prediction models, preprocessing the
collected wind data before prediction is crucial. Data preprocessing methods can be broadly
categorized into two types: outlier detection methods and decomposition-based methods.

3.1.1. Outlier Detection Methods

Training prediction models with wind data that includes outliers can lead to incorrect
information, thereby reducing the effectiveness of prediction. Therefore, employing outlier
detection methods to categorize the raw data into outliers and normal values and discarding
or correcting the outliers is crucial to mitigate their impact.

Traditional outlier detection methods are primarily based on statistical, clustering,
distance, and density knowledge. Local outlier detection can utilize sliding windows or
local density to detect outliers in data points, and another commonly used method involves
using a weighted least squares algorithm to identify outliers. Khazaei et al. [43] employed a
method combining automatic clustering with T2 statistics for outlier detection and removal,
achieving accurate WPP. Fahim et al. [44] eliminated outliers based on the histogram-based
outlier score and utilized a genetic algorithm for feature extraction, providing high-quality
training data for DL models. He et al. [45] used the quartile method for outlier detection
in initial data processing and replaced outliers with a cubic spline interpolation function
before predicting wind power. Fu et al. [46] employed boxplot and medcouple for outlier
detection and correction to improve the quality and smoothness of wind speed sequences.
Ammar et al. [47] detected outliers using interquartile range and then corrected them using
the last observation carried forward method. Özen et al. [48] coupled k-means with the
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isolation forest method to detect outliers in SCADA data and used the output of the WRF
model to impute the missing data.

Additionally, in the literature review, models based on DL, primarily the denoising
autoencoder, have been found to be effective in reducing noise in raw wind data while
simultaneously extracting robust features. Unfortunately, no further AI-based methods
specifically designed for identifying and handling outliers were discovered.

3.1.2. Decomposition-Based Methods

Unlike outlier detection methods that focus on processing abnormal data, decomposition-
based methods treat all raw data equally. These methods primarily draw from knowl-
edge in the field of signal processing. By decomposing the raw wind data into different
subsequences, these methods extract implicit modes from the original sequence while
reducing noise. Ultimately, the final prediction results are reconstructed by summariz-
ing the predictions of the subsequences. Decomposition-based methods can be broadly
categorized into two types. One generates all subsequences at the same hierarchical
level, including variational mode decomposition (VMD) [49], adaptive VMD (AVMD),
optimal VMD (OVMD) [50], local mean decomposition (LMD), empirical mode decom-
position (EMD) [51], ensemble EMD (EEMD) [52], fast EEMD (FEEMD), complete EEMD
(CEEMD) [53], CEEMD with adaptive noise (CEEMDAN), improved CEEMDAN (ICEEM-
DAN) [54], singular spectrum analysis (SSA), improved SSA (ISSA) [55], and symmetric
geometry mode decomposition (SGMD). The VMD itself, as well as AVMD and OVMD,
demonstrate excellent performance in handling nonlinear and non-stationary signals. They
exhibit high accuracy in extracting local signal features, making them suitable for wind
speed or wind power data with complex dynamic characteristics. However, these methods
may perform less effectively in the presence of significant noise and prove sensitive to
outliers within the data. EMD and its derivatives, such as EEMD, FEEMD, and CEEMD,
also show promising results in dealing with nonlinear and non-stationary signals, dis-
playing robustness to noise and outliers. Nevertheless, the computational complexity of
EEMD and its fast version, FEEMD, is relatively high, potentially leading to suboptimal
performance on large-scale datasets. While CEEMD and its variants, CEEMDAN and
ICEEMDAN, have made progress in mitigating mode mixing issues, their computational
costs still need to be carefully considered. SSA and its improved version, ISSA, excel in the
frequency domain analysis of signals. They are proficient at capturing the periodicity and
spectral structure within signals, exhibiting superior performance when dealing with wind
speed or wind power data characterized by distinct frequency domain features. However,
their performance in handling nonlinear and non-stationary signals might be compara-
tively weaker. SGMD is a relatively new method with the potential to handle nonlinear
and non-stationary signals. By leveraging the advantages of symmetry and geometric
structure, it is capable of extracting local features from signals. Nevertheless, due to its
novelty, further empirical research is needed to confirm its applicability and performance
across different types of wind speed or wind power data. The other type mainly relies on
wavelet-based methods, including wavelet transform (WT), discrete wavelet transform
(DWT) [56], wavelet packet transform (WPT), empirical wavelet transform (EWT), and
wavelet soft threshold denoising (WSTD) [57]. These methods have certain advantages in
handling high-frequency information and sudden events. These methods offer multiscale
resolution in the frequency domain, making them suitable for wind speed or wind power
data with different time-scale characteristics. However, they may have limitations when
dealing with nonlinear and non-stationary signals, potentially lacking sensitivity to some
complex dynamic features of wind fields. In addition to individual decomposition methods,
there are some proposed combination decomposition methods designed to overcome the
drawbacks of single algorithms and random errors. Table 1 presents several combination
decomposition methods.
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Table 1. Combined decomposition methods.

Article Year Type Methods

[58] 2022 WSP EEMD + WPT
[59] 2023 WSP VMD + SSA
[60] 2023 WPP CEEMDAN + VMD
[61] 2022 WSP CEEMDAN + LMD
[62] 2023 WSP WT + VMD
[63] 2023 WSP OVMD + DWT

In summary, data preprocessing methods can be categorized into outlier detection
methods and decomposition-based methods. Outlier detection methods focus on handling
abnormal data in the original dataset to reduce the adverse impact of outliers on model
training. These methods typically identify and remove outliers from the data by setting
thresholds or using statistical approaches. However, their effectiveness depends on the
sensitivity to the definition of outliers, requiring careful selection of appropriate methods
and parameters. On the other hand, decomposition-based methods treat all data equally,
achieving denoising while discovering implicit patterns in the data, thereby enhancing
data predictability. These methods decompose the data to extract primary features and
suppress noise. However, the scalability and applicability of these methods depend on the
structure of the data and the choice of decomposition methods. In practical applications, a
combination of these methods may be used as needed to achieve a more comprehensive
and robust data preprocessing effect. There are some limitations and potential drawbacks
in existing data processing methods when dealing with the uncertainty associated with
wind data. Firstly, data processing methods are inevitably influenced by the quality of
the data. Secondly, certain data processing methods may be built upon assumptions
that overly simplify the characteristics of wind data, potentially hindering their ability
to comprehensively consider the complexity of wind data uncertainty. Additionally, in
the process of data processing, uncertainty may be transmitted, and these errors could be
magnified in subsequent stages, impacting the reliability of the final predictions. Lastly,
some methods rely on offline data processing or training static models, which may limit
their applicability when facing dynamic meteorological conditions.

3.2. Feature Extraction

A thoughtfully designed feature extraction process contributes to mitigating the ad-
verse effects of redundant information during the prediction model training phase. Si-
multaneously, it helps discover more effective features, thereby improving the accuracy
and robustness of WSP/WPP. Feature extraction methods for WSP/WPP can be broadly
categorized into two types: classical feature extraction methods and neural network-based
feature extraction methods.

3.2.1. Classical Feature Extraction Methods

Classical feature extraction methods encompass phase space reconstruction (PSR) [16],
granger causality testing (GCT) [64], autocorrelation function (ACF), partial ACF (ACF),
recursive feature elimination (RFE) [65], mutual information (MI), grey relation analysis
(GRA) [66], and principal component analysis (PCA) [67]. Unlike other selection-based
feature extraction methods, PCA is a dimensionality reduction-based feature selection
method that generates new features during the feature extraction process. Due to their
different principles, each feature extraction method represents features from different
aspects of the data. For instance, PSR is more suitable for nonlinear feature extraction;
GCT is applicable for analyzing causal relationships between sequences; and MI reveals
nonlinear relationships and information transfer between variables. ACF is suitable for
analyzing periodic patterns in sequences, and PCA identifies major features through
dimensionality reduction, thereby preventing overfitting. In order to select the optimal
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features, multiple feature extraction methods were presented several years ago. However,
unfortunately, no similar combination methods have been found in the recent three years.

3.2.2. Neural Network-Based Methods

While combining various classical feature extraction methods helps in selecting better
input features, it is ineffective in extracting deep and highly nonlinear features from
complex wind data. Methods such as autoencoder (AE), variational AE (VAE), restricted
Boltzmann machine (RBM), CNN [68], temporal convolutional network (TCN) [69], and
attention mechanism [70] have been proven to be effective tools for nonlinear feature
extraction and widely applied in the field of WSP and WPP. In [65], the VMD technique
was employed to decompose the original wind speed sequence, obtaining relatively stable
wind speed sequences. Subsequently, sparse AE was used to learn various latent influential
features in these stable sequences, crucial for enhancing the predictive performance of
subsequent models. In [71], Gauss–Bernoulli RBM and Bernoulli–Bernoulli RBM were
combined in a deep belief network (DBN), using GBRBM as the initial RBM to transform
the continuity features of the original wind speed data into binomial distribution features.
In [72], a one-dimensional CNN was employed as an encoder to extract important features
and form latent representations. The decoding network, bidirectional LSTM (BiLSTM) [73],
predicted wind speed by interpreting the encoded features. In [69], TCN was used to
extract hidden temporal features from the dataset, which were then passed to the informer
model for WPP. The results indicated that introducing TCN could better extract potential
correlations between data, making the prediction curve closer to the actual values. AE,
VAE, and RBM excel in learning hierarchical representations and handling nonlinear
relationships; however, their performance may be influenced by hyperparameter choices
and might struggle to capture long-range dependencies in wind data. CNN and TCN
demonstrate exceptional performance in extracting spatial and temporal features from wind
data. CNN is adept at capturing spatial patterns, while TCN excels in modeling long-range
dependencies in time series data. Nevertheless, these methods may require substantial data
for effective training, and they could be sensitive to changes in hyperparameters. Inspired
by human visual attention, attention mechanisms effectively capture important information
when dealing with the importance of different parts of input data. However, attention
mechanisms may necessitate more complex model architectures and longer training times.

In addition, NNs such as RNN, LSTM, gated recurrent unit (GRU), bidirectional GRU
(BiGRU), BiLSTM, graph neural network (GNN), graph convolutional network (GCN),
Transformer, and graph Transformer network (GTN) are widely used for learning the
mapping relationships between inputs and outputs. These NNs can be applied to feature
extraction tasks, automatically learning deep nonlinear features in a hierarchical and
interpretable manner while learning the input–output mapping relationships. Table 2
summarizes more feature extraction methods based on NNs.

Table 2. Neural network-based feature extraction methods.

Article Year Type Methods

[74] 2023 WPP GRU + Transformer + Attention
[75] 2022 WSP Attention + GTN
[76] 2023 WSP VMD + GNN
[77] 2022 WPP CNN + BiGRU
[78] 2023 WPP GCN + CNN
[79] 2023 WPP CNN + GRU

In summary, feature extraction methods can be classified into classical feature ex-
traction methods and NN-based feature extraction methods. Classical feature extraction
methods, including selection-based methods like ACF and dimensionality reduction meth-
ods like PCA, represent different aspects of the data. These methods tend to perform
well when dealing with small-scale data or when specific features need to be manually
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selected. However, they may face limitations in handling large-scale high-dimensional
data and learning complex nonlinear relationships. NN-based methods, on the other hand,
excel in extracting deep nonlinear features. Unsupervised learning models such as AE,
VAE, and RBM demonstrate good performance in learning the latent representations of
the data. Nevertheless, their training on large-scale data and sensitivity to hyperparameter
selection can be challenging. CNN models, which move convolutional kernels in different
dimensions, are suitable for feature extraction from vectors, matrices, and tensors but may
require substantial data for effective training. TCN, designed specifically for time series
data, captures long-term dependencies in sequences, but its performance may be influ-
enced by sequence length and hyperparameters. The attention mechanism, as a signifier
of varying attention levels to different parts of input data during the feature extraction
process, offers flexible features but might come with higher computational costs. NNs like
LSTM and GRU, employed for learning the mapping between inputs and outputs, may
impact model performance due to training complexity and parameter adjustments. In
practical applications, the selection and combination of these methods should be balanced
based on the nature of the specific task, the characteristics of the data, and the availability
of computational resources to achieve optimal feature extraction results.

3.3. Relationship Learning

Relationship learning refers to predictive methods that simulate the complex nonlinear
relationships between input features and forecasted wind speed or wind power. Using
or designing suitable prediction methods is crucial for accurate WSP/WPP. In reviewing
the literature, AI-based relationship learning methods can be broadly categorized into two
main types: single prediction models and hybrid prediction models.

3.3.1. Single Prediction Models

Single prediction models can be classified by complexity into simple nonlinear re-
gression models, tree-based models, and DL models. Simple nonlinear regression models
include support vector machine (SVM) [80], least squares SVM (LSSVM), support vector
regression (SVR) [81,82], ELM [83], kernel ELM (KELM) [23,46], and various types of ANNs
such as BPNN [84], radius basis function neural network (RBFNN), multilayer perceptron
(MLP), wavelet neural network (WNN), and Elman neural network (ENN) [85]. Tree-based
models encompass decision tree (DT), RF [86], gradient boosting decision tree (GBDT), gra-
dient boosting regression tree (GBRT), extreme gradient boosting (XGBoost) [87], and light
gradient boosting machine (LightGBM) [88]. With the advancement of DL technologies,
deep neural networks (DNNs), including RNN [89], LSTM [90], BiLSTM [91], GRU [92],
BiGRU, DBN, deep ELM (DELM), and Transformer have been widely applied in WSP
and WPP due to their outstanding capability in handling complex nonlinear problems.
Ding et al. [90] used CEEMD to decompose the non-stationary wind power time series
into a series of relatively stationary components. Subsequently, these components are
employed as the training set for the KELM prediction model, and the initial values and
thresholds of KELM are optimized through WOA. Finally, the predicted output values
of each component are aggregated to obtain the ultimate forecast of wind power. In the
validation using data from the Shanghai wind farm in China, this approach demonstrates
superior performance in terms of prediction accuracy and stability, with computational
costs lower than those of other benchmark models. Table 3 summarizes more key findings
and drawbacks of single prediction models.

The advantages of simple nonlinear regression models lie in their effective modeling
of simple nonlinear relationships, such as SVM and ELM, which can efficiently capture
nonlinear patterns in the data. However, their performance may be influenced by the selec-
tion of hyperparameters and may not be flexible enough for complex nonlinear problems.
Tree-based models and their ensemble models, such as RF and GBDT, exhibit good inter-
pretability and modeling capabilities for nonlinear relationships. However, when dealing
with high-dimensional sparse data, these models may become overly complex and prone
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to overfitting. DNNs excel in handling complex nonlinear problems, especially for time
series data, with capabilities such as RNN, LSTM, and Transformer that capture long-range
dependencies. However, they often require substantial amounts of data for training, are
sensitive to hyperparameters, and exhibit lower interpretability. When selecting models, a
balance should be struck based on the nature of the specific problem, the characteristics of
the data, and the requirement for model interpretability.

Table 3. Single prediction models.

Year Type Methods Results Drawbacks (Future Work)

2022 WSP Neo4j + k-means clustering +
gray wolf algorithm + SVM [93]

High accuracy, well-predictive
stability, and acceptable time

complexity
Further optimization

2022 WSP
VMD + partial least squares

+improved atom search
optimization + ELM [94]

Superior predictive
performance to the other nine

benchmark models

Not considering the impact of
relevant environmental factors

2022 WSP
CEEMDAN + particle swarm

optimization algorithm (PSO) +
ENN [95]

Significantly improving wind
speed prediction effectiveness

and reducing errors

Exploring alternative
decomposition and optimization

algorithms

2022 WPP CEEMD + whale optimization
algorithm (WOA) + KELM [96]

The minimum values of MAE,
RMSE, and MAPE: 0.2911%,

0.4305%, and 6.6%

2022 WSP CEEMDAN + genetic algorithm
(GA) + BPNN [97]

Improvement in accuracy for
the short-term and

ultra-short-term prediction

Potential performance decline in
ultra-short-term prediction using

decomposition methods

2022 WSP Multi-Task Lasso + MLP [98]

Significant effectiveness in
feature selection and an

increase in prediction accuracy
of over 17%

2022 WPP Bayesian optimization +
XGBoost [99]

Minimal prediction errors
under conditions of extreme

weather

Integration of additional
meteorological elements for

further improvement and testing

2023 WPP skip-GRU [100]
Generating prediction

intervals of higher quality than
the baseline model

Involving multi-step interval
forecasting considering

numerical weather forecast
information

2023 WPP EEMD + PSO + LSTM [101]
Higher prediction accuracy
and stability compared to

other baseline models

2022 WSP EEMD + Attention +
Transformer [102]

Achieving a new level of
multi-step WSP on the

NWTC-M2 dataset

Incomplete hyperparameter
optimization, simple model

structure, and a lack of in-depth
error analysis

3.3.2. Hybrid Prediction Models

To overcome the limitations of individual prediction models and enhance the overall
WSP/WPP performance, various hybrid prediction models have been proposed. These
methods involve combining multiple single models in a sequential or parallel manner to
enhance the model’s learning ability for complex relationships. Additionally, by designing
different error correction strategies, the output of prediction models can be adjusted to
improve prediction accuracy. Sun et al. [103] integrated linear time series regression and
nonlinear ML algorithms to design a composite WSP model that outperformed statistical
models and univariate NN models in the 3–24 h prediction. Chen et al. [104] applied a
multi-objective error regression method for error correction in prediction results, resulting
in an improvement of over 26% in short-term WPP performance. Xiao et al. [105] proposed a
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time-correlated, statistics-based error correction algorithm, further enhancing the prediction
accuracy of the short-term wind power hybrid prediction model. After error correction, the
RMSE and mean absolute error (MAE) were reduced by 9.14% and 14.96%, respectively.
More comprehensive reviews of hybrid prediction models refer to Table 4. Yin et al. [106]
and Yang et al. [107], on the other hand, utilized Q-learning for model integration. As
for [102] and [108], they, respectively, combined multiple models through weighting and
data-adaptive censoring strategy. Both Xing et al. [101] and Duan et al. [109] employed
data preprocessing methods; they first decomposed the raw data, independently predicted
each component, and finally integrated the predictions through residual correction.

Table 4. Hybrid prediction models.

Article Year Type Methods Datasets and Results

[106] 2023 WSP GRU + Broad Learning System
(BLS)

Wind farm data from both countries had smaller
prediction errors.

[107] 2023 WPP SVM + LSTM + GRU + GBRT
Using a publicly available dataset from a 16 MW wind
farm as a data source, MSE, MAE, and R2 were 0.0244,

0.1185, and 0.9821, respectively.

[108] 2022 WSP SVR + BiLSTM
The method of selecting the historical data sets of

Lanzhou and Gaolan wind farms in Hexi Corridor has
higher accuracy and stronger generalization ability.

[109] 2023 WSP LSSVM + LSTM With the open source data, the method has higher
prediction accuracy.

[110] 2023 WPP Seq2Seq + Attention + BiGRU

The dataset employed consists of measured data from a
wind power station located in mainland China, and

compared with other models, MAE decreased by 19.7%,
43.4%, 41.0%, and 46.2%, respectively.

[111] 2021 WSP
ELM + Outlier-Robust Extreme
Learning Machine (ORELM) +

DBN

Hourly wind speed data from the National Renewable
Energy Laboratory, RMSE, MAE, MAPE, and symmetric

MAPE reached 0.2047%, 0.1435%, 3.77%, and 3.74%,
respectively.

[112] 2022 WPP
Group Method of Data Handling
(GMDH) + Echo State Network

(ESN) + ELM

Four group wind power datasets; the accuracy is
superior to other five AI-based models.

[113] 2022 WSP GRU + BiLSTM + DBN

MAE of the four original wind speed series collected
from Xinjiang, China, at stations #1, #2, #3, and #4 are
0.0829 m/s, 0.0661 m/s, 0.0906 m/s, and 0.0803 m/s,

respectively.

[114] 2022 WSP MLP + RNN + SVM
Simulation results on actual large-scale short-term wind
speed data validate the above attractive features of the

proposed predictor.

[115] 2021 WSP RNN + BPNN
Four wind speed series collected from a wind farm in

Ningxia Hui Autonomous Region, China, outperformed
other single models and traditional models.

In summary, the prediction methods for learning the relationship between input
features and output wind speed or wind power can be categorized into single prediction
models and hybrid prediction models. Single prediction models mainly include simple
nonlinear regression models, tree-based models, and DL models. Among them, simple
nonlinear regression models represented by SVM and ELM have the characteristics of
simple model structure and fast training speed. However, when dealing with nonlinear
relationships in complex large datasets, their accuracy is inferior to tree-based models and
DL models. The goal of hybrid prediction models is to overcome the limitations of single
prediction models and enhance the overall WSP/WPP performance. Approaches include
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combining single models and postprocessing methods such as error correction. Combining
single models can be achieved through sequential (stacking) or parallel (weighted) methods
to improve the accuracy and robustness of the prediction. Error correction involves using
statistical methods or ML-based techniques to fit errors, thereby reducing the gap between
predicted values and actual values. For small datasets and applications emphasizing
training speed, simple nonlinear regression models, such as SVM and ELM, may be suitable
choices. For large-scale and complex datasets, tree-based models and deep learning models
often excel in capturing nonlinear relationships, offering higher accuracy. Hybrid models
often outperform single models in terms of prediction accuracy; however, this comes at the
cost of time.

In practical applications, the choice of models is influenced by the specific requirements
of the application scenario and the characteristics of the data. Considering the effectiveness,
scalability, and computational resource requirements of the models, a comprehensive
evaluation is necessary based on the specific circumstances. For simple models, they
typically perform well in scenarios dealing with small datasets where training speed
is crucial, making them suitable for resource-constrained environments. These models
are not only computationally lightweight but may also provide satisfactory performance
for straightforward tasks. In contrast, tree-based models and deep learning models are
generally more suitable for handling large-scale, complex datasets, possessing enhanced
capabilities for capturing nonlinear relationships. However, these models may demand
more computational resources, especially during the training phase. Given sufficient
resources, they can deliver superior performance for more complex tasks. Regarding the
scalability and computational resource requirements of models, for large-scale data and
complex tasks, deep learning models are usually considered. These models, with support
from hardware accelerators such as GPUs and TPUs, can train and infer more rapidly but
require corresponding hardware investments. In terms of model combination, the choice
between sequential or parallel strategies also requires a comprehensive consideration of
scalability and computational resources. While parallel training may enhance efficiency,
it may also increase the demand for computational resources. Therefore, when selecting
combination strategies, a careful balance based on the available resources is needed to
achieve optimal overall performance.

3.4. Parameter Optimization

Relationship learning refers to predictive methods that simulate the complex nonlinear
relationships between input features and forecasted wind speed or wind power. Using
or designing suitable prediction methods is crucial for accurate WSP/WPP. In reviewing
the literature, AI-based relationship learning methods can be broadly categorized into two
main types: single prediction models and hybrid prediction models.

The performance of different prediction models is largely influenced by the model
structure and hyperparameters. Kernel-based models, such as SVM, LSSVM, and KELM,
have performance dependent on the choice of the kernel function. In prediction models
involving neural networks, parameters like weights, thresholds, hidden layer count, neu-
rons per layer, learning rate, and optimizer type significantly impact model performance.
Selecting appropriate parameters is crucial to enhance the predictive performance and
generalization capability of the model. Traditional parameter optimization methods often
rely on manual tuning, depending on expert experience and knowledge. As the complexity
of problems increases and the parameter search space expands, an increasing number
of studies are adopting intelligent algorithms to optimize prediction model parameters,
proving their effectiveness in improving predictive performance. Table 5 summarizes some
intelligent algorithms used in recent studies.

Hu et al. [93] applied the gray wolf algorithm (GWO) to optimize the kernel function
parameters and penalty factor of SVM. In [23], the improved artificial bee colony algorithm
(CABC) was utilized to optimize the key parameters C and λ of the KELM model, signifi-
cantly enhancing the accuracy of WPP. Yang et al. [116] and Gao et al. [117] employed the
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differential evolution–grey wolf optimizer (DE-GWO) and fractional-order beetle swarm
optimization (FO-BSO), respectively, to adjust the hyperparameters of LSSVM. In [118], an
improved cuckoo search (ICS) was established to optimize the penalty factor and kernel
function parameters of LSSVM. Additionally, Ding et al. [96] utilized the WOA to generate
optimal initial parameters for KELM, contributing to the accurate short-term prediction of
wind power. Through the improved seagull optimization algorithm (ISOA) in [119], the best
parameters for each KELM network were precisely identified, enhancing the predictabil-
ity of individual KELM models for wind speed subsequences after VMD decomposition.
In [120], an innovative approach using improved hybrid differential evolution–Harris
Hawks optimization (IHDEHHO) synchronized the optimization of internal parameters
for PSR and KELM. Furthermore, Rayi et al. [121] optimized the parameters and associated
weights of the deep mixed KELM using the sine cosine integrated water cycle algorithm
(SCWCA) to enhance the adaptability of deep MKELM to outliers or noise in the data.

Zhang et al. [122] applied the improved sine and cosine algorithm (ISCA) to optimize
the parameters of the BiLSTM model, achieving superior optimization results compared
to the standard SCA. In [123], to ensure the accuracy and stability of WPP, the key pa-
rameters of the DELM model underwent optimization through multi-objective crisscross
optimization (MOCSO). In [105], an improvement to the PSO was employed to optimize
the optimal number of hidden neurons and the optimal learning rate for the LSTM model,
significantly enhancing the short-term accuracy of WPP. Suo et al. [124] utilized the im-
proved chimp optimization algorithm (IChOA) to optimize parameters for the BiGRU,
proving its effectiveness in improving the predictive performance of BiGRU. Through
swarm spider optimization (SSO), Wei et al. [125] optimized the number of hidden layer
nodes for DBN, significantly improving the prediction performance of DBN for wind
prediction. Zhu et al. [126], by introducing multi-objective elephant clan optimization
(MOECO), generated the final wind power interval prediction, with optimization perfor-
mance surpassing existing multi-objective optimization algorithms such as multi-objective
elephant herding optimization and multi-objective PSO. Using adaptive differential evo-
lution with an optional external archive (JADE), Wu et al. [127] efficiently optimized the
parameter combination of the temporal fusion Transformer (TFT) model, ensuring the
stability and reliability of WSP. Chen et al. [128], employing a multi-objective slime mold
algorithm (MOSMA), conducted multi-objective parameter optimization for DAE and GRU
stacking models, achieving performance with low error, low bias, and high qualification
rate. In [129], introducing chaos sequences and Gaussian mutation strategy into the original
sparrow algorithm, the improved sparrow algorithm (CSSOA) was used to adjust hyperpa-
rameters such as batch size, cell number, and learning rate for the LSTM network, thereby
enhancing wind power prediction accuracy. Ewees et al. [130] employed the heap-based
optimizer (HBO) to optimize the LSTM wind power prediction model, outperforming
other metaheuristic optimization algorithms such as GA. However, like other optimization
algorithms, HBO faces the challenges of losing the optimal solution and slow convergence
speed. Among these optimization algorithms, GWO may excel in global search, while PSO
stands out in handling continuous optimization problems with a relatively fast convergence
speed. The weakness of the Cuckoo algorithm may lie in the need to adjust a large number
of parameters, and when dealing with multi-objective problems, MOCSO and MOECO
might be more competitive.

While intelligent algorithms have demonstrated significant effectiveness in optimizing
wind forecasting parameters, their practical application requires a careful balance between
their applicability and computational efficiency. Handling high-dimensional, large-scale
datasets from hundreds of meteorological stations and wind farms still poses uncertain-
ties regarding the performance of metaheuristic algorithms. This uncertainty may stem
from the complexity and computational burden associated with these algorithms when
dealing with high-dimensional data. Particularly, when addressing DNNs or hybrid mod-
els with numerous parameters, careful consideration must be given to the convergence
speed and reliability of optimization results using intelligent algorithms. The training of
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DNNs typically demands substantial data and intricate hyperparameter tuning, leading to
challenges such as prolonged training times and potential overfitting. In real applications,
algorithm scalability is crucial, especially for wind prediction tasks that require real-time
responsiveness and efficiency. For the improvement and adjustment of existing models, it
is recommended to start by optimizing the hyperparameters of intelligent algorithms to
enhance their adaptability to high-dimensional datasets. Regarding DNNs, methods like
transfer learning could be considered to leverage limited data during the training process
better. Additionally, introducing advanced metaheuristic algorithms or deep learning
techniques, such as adaptive learning rates and batch normalization, may contribute to
improving the convergence speed and stability of optimization results.

Table 5. Intelligent algorithms.

Model Type Models Parameters Optimization Methods

Kernel dependent
models SVM, LSSVM, KELM Kernel function, etc.

GWO [93], CABC [23], DE-GWO
[116], FO-BSO [117], ICS [118], WOA

[96], ISOA [119], IHDEHHO [120],
SCWCA [121]

NN-based models ELM, BPNN, RNN, DBN, etc. Weights, bias, learning rate, etc.

ISCA [122], MOCSO [123], PSO [105],
IChOA [124], SSO [125], HBO [130],

MOECO [126], JADE [127],
MOSMA [128], CSSOA [129]

4. Performance Evolution Metrics

The classical metrics used to assess the performance of wind prediction can be mainly
divided into two categories: deterministic prediction evaluation metrics and interval
prediction evaluation metrics. Their definitions, equations, and evaluation criteria are
detailed in Table 6 [131,132].

The evaluation of predictive performance involves two aspects: accuracy and robust-
ness. Accuracy primarily focuses on the model’s precision concerning observed values,
while robustness concerns the model’s stability when faced with different conditions, out-
liers, or uncertainties. The mentioned metrics mainly reflect predictive accuracy, and the
indicators used to assess predictive robustness include mean absolute scaled error (MASE),
median absolute deviation (MAD), and quantile loss. MASE improves upon MAE by com-
paring it with the corresponding MAE on training data, providing a measure of the model’s
robustness in various situations. MAD represents the median absolute deviation between
observed and predicted values, measuring the model’s sensitivity to outliers. Quantile
loss evaluates the model’s fitting to the entire distribution by comparing its predictions
with actual values at different quantiles, thereby assessing its robustness. Among the
metrics for evaluating predictive accuracy, MSE and RMSE involve the square of errors
and are sensitive to error magnitudes. MAE calculates the average absolute value of errors,
exhibiting lower sensitivity to outliers compared to MSE. MAPE is suitable for scenarios
where percentage errors are crucial. The correlation coefficient (r) gauges the strength and
direction of the linear relationship between actual and predicted values, while R2 measures
the proportion of variance explained by the model. PICP, PINAW, and CWC are commonly
used evaluation metrics for interval prediction problems. The choice of metrics depends on
the specific problem type and the focus on model performance.
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Table 6. Performance evolution metrics.

Type Index Definition Equations Evaluation
Criteria

Deterministic prediction
evaluation metrics

MSE Mean squared error MSE = 1
N ∑N

i=1
fi− f̂i

fi
d

RMSE Root mean square error RMSE =

√
1
N ∑N

i=1 ( fi − f̂i)
2 d

MAE Mean absolute error MAE = 1
N ∑N

i=1

∣∣∣ fi − f̂i

∣∣∣ d

MAPE Mean absolute percentage
error MAPE = 1

N ∑N
i=1

∣∣∣ fi− f̂i
fi

∣∣∣× 100% d

r Correlation coefficient r = ∑N
i=1 ( fi− f i)(

_
f i− f̂ i)√

∑N
i=1 ( fi− f i)

2
(
_
f i− f̂ i)

2

R2 Coefficient of
determination R2 = 1− ∑N

i=1 ( fi− f̂i)
2

∑N
i=1 ( fi− f i)

2

Interval prediction
evaluation metrics

PICP
Prediction interval

coverage probability

PICP =

1− 1
N ∑N

i=1 ci, ci =

{
1, f̂i ∈ [Li, Ui]
0, f̂i /∈ [Li, Ui]

PINAW Prediction intervals
normalized average width PINAW = 1

N ∑N
i=1

Ui−Li
fmax− fmin

d

CWC Composite indacator
CWC ={

PINAW(1 + e(−η(PICP−µ)),PICP<µ

PINAW, PICP ≥ µ

d

Note: The actual and predicted values are represented as fi and f̂i , respectively. f i and f̂ i stand for the average
values of the actual and predicted values, respectively. N is the length of the sequences. Li and Ui denote the
lower and upper bounds of the ith predicted interval. ci equals to 1 when the actual value is within [Li, Ui]. f max
and f min denote the maximum and minimum values in sequences, respectively. µ symbolizes the preset PINC
level, and η is equal to 50 based on recent literatures. d represents the smaller the value, the better the prediction
performance. presents the closer the value is to 1, the better the prediction performance.

5. Challenges and Future Trends

In this section, challenges in AI-based wind prediction over the past three years are
discussed, and future trends aimed at promoting prediction performance are presented.

5.1. Challenges over the Past Three Years

AI-based wind prediction faces three major challenges, including the following:

Uncertainty in wind data

The intricate nature of uncertainty in wind data makes it challenging for predic-
tive models to accurately learn the actual relationship between input features and wind
speed/wind power output. Various types of uncertainty may exist in wind data, and these
uncertainties may manifest diversely within datasets. Consequently, selecting appropriate
preprocessing methods tailored to different types of uncertainty may pose a challenge. In
practical applications, there is currently a lack of clear evidence indicating that a specific
preprocessing method consistently outperforms others, likely due to variations in the types
and complexity of uncertainty across different datasets.

Comprehensive and efficient feature extraction

Insufficient data can lead to information loss and uncertainty during the feature
extraction process. In practical applications, limited wind data may hinder feature ex-
traction methods from fully capturing the complex relationships between wind speed
and power, thereby constraining the performance of predictive models. The dynamic
changes and diversity in wind fields further contribute to the complexity of features, a
phenomenon commonly observed in real wind scenarios. While traditional methods boast
lower computational complexity, they fall short in effectively handling the deep-seated,
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highly nonlinear features within wind data, potentially resulting in decreased model accu-
racy in practical wind prediction scenarios. On the contrary, feature extraction methods
based on NNs exhibit superior performance when confronted with real-time, complex, and
high-dimensional wind field data. However, the increased computational complexity asso-
ciated with NN-based methods may pose challenges in terms of computational resources
in practical applications, particularly in scenarios demanding real-time processing.

Accurate learning of mapping relationship

In wind prediction, there are complex relationships among various factors, and
modeling these intricate relationships requires flexible and robust methods of relation-
ship learning. AI-based relationship learning methods can be categorized into single
methods and hybrid methods. Single methods, such as simple nonlinear regression
models, have a straightforward structure and low computational complexity but may
lack the flexibility needed to handle complex nonlinear problems. On the other hand,
tree-based models and deep learning models excel in addressing complex nonlinear
problems. However, tree-based models might become overly complex when dealing
with high-dimensional sparse data, leading to potential overfitting. DL models typically
require substantial amounts of data for training, are sensitive to hyperparameters, and
exhibit lower interpretability. Hybrid models can overcome the limitations of single
models, but selecting and fine-tuning the combination of different models may require
additional expertise and time. Furthermore, combining multiple models may lead to an
increase in computational complexity, particularly in applications with high demands for
real-time performance, presenting potential challenges. In practical applications, these
challenges manifest as the complexity of models in handling real-time data, adapting
to dynamic environments, and providing interpretable results. It requires a balance
between model performance and computational efficiency.

5.2. Future Trends

Considering the above challenges, to further promote the performance of AI-based
wind prediction, the following aspects can be focused on:

d Optimize data processing methods to adapt to specific geographical or meteoro-
logical conditions. Customized data processing methods may be more effective in
particular environments and conditions. Furthermore, by developing new meth-
ods with flexibility and applicability and validating their performance in practical
applications, we aim to gradually overcome the limitations of existing methods in
handling wind data uncertainty.

d During feature extraction, it is essential to consider a comprehensive range of factors
to ensure the thorough capture of various potential elements influencing wind speed
and wind power. Simultaneously, attention must be paid to avoiding the introduction
of redundant information to mitigate the risk of overfitting. In the context of long-
term predictions, regularly updating the feature set is crucial to reflect potential
time-varying influencing factors, contributing to maintaining the robustness of the
model when facing dynamic environmental conditions.

d In enhancing the nonlinear fitting capability of the prediction model, designing
appropriate hybrid strategies allows leveraging the strengths of single models to
better adapt to complex relationships. However, when selecting and optimizing
hybrid strategies, consideration must be given to the specific requirements of the
application and constraints of computational resources, striking a balance between
model performance and complexity.

d Due to the involvement of a large number of parameters in DL models and hybrid
models, a combined approach of manual tuning and intelligent algorithms can be
adopted. Manual tuning leverages professional knowledge and experience to adjust
parameters, enhancing model performance. Simultaneously, intelligent algorithms
can explore optimal solutions within the parameter space, improving optimization
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efficiency. The comprehensive application of these two methods allows for a more
thorough exploration of parameter combinations, ensuring reliable model perfor-
mance in various scenarios.

6. Conclusions

This paper systematically summarizes and organizes AI-based wind prediction re-
search conducted from 2021 to 2023. Focusing on critical steps, including data prepro-
cessing, feature extraction, relationship learning, and parameter optimization, delves into
in-depth analysis and discussion of the key technologies and models involved in these
crucial processes.

Data preprocessing methods are divided into outlier detection methods and
decomposition-based methods, aimed at handling abnormal information in raw wind
data and extracting implicit patterns in complex data. Feature extraction methods in-
clude traditional methods and NN-based methods, which are used to discover more
effective features and eliminate redundant information. The relationship learning pro-
cess simulates the precise mapping between input features and wind speed or wind
power output, covering single prediction models and hybrid prediction models. Single
models can be simple nonlinear regression models, tree-based models, and DL models,
while hybrid methods include combining single models and incorporating postprocess-
ing techniques. The specific method chosen depends on the scenario task and data
characteristics. Parameter optimization primarily refers to optimizing hyperparameters
in prediction models to improve their predictive performance by adjusting model struc-
ture and parameters. Currently, parameter optimization often adopts popular intelligent
optimization algorithms, gradually replacing traditional manual tuning methods. In
practical applications, computational cost is often a key factor. Particularly for predictive
models intended to operate in large-scale or real-time environments, the computational
cost directly influences the feasibility and practicality of the model. Therefore, balancing
model performance and computational cost is paramount in the process of model design
and optimization.

To further promote the performance in AI-based wind prediction, challenges in AI-
based wind prediction over the past three years are discussed, and future trends aimed
at promoting prediction performance are presented. This review provides guidance for
researchers dedicated to promoting the effective application of AI technology in the field of
wind prediction.
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