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Abstract: The growing integration of renewable energy sources, especially offshore wind (OSW),
is introducing frequency stability challenges to electric power grids. This paper presents a novel
hybrid deloading control strategy that enables modular multilevel converter (MMC)-based wind
energy conversion systems (WECSs) to actively contribute to grid frequency regulation. This research
investigates a permanent-magnet synchronous generator (PMSG)-based direct-drive configuration,
sourced from the International Energy Agency’s (IEA’s) 15 MW reference turbine model. Specifically,
phase-locked loop (PLL)-free grid-forming (GFM) control is employed via the grid-side converter
(GSC), and DC-link voltage control is realized through the machine-side converter (MSC), both of
which boost the energy support for the integrated AC grid’s frequency stability. This control strategy
combines the benefits of over-speeding and pitch control modes, facilitating smooth transitions
between different modes based on real-time wind speed measurements. In addition, the practical
challenges of MMCs, such as circulating currents and capacitor voltage imbalances, are addressed.
Numerical simulations under varying wind speeds and loading conditions validate the enhanced
frequency regulation capability of the proposed approach.

Keywords: deloading control; frequency regulation; grid-forming (GFM) control; modular multilevel
converter (MMC); offshore wind (OSW)

1. Introduction

Global warming and air pollution represent two paramount global challenges. Concur-
rently, the escalating demand for electricity to satisfy wintertime heating and summertime
cooling needs due to increasingly frequent extreme weather events, along with widespread
electrification across the transportation and building sectors, is introducing additional
stress to the power grid. Renewable energy sources, particularly solar and wind, emerge
as viable and environmentally sustainable solutions for addressing these pressing issues.
With its ample offshore wind resources, the United States is well positioned to substantially
augment its renewable energy capacity. The federal government has set an ambitious goal
of deploying 30 gigawatts (GWs) of offshore wind (OSW) by 2030 [1], which aligns with
individual states’ objectives, such as New Jersey’s goal of achieving 3.5 GWs by 2030 and
11 GWs by 2040 [2]. Harnessing the full potential of OSW holds the promise of diversifying
the nation’s clean energy portfolio and expediting the transition towards carbon-neutral
electric power systems. However, realizing this vision necessitates advancements in both
wind generation and control technologies.

For efficient generation and transmission of high-voltage and high-power energy,
permanent-magnet synchronous generators (PMSGs) have become a compelling option
for offshore wind energy conversion systems (WECSs) due to their high power density,
efficiency, and reliability [3]. PMSGs have been widely adopted by market-leading offshore
wind turbine manufacturers such as Vestas, Siemens Energy, and General Electric into
their state-of-the-art product lines. The design of PMSGs eliminates the need for external
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excitation, which is advantageous for black-start operations. Furthermore, the absence
of gearboxes in the direct-drive configuration improves the overall system reliability. In
conjunction with PMSGs, power electronic converters (PECs) are another integral compo-
nent of WECSs. PECs for WECSs generally employ a cascaded and paralleled structure
that consists of multiple power modules. Notably, among the prevalent topologies [4],
modular multilevel converters (MMCs) [5,6] have shown great promise. Initially developed
for high-voltage direct-current (HVDC) transmission systems, MMCs offer a scalable and
transformer-less structure. They can withstand high voltage levels and greatly reduce the
average switching frequency of PECs without compromising power quality.

The output characteristics of WECSs are highly influenced by control schemes imple-
mented in PECs. Conventionally, WECSs utilize maximum power point tracking (MPPT)
schemes [7] to optimize economic returns. The PECs function as grid-following (GFL) cur-
rent sources that rely on a stiff external grid, while the kinetic energy in wind turbines and
generator rotating masses does not directly contribute to grid inertia due to the decoupling
of their rotating speed from the grid frequency. Therefore, traditional WECSs are generally
not designed to provide essential grid services such as inertial and frequency response.
However, as fossil-fuel-fired synchronous generators (SGs) are gradually phased out and
replaced by clean and/or renewable energy resources, the electric grid is expected to ex-
perience a decline in both inertia and damping, leading to a more pronounced frequency
nadir and rate of change in frequency.

Under this context, there is a growing interest in grid-forming (GFM) control [8] for
its potential to improve grid stability and reliability. GFM control allows PECs to operate
as voltage sources, thereby emulating SG’s functionalities such as grid stabilization, self-
synchronization, and frequency/voltage regulation. GFM control requires a stable source
of energy, with traditional GFM strategies [9,10] often assuming a constant DC-link voltage,
which is not suitable for WECSs due to the intermittent nature of the wind energy source.
In [11], energy storage systems (ESSs) were integrated to regulate the DC-link voltage,
enabling WECSs to operate continuously in MPPT mode while the grid-side converter
(GSC) functions as a GFM converter. However, this configuration limits the grid support
capability to the ESS’s capacity and necessitates an oversized GSC. Alternatively, the ESS
could be installed on the AC side. With the ESS managing the virtual synchronous generator
(VSG) control [12], the GFL control could be applied to the machine-side converter (MSC)
of the WECS without further modifications. Nevertheless, islanded operations remain a
challenge for such GFL-controlled WECSs. Inclusion of ESSs can also result in higher initial
investments, increased maintenance costs, and potential reliability issues, all of which
warrant careful evaluation.

To this end, GFM control schemes without ESSs have been explored for WECSs [13,14].
The authors of [15] introduced a supplementary controller into an MPPT-based MSC. This
strategy capitalized on the rotational energy stored in wind turbine rotors to provide
additional inertial and primary frequency support. Another method was presented in [16],
where a GSC provided inertial response and damping by correlating the DC-link voltage
with the grid frequency under a droop mechanism. However, these methods can only
provide short-term frequency support and are vulnerable to secondary frequency drop
issues during rotor speed recovery [17]. Moreover, GSCs depend heavily on the external
grid voltage for DC-link voltage regulation. Reference [18] presented a GFM control with
enhanced torsional vibration damping. It utilized a MSC to regulate the DC-link voltage,
allowing the PMSG and the MSC to behave as a voltage source for the GSC. While this
implementation promotes grid support rather than dependence, it requires a phase-locked
loop (PLL) for grid frequency measurement, which could induce instability under weak
grid conditions [19]. For enhanced long-term frequency support, deloading strategies offer
another avenue. By intentionally operating wind turbines at suboptimal power points,
reserved power could be ramped up for grid stabilization when needed [20]. Deloading
could be achieved through two primary techniques: pitch angle control [21] and over-
speeding control [22]. The primary function of pitch control is to down-regulate power



Energies 2024, 17, 1253 3 of 22

outputs. However, frequent activation of pitch control could wear mechanical drives. In
addition, its effectiveness is restricted by a relatively slow dynamic response owing to a
large mechanical time constant. On the other hand, while over-speeding control has a
faster response, it has a limited control spectrum, especially when the rotor approaches
the maximum allowable speed. Given the pros and cons of both methods, hybrid control
mechanisms [20,23] are designed to improve the power regulation flexibility of wind
turbines and maximize the efficiency and reliability of WECSs. Furthermore, it is crucial to
consider the practicalities of implementing such control methods in real-world applications.
Much of the prior research has predominantly validated their approaches on traditional
two-level PECs. However, these converters fall short of meeting the high-power and high-
voltage requirements of WECSs. To accurately represent and implement GFM control in
offshore WECSs, it is essential to adopt MMCs, as they more closely align with the practical
realities and demands of these systems.

In this work, a novel GFM control strategy is proposed for integrating offshore
WECSs into the grid with enhanced stability and reliability. The major contributions
of this work include:

(1) A hybrid deloading control strategy is proposed for implementing GFM control of
offshore WECSs to pursue long-term frequency support to the grid. The proposed
strategy could operate the WECSs across a wide range of wind speeds, while ensuring
a smooth transition between over-speeding and pitch control modes based on wind
speed measurements.

(2) The MSC is controlled to stabilize the DC-link voltage with improved grid support
functionality, and the GSC based on the VSG concept efficiently aids in system fre-
quency regulation and inertial response without requiring a PLL.

(3) The performance of the proposed control strategy is evaluated on an MMC-based
WECS, reflecting the state of the art in offshore wind energy generation technologies.

The remainder of this paper is structured as follows: Section 2 presents the detailed
modeling of a WECS connected to an AC grid, with a focus on the lower-level controls of the
MMC-based MSC and GSC. Section 3 presents the proposed hybrid deloading GFM control
strategy. In Section 4, numerical simulations are conducted to evaluate the effectiveness
of the proposed approach, followed by the identification of potential avenues for future
research. Finally, Section 5 provides the conclusions.

2. WECS Modeling

Figure 1 depicts the overall structure of the MMC-based WECS connected to an
external AC grid, with the proposed control module highlighted in blue. The wind turbine
is connected to the PMSG via the drivetrain. The PMSG feeds the electrical power to the
AC grid through a back-to-back converter. This back-to-back converter is composed of
two MMCs: the MSC and the GSC. Two series-connected capacitors constitute the DC link.
While the LC filter at the GSC output terminal is optional, it becomes beneficial when the
MMCs have a limited number of voltage levels. The LC filter improves power quality
by filtering out switching harmonics. In this work, the phase-shifted carrier (PSC) pulse
width modulation (PWM) technique is employed due to its advantages, such as evenly
distributed pulses and reduced DC-link current ripples [24]. The modeling of the main
components of the WECS under consideration and the AC grid, as well as the main control
modules associated with the MSC and the GSC except the proposed control scheme, are
elaborated in this section.
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2.1. Wind Turbine Model
2.1.1. Wind Turbine Aerodynamics

Wind turbines convert the kinetic energy of wind into mechanical power (PT) by the
rotor blades:

PT =
1
2

ρπR2
Tv3

wCp(λT , β), (1)

where ρ is air density, RT is the rotor blade radius, vw is the wind speed, and Cp is the
power coefficient that indicates the turbine’s aerodynamic efficiency. Cp is a function of the
tip speed ratio (TSR) λT and the blade pitch angle β. The TSR is defined as

λT =
ωT RT

vw
, (2)

where ωT is the rotor’s angular speed. Cp can be mathematically expressed using various
functions [25], and this study employs a polynomial function:

Cp(λT , β) = ∑4
i=0 ∑4

j=0 aijλ
j
T βi, (3)

where coefficients aij can be determined through curve fitting of turbine operational data.
For β = 0, Cp achieves its maximum value Cpmax = Cp

(
λT_opt, 0

)
at the optimal TSR

(λT_opt), allowing the wind turbine to maximize energy extraction:

Pmppt =

(
ρπR5

TCpmax

2λ3
T_opt

)
ω3

T = Koptω
3
T . (4)

In this study, the International Energy Agency (IEA) 15 MW reference wind turbine [26]
is utilized for WECS modeling. This turbine was chosen for its established role as an open
benchmark to validate the applicability and/or cost-effectiveness of proposed solution
methods in OSW. Its typical operating curves are displayed in Figure 2.

This turbine has four specific operational wind speed thresholds: a cut-in wind speed
(vw_ci) of 3 m/s, an intermediate wind speed vw_int of 6.98 m/s, a rated wind speed (vw_rated)
of 10.59 m/s, and a cut-out wind speed (vw_co) of 25 m/s. Its operation is, thus, divided
into five zones: Zones 1, 1.5, 2, 3, and 4. Since Zone 1 (vw < vw_ci) and Zone 4 (vw ≥ vw_co)
are generally uninteresting for standard control purposes, they are excluded from Figure 2.
The other zones are detailed as follows:
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Zone 1.5 (vw_ci ≤ vw < vw_int): In this zone, the wind speeds are insufficient to enable
the wind turbine to operate at λT_opt. A minimum pitch angle constraint is enforced to
maintain efficient operation, which results in positive blade pitch angles up to 4◦ at these
lower wind speeds.

Zone 2 (vw_int ≤ vw < vw_rated): The wind speeds are high enough in this operational
zone, so the wind turbine enters MPPT mode with λT_opt to maximize energy capture
and efficiency.

Zone 3 (vrated ≤ vw < vw_co): In this zone, the wind speeds exceed the rated value. To
limit mechanical loads and prevent the PMSG from being overloaded, the turbine rotor
speed and the PMSG power output are maintained at their rated values. This regulation is
achieved by dynamically adjusting the pitch angle.

2.1.2. Drivetrain

The drivetrain transfers mechanical energy from the rotating wind turbine blades to
the PMSG and can be represented as a one- or two-mass model [27]. The two-mass model
is favored for grid integration studies because it can capture torsional dynamics, such as
resonances or oscillations, between the wind turbine and PMSG rotors. The two-mass
model for direct drive is described as:

JT
.

ωT = τT − τsha f t − KTωT , (5)

Jm
.

ωm = τsha f t − Kmωm − τe, (6)

τsha f t = Ksθ + Bs
.

θ, (7)
.
θ = ωT − ωm, (8)

where JT and Jm are the moments of inertia for the wind turbine and PMSG, respectively.
ωm denotes the mechanical angular speed of the PMSG rotor. τT is the turbine aerodynamic
torque, τsha f t is the torque on the coupled shaft, and τe is the electromagnetic toque of the
PMSG. KT and Km are the viscous friction coefficients, while Ks and Bs are the stiffness and
damping coefficients of the coupled shaft, respectively.

2.1.3. Pitch Actuator

The pitch angle of the wind turbine is adjustable for limiting turbine rotor speed
and, thus, mechanical power outputs. Figure 3 illustrates a second-order pitch actuator
model [28], acting on the pitch angle reference (β*), which is set by the proposed control
module, with a, b, and c representing the model parameters. Also, the threshold values for
both the pitch angle and the rate of its change are specified.
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2.2. PMSG Model

A surface-mounted PMSG is considered in this work. Its stator current dynamics can
be expressed in the synchronously rotating dq-axes rotor reference frame:

..
ids =

1
Ls

(
−vds − Rsids + ωeLsiqs

)
, (9)

..
iqs =

1
Ls

(
− vqs − Rsiqs − ωeLsids + ωeψ f

)
, (10)

τe =
3
2

Ppψ f iqs, (11)

ωe = Ppωm, (12)

where ids and iqs are the PMSG dq-axes stator currents, and vds and vqs are its dq-axes stator
voltages. Rs and Ls are the resistance of PMSG stator windings and the self-inductance,
respectively. In addition, ψ f is the rotor flux linkage produced by the permanent magnet,
ωe is the electrical angular speed of the PMSG rotor, and Pp is the PMSG’s number of
pole pairs.

2.3. MMC Model
2.3.1. General MMC Configuration

The generalized circuit configuration of a three-phase MMC is shown in Figure 4. The
three-phase AC system (PMSG or AC grid) is connected to the midpoint of each phase
leg. One leg consists of two arms, and each arm has a group of submodules (SMs), with
an arm inductor (Larm) and an arm resistor (Rarm) connected in series. The arm inductors
are utilized to limit circulating currents among the phase legs and also DC-side short-
circuit fault currents. For its simplicity, the two-level half bridge is chosen as the SM
configuration in this work. Depending on the operating conditions, the individual voltages
of the capacitors in the SMs can be inserted or bypassed by appropriately controlling the
switches in the SMs to generate the desired output voltage waveforms.

2.3.2. Machine-Side Control

The MSC is responsible for regulating the DC-link voltage (Vdc) at its nominal value,
achieved using the cascaded proportional–integral (PI) control, as depicted in Figure 1.
The outer voltage control produces the q-axis current reference (i*qs) for the inner current
control loop, with its detailed diagram shown in Figure 5, where the zero d-axis current
(ZDC) control strategy [29] is applied. The decoupled control of the PMSG is analogous
to a separately excited DC machine such that the electromagnetic torque (τe) is directly
controlled by the stator current. Moreover, the stator winding resistance Rs is ignored in this
control loop because it is generally negligible in high-power SGs. Lastly, the three-phase
reference voltage component (v*

abcsi) is obtained through the inverse Park transform, based
on the measured PMSG electrical rotor angle θe.
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2.3.3. Grid-Side Control

The GSC primarily performs reactive power control and VSG-based grid-forming
functionality. Figure 6 shows the reactive power control, which mimics the conventional SG
exciter and controls the measured reactive power output (Qg) based on the output phase

voltage magnitude Vo calculated as
√

2
3
(
v2

ao + v2
bo + v2

co
)
. Vn and Qn are the nominal output

phase voltage and reactive power, respectively. Qn is set as zero because additional reactive
power support is unnecessary for nominal grid voltage. In addition, kv is a voltage droop
coefficient, and the integral term kq

s introduces virtual inertia. This reactive power control
loop provides the d-axis voltage reference (v∗do) to the dual control module in Figure 1.
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The dual control loop in the dq-axes reference frame is adopted due to its fast dynamic
response and ability to limit grid fault currents. Similar to the MSC, it consists of an outer
voltage control and an inner current control. In Figure 7, the outer voltage control loop
tracks the voltage references (v∗do and v∗qo) and generates the dq-axes current references (i∗d f
and i∗q f ) for the inner current control loop. Since the output voltage is aligned with the d
axis of its reference frame, v∗qo is set as zero. Furthermore, resistances are not considered
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within this dual control loop, given their negligible values. To generate the three-phase
reference voltage component (v∗

abcgi), the inverse Park transform is utilized. The phase
angle θr is provided by the VSG.
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The VSG as shown in Figure 8 emulates the behavior of a conventional SG and
implements active power control. It produces angular speed ωr and phase angle θr. The
speed governor block uses droop control for frequency regulation, where ωn denotes the
nominal grid angular frequency and k f symbolizes the frequency droop coefficient. Unlike
previous studies that adopted a static droop value, this paper introduces an adaptive k f to
reflect the actual operating conditions more accurately. In effect, the kinetic energy stored
in the wind turbine rotors varies with real-time operating conditions. This, in turn, affects
the frequency regulation capability and the virtual inertia response. The instantaneously
stored kinetic energy is 1

2 JTω2
T , and a factor is defined to relate the available kinetic energy

to the maximum value:

κ :=
ω2

T − ω2
Tmin

ω2
Tmax − ω2

Tmin
, (13)

where ωTmax and ωTmin correspond to the maximum and minimum allowable rotor speeds
of the turbine, respectively. From this definition, this adaptive frequency droop coefficient
can be formulated as:

k f = κ · k f n, (14)

where k f n is the droop coefficient when the wind turbine operates at its rated rotor speed.
In addition, an adaptive virtual inertia time constant is defined as:

Hvir = κ · Hvirn, (15)

where Hvirn is the nominal virtual inertia time constant. The active power reference,
denoted by P∗

g , is determined by the proposed control module. Furthermore, a low-pass
filter (LPF) is used to model the dynamics of a prime mover. The difference between the
filtered power reference and the measured active power output (Pg) is initially normalized
by the WECS’s nominal power rating Sn. In the swing equation block, Dp stands for the
power damping coefficient. This VSG adopts the feed-forwarding power damping method
outlined in [30], which eliminates the need for frequency measurement and has no influence
on the VSG’s steady-state or inertial dynamics.
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2.3.4. Ancillary Controls

The ancillary controls, namely SM capacitor voltage control (SCVC) and circulating
current control (CCC), are common to both MMCs in the MSC and GSC. Since the SMs
have floating capacitors, their voltages must be maintained at the nominal value (V*

c ).
Therefore, SCVC is essential for ensuring MMC’s stable operation and improving power
quality. SCVC has two control levels: arm voltage control, which balances the SMs within
one arm, and leg voltage control (LVC), which regulates the average SM capacitor voltage
across each phase leg to the nominal value. This work employs the aggregate model of the
half-bridge MMC [31] to reduce simulation burdens. All SM capacitor voltages in one arm
are assumed to be balanced via arm voltage control strategies such as [32], so only LVC is
implemented in this paper.

Additionally, inevitable mismatches between the inserted voltage of each phase leg
and the DC-link voltage give rise to circulating currents among the phase legs. These
currents will result in increased current stresses and power losses in switching devices
and voltage ripples in the SM capacitors, compromising the overall performance of MMCs.
The circulating currents mainly include even-order harmonics of fundamental frequency
and can be eliminated using multiple quasi-proportional-resonant (PR) controllers [32] in a
stationary abc reference frame. The transfer function of a quasi-PR controller is as follows:

PR(s) = kp + ∑h=2, 4,6...
2ωckrhs

s2 + 2ωcs + (hω0)
, (16)

where kp represents the proportional coefficient, while krh denotes the resonant coefficients.
ωc is the cut-off frequency, and hω0 is the resonant frequency associated with the hth-order
harmonic component to be eliminated. In this study, only the second-order harmonics are
considered because they are the most dominant. The detailed diagram of ancillary controls
is presented in Figure 9.
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In the LVC block, the average SM capacitor voltage of each phase leg (Vcj) is calculated
as:

Vcj =
1

2N
(
∑N

k=1 vcjuk + ∑N
k=1 vcjlk

)
, (17)

where vcjuk and vcjlk are the capacitor voltages of the kth SM in the upper (u) and lower (l)
arms, respectively, of phase leg j, as shown in Figure 4. Moreover, the actual DC current
component ix can be approximated using the arm currents:

ix =
∑j=a,b,c iju + ∑j=a,b,c ijl

6
(18)

where iju and ijl mean the currents flowing through the upper and lower arms, respectively,
of phase leg j.
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In the CCC block, the circulating current component idi f f _j for each phase is derived
from its upper and lower arm currents and is suppressed to zero for elimination:

idi f f _j =
iju + ijl

2
. (19)

Lastly, the outputs from both blocks are synthesized to modify the voltage references
for the upper and lower arms in each phase leg as follows:

y*
ju =

−v*
ji − v*

jz

Vdc/2
,

y∗jl =
v∗ji − v∗jz
Vdc/2

, (20)

where v∗ji refers to the reference voltage component of phase j generated by the inner current
control loop in both MSC and GSC, while v∗jz is the synthesized voltage of phase j by the
ancillary controls. Furthermore, Vdc is the measured DC-link voltage. The arm voltage
references are then applied to the PSC–PWM blocks illustrated in Figure 1.

2.4. AC Grid Model

To analyze the frequency regulation capability of GFM control, it is essential to simulate
an AC grid with inherent dynamics that could be effectively represented by an equivalent
SG [18]. The AC grid in Figure 1 is then modeled as a controlled voltage source behind
the grid impedance. The three-phase grid voltage reference

(
v*

abcgr

)
is generated from the

speed droop control for the equivalent SG [33], with its simplified block diagram illustrated
in Figure 10.
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Figure 10. Equivalent AC grid dynamic model.

Rdroop is the droop coefficient. A single-reheat tandem-compound steam turbine is
modeled; Tn and Td are its time constants. Sgrn is the nominal power rating of the AC grid.
Pgr refers to the measured active power output of the AC grid, while Pgrn(p.u.) represents
the normalized value of the prescribed active power output at the system’s nominal angular
frequency (ωn). Pgrn(p.u.) is set as zero in this work. Moreover, Vgn is the nominal peak
phase voltage of the AC grid. The grid strength can be quantified by the short-circuit ratio
(SCR), a metric directly correlated with grid impedance. A higher SCR value indicates a
stiffer grid. For a given SCR, the grid reactance (Xgr) and resistance (Rgr) are specified as:

Xgr =
3V2

gn

2 · SCR · Sgrn
= ωnLgr,

Rgr =
Xgr

σX/R
, (21)

where σX/R is the quality factor of the AC grid impedance.
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3. Proposed Hybrid Deloading Method

This section introduces the proposed hybrid deloading approach, devised to operate
across a wide range of wind speeds. The wind turbines are made to deviate from the
MPPT mode to preserve a certain amount of power margin (d). This results in the power
output reference:

Pdel = (1 − d)Pmppt. (22)

With reference to (1), the TSR required for this deviation (λTdel ) is calculated from

Cp
(
λTdel , 0

)
= (1 − d)Cp

(
λTopt , 0

)
. (23)

System operators have the flexibility to predetermine the power margin. Common
choices include 1%, 5%, 10%, and 20%. This reserved power allows the WECS to actively
participate in frequency regulation while effectively addressing secondary frequency drop
issues. The PT versus ωT curves of the IEA 15 MW wind turbine under different wind
speeds are presented in Figure 11, and d is chosen as 10% for illustration. The original
MPPT curve with λT_opt = 8.8775 is plotted based on (4). Using (23), the corresponding
TSR for a 10% deloading at varying wind speeds is calculated as λT_del = 10.7584, which
indicates an over-speeding operation of the wind turbine.
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At relatively lower wind speeds (e.g., vw = 0.7 p.u.), there is sufficient headroom
between point A1 on the MPPT curve and the maximum allowable rotor speed ωTmax.
Hence, the corresponding point A2 on the designed over-speeding curve is reachable.
Nevertheless, as Figure 11 suggests, this headroom diminishes with wind speed increase.
When wind speeds are at, say vw = 0.9 p.u., the point B2 on the deloading curve is already
beyond ωTmax, rendering the over-speeding operation itself infeasible to achieve 10%
deloading at this wind speed. By clamping the rotor speed to ωTmax, there is an upper
bound (vw_h) for wind speeds beyond which pitch control should further be applied to
achieve the desired 10% deloading. This boundary value can be derived using the system
parameters in [26]:

vw_h =
ωTmaxRT

λT_del
≈ 8.83 m/s. (24)

To minimize pitch control activation while retaining adequate reserve power, a new
deloading (pitch-controlled) power reference curve is designed for wind speeds that fall
between vw_h and vw_rated. The required pitch angle (βdel) for each wind speed at deloading
factor d is found by solving

(1 − d)Cpmax = Cp

(
RTωTmax

vw
, βdel

)
. (25)
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For different wind speeds, a look-up table (Table 1) for the required pitch angles (βdel)
at 10% deloading can be built. The required pitch angles for other deloading factors can
also be computed using (25).

Table 1. Look-up table for the pitch angles considering d = 10%.

vw (m/s) βdel (◦)

8.83 3.2680

8.87 3.2987

9.25 3.3849

9.66 3.3790

10.08 3.3021

10.49 3.1655

To determine the pitch angle for 10% deloading at intermediate wind speeds not
listed in Table 1, the modified Akima piecewise cubic Hermite interpolation (Makima) is
used for its ability to balance curve smoothness with fidelity to discrete data points. For
example, βdel is 3.3888◦ when vw is 9.53 m/s (0.9 p.u.). Under this pitch control, the pitched
yellow power curve intersects with the ωTmax vertical line at the point B3 in Figure 11.
In accordance with (25), power output at this point is 10% deloaded from the maximum
available power output at B1. To satisfy the cubic relationship between the rotor speed and
the power output shown in (4), this deloading (pitch-controlled) power reference curve is
designed to connect the point of intersection with the origin:

Pdel =
(1 − d)Pmppt(vw)

ω3
Tmax

ω3
T =

(1 − d)ρπR2
TCpmaxv3

w

2ω3
Tmax

ω3
T = Kdel(vw)ω

3
T . (26)

It should also be noted that there exists a minimum allowable rotor speed ωTmin. In
order for the over-speeding curve to be valid, the lower bound (vw_l) for the wind speeds
can be determined as follows:

vw_l =
ωTminRT

λT_del
≈ 5.84 m/s. (27)

For the 15 MW reference wind turbine, when the wind speeds range from vw_ci
(3 m/s) to vw_l (5.84 m/s), the rotor speed can be actively regulated to ωTmin by a PI
controller. This regulation aims to prevent potential three-period (3P) interference with the
natural frequency of a tower or monopile [26]. Given the lower mechanical power outputs
in this wind speed range, deloading is not utilized in this paper. However, alternative
methods, such as applying the CP-maximizing minimum blade pitch angles as suggested
in [26], could be employed to maintain the minimum rotor speed. Moreover, when wind
speeds surpass vw_rated, the pitch controller should be activated to maintain the rotor speed
at ωTmax. This measure protects the wind turbine and the PMSG from overloading. In such
cases, the theoretical maximum mechanical power output (PTmax) can be deloaded to:

Pdel = (1 − d)PTmax. (28)

From the above discussion, the active power reference (P∗
g ) for the GSC with a de-

loading objective of d based on the new operational wind speed thresholds is summarized
as follows:
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P∗
g =



(
ρπR5

TCp

(
λTdel

,0
)

2λ3
T_del

)
ω3

T , vw_l ≤ vw < vw_h

(1−d)ρπR2
TCpmaxv3

w
2ω3

Tmax
ω3

T , vw_h ≤ vw < vw_rated

(1 − d)PTmax, vw_rated ≤ vw < vw_co

. (29)

The accurate measurement of wind speeds plays an important role in implementing
(29). Enhancements in measurement precision can be achieved through both hardware
and software advancements. Instruments such as ultrasonic anemometers and LiDAR
systems could be employed. On the software side, the extended Kalman filter and machine
learning algorithms [34] could further refine the accuracy and efficiency of wind speed
measurement. The proposed hybrid deloading control is presented in Figure 12.
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From the preceding analysis, the over-speeding control mechanism, along with the
designed pitch-controlled curves, ensures that ωT does not exceed ωTmax. However, ωT
may potentially rise above its maximum value when the wind speeds are beyond the
turbine’s rated value. To this end, a PI-based pitch controller is introduced in Figure 12
to regulate the wind turbine rotor speed. This controller complements the active power
reference outlined in (29), providing a comprehensive control strategy.

4. Case Studies

The system shown in Figure 1, subjected to a dynamic load, is modeled in the MAT-
LAB/Simulink environment to evaluate the dynamic performance of the proposed control
strategy. The fixed-step solver with a step size of 50 µs is employed for numerical sim-
ulations. The detailed system parameters are presented in Table 2. The simulated load
comprises a base load combined with step-changing loads. In addition, the AC grid is
modeled as a weak grid characterized by a low SCR value of 4. In the following case
studies, the steady-state and transient performances of the proposed hybrid deloading
approach at different wind speeds are evaluated.

Table 2. Parameters of the modeled system.

Wind turbine

Power coefficient Cpmax 0.481 Optimal TSR λT_opt 8.878

Rotor radius RT (m) 120 Rated speed ωTrated (rad/s) 0.7835

Min. speed ωTmin (rad/s) 0.5236 Max. speed ωTmax (rad/s) 0.7917

Moment of inertia JT (kg·m2) 3.525 × 108 Viscous friction coeff. KT (p.u.) 2 × 10−3

Stiffness coeff. KS (p.u.) 0.4 Damping coeff. BS (p.u.) 1.5

Pitch actuator coeffs. [a b c] [1 5 28] Pitch angle limits [βmin βmax] (◦) [0 27]

Change rates [
.
βmin

.
βmax] (◦/s) [−10 10]
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Table 2. Cont.

PMSG

Rated electrical power ((MW) 15 Rated stator frequency (Hz) 12.6

Rated phase voltage (V rms) 4770 Flux linkage ψ f (Wb) 79.321

Stator resistance Rs (Ω) 0.16 Self-inductance Ls (H) 0.0204

Number of pole pairs (Pp) 100 Moment of inertia Jm (kg·m2) 3.1 × 107

Viscous friction coeff. Km (p.u.) 2 × 10−3

MMCs

Nominal DC-link voltage (kV) 16 Number of SMs per arm 20

Arm inductance Larm (mH) 3.5 Arm resistance Rarm (mΩ) 80

DC-link capacitor Cdc (mF) 200 PWM carrier frequency (Hz) 600

Droop coeff. kv (Var/V) 2.3 × 104 Droop coeff. k f n (W/rad/s) 2.06 × 106

VSG time constant Hvir (s) 4.2 Power damping coeff. Dp (p.u.) 0.03

LC filter

Resistance R f (mΩ) 20 Inductance L f (mH) 1

Capacitance C f (mF) 40

Step-up transformer

Power rating (MVA) 20 Voltages: 8262V-D1/66kV-Yg

AC grid

Droop coeff. Rdroop (p.u.) 0.02 Turbine time constants [Tn Td] [2 6]

Power rating Sgrn (MVA) 50 Active power ref. Pgrn(p.u.) 0

Inertia time constant Heq (s) 6.7

4.1. Constant Wind Speeds
4.1.1. Over-Speeding Control Performance

In this scenario, a constant and relatively low wind speed of 7.63 m/s (0.72 p.u.)
is simulated, which is a relatively low wind speed. At this wind speed, the proposed
control method operates the wind turbine in the over-speeding mode with the prescribed
10% power margin. The performance of the proposed method is then compared with the
traditional MPPT method and the MPPT plus frequency droop method presented in [23].
In the MPPT method, the power reference from (4) is directly sent to the swing equation
block of the VSG. In the MPPT plus frequency droop method, the power reference from (4)
is supplemented by grid frequency droop control, as specified in [23]. The load is initially
9 MW, and then a sudden 5 MW load increment is introduced at t = 35 sec to evaluate
dynamic performance. Figure 13 displays the wind turbine rotor’s angular speed (ωT) and
the PMSG rotor’s mechanical angular speed (ωm) for the three methods.
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It is clearly observed that the rotor speeds of both the wind turbine and the PMSG in all
methods converge to new steady states. However, the wind turbine rotor speed undergoes
slower and smaller fluctuations compared to the PMSG rotor speed in all methods. This
distinction can be attributed to the drivetrain dynamics and the wind turbine’s considerably
larger moment of inertia. Notably, the rotor speeds of the proposed method remain higher
than those of the other two methods, due to its over-speeding operation. When subjected
to a sudden load increase, the rotor speeds in the proposed method decline, thereby
leveraging the kinetic energy stored in the rotating masses to deliver additional active
power. In contrast, the rotor speeds in the MPPT method remain largely unchanged
throughout the evaluation due to the absence of additional power reserves. In the MPPT
plus frequency droop method, the rotor speeds are lower than those in the MPPT method.
These different results occur because the grid frequency droop control enables the WECS to
operate to the left of the maximum power points in Figure 11, when the grid frequency is
lower than the nominal grid frequency.

The grid angular frequencies of the three methods are also compared to assess their
frequency regulation capabilities. Given their different initial operating conditions, only the
angular frequency deviations from their initial values (0.99859 p.u. for the MPPT method,
0.99848 p.u. for the proposed method, and 0.99858 p.u. for the MPPT plus frequency droop
method) are presented in Figure 14. Since the MPPT method does not contribute to primary
frequency regulation, the grid frequency is solely regulated by the AC grid. Although the
MPPT plus frequency droop method contributes to frequency regulation, its effectiveness
is limited. This limitation arises because the power reference from the MPPT algorithm
decreases as the rotor decelerates to release kinetic energy. Conversely, the proposed
method enhances frequency support for the AC grid by arresting the frequency decline
through a deloaded power reserve. This approach leads to a noticeable improvement in
the grid frequency nadir by around 0.00062 p.u. (0.0372 Hz) compared with the MPPT plus
frequency droop method. Additionally, the grid frequency recovers to a new steady state
relatively closer to its initial steady state using the proposed method.
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The active and reactive power outputs are displayed in Figures 15 and 16, respectively.
Initially, due to the proposed deloading operation, the WECS generates less active power
compared to the conventional MPPT method and the MPPT plus frequency droop method.
Upon the load increase, the proposed method increases mechanical power output by
decreasing the turbine rotor speed for frequency regulation. As the wind turbine rotor
speed varies over time, the active power reference dispatched to the GSC is adaptively
adjusted to prevent further decreases in turbine speed. However, the MPPT method makes
the WECS generate constant active power despite the short transient following the load
change. The MPPT plus frequency droop method, on the other hand, produces more active
power than the MPPT method but experiences a higher spike during the transient phase.
It is also noted that the WECS in all methods is capable of regulating the output voltage.
When the load increases, the GSC under all methods senses a voltage dip at its output
terminal and responds by increasing reactive power generation to stabilize the voltage, as
shown in Figure 16.
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Since MMCs are used in both the MSC and GSC of the simulated system, ancillary
controls are important for their efficient and stable operation. Figures 17 and 18 compare
the control performances of the proposed method before and after applying these ancillary
controls. Taking the GSC as an example, Figure 17 shows the upper and lower arm currents,
iau and ial , respectively, along with the circulating current component idi f f _a for phase leg
a. It is clear that once the CCC is activated, there is a noticeable reduction in arm current
distortion and the circulating current is effectively suppressed, showing a smoother DC
component. In addition, the LVC enables the average SM capacitor voltages to be more
evenly balanced across all three phases, as evidenced in Figure 18.
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4.1.2. Pitched Control Performance

A relatively high wind speed of 9.43 m/s (0.89 p.u.) is simulated in this scenario, at
which the pitched control is automatically activated. Correspondingly, the pitch angle
reference is set to 3.3825◦ according to the offline look-up table. A comparison is still made
with the other two methods under the same loading condition as in Section 4.1.1.

Figure 19 depicts the angular speeds of the wind turbine and PMSG rotors. Because
the wind speed is already above the upper bound vw_h (8.83 m/s), the initial wind turbine
rotor speed is clamped close to the maximum allowable rotor speed, consistent with the
design of the pitch-controlled curves. At higher wind speeds, the turbine accumulates
more kinetic energy in its spinning rotor. Upon the sudden load increase at t = 35 sec, the
stored energy is rapidly released following the designed pitch-controlled curve to support
the grid. When comparing Figures 13 and 19, it is observed that the rotor speeds in the
proposed method for this scenario exhibit a more pronounced swing than those in the first
scenario due to the greater stored kinetic energy, even though the overall waveforms are
similar. Furthermore, the initial rotor speeds in the MPPT plus frequency droop control
method are higher than those observed in the MPPT method, due to the grid frequency in
this scenario being above the nominal value (1.00069 p.u. for the MPPT, 1.00014 p.u. for the
proposed method, and 1.00070 p.u. for the MPPT plus frequency droop control method).
Under the grid frequency droop mechanism, excess kinetic energy is accumulated in the
rotating masses, which results in higher rotor speeds. When the load increases, the rotor
speeds are reduced to aid in frequency regulation, in contrast with the MPPT method.
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Figure 20 provides a comparison of the grid angular frequency deviations among the
three methods in this higher wind speed scenario. As previously noted, the initial grid
frequencies are above the nominal value, attributed to the higher active power outputs
from the WECS than the base load, as illustrated in Figure 21. When the load increment
occurs, the proposed approach consistently outperforms in enhancing the frequency nadir.
However, the grid frequency recovery is slightly limited in this case because the designed
pitch-controlled curve commands the WECS to reduce its active power output as the turbine
rotor speed decreases over time. In addition, during the transient phase, the MPPT plus
frequency droop control method supplies more active power than the traditional MPPT
method, improving the system’s response to frequency deviations.
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Moreover, the reactive power outputs for all methods are compared in Figure 22. The
reactive power outputs in the MPPT method and the MPPT plus frequency droop control
method are similar and remain negative, indicating an above-nominal output voltage at
the GSC terminal. The voltage regulation observed is similar to the under-excitation mode
of conventional SGs.
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Figure 23 traces the progression of the DC-link voltage for all methods throughout
the simulations. A greater fluctuation in Vdc for the proposed deloading method is caused
by a larger instantaneous power imbalance between the MSC and the GSC. Furthermore,
the comparison shows a more pronounced change in Vdc when comparing the MPPT plus
frequency droop control method with the conventional MPPT method, which indicates the
effect of integrating a frequency droop mechanism. These observations confirm that the
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DC-link voltages are well regulated in all methods, with the MSC dynamically adjusting
the electromagnetic torque of the PMSG.
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4.2. Varying Wind Speeds

In order to further evaluate the dynamical performance of the proposed hybrid deload-
ing approach in a practical setting, a varying wind speed scenario is designed. Figure 24
shows a time series of offshore wind speeds sampled at 2 Hz. A dynamic load is simulated
with a base load of 10 MW, and a step load of 6 MW is connected at t = 96 sec and discon-
nected at t = 172 s. In this scenario, the angular speeds of the wind turbine and PMSG
rotors are shown in Figure 25.
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Figure 25. Angular speeds of the wind turbine and PMSG rotors.

The rotor speeds of the wind turbine and the PMSG exhibit different dynamical
responses as the wind speed evolves. The rotor speed of the wind turbine is steadier due to
the larger moment of inertia. Furthermore, it is well regulated within the permissible range.
Figure 26 illustrates the grid angular frequency, while Figure 27 displays the active power
outputs of both the WECS and the AC grid.

It is clearly demonstrated that when the step load is connected at t = 96 sec, the WECS
operating in the over-speeding mode is able to assist the grid in arresting the grid frequency
decline. In addition, when the step load is disconnected at t = 172 sec, the WECS in the
pitch-controlled mode adjusts its active power output to help the AC grid counter the grid
frequency rise. When the turbine rotor speed rises beyond the maximum allowable value
after t = 216.4 sec, the pitch controller is activated to regulate the rotor speed. Concurrently,
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the WECS starts to follow a deloaded constant active power reference, as shown in Figure 27.
The simulation results demonstrate the smooth operational transitions facilitated by the
proposed method.
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The response of the pitch actuator is presented in Figure 28. It shows that the proposed
hybrid deloading method can effectively generate pitch angle references that adapt to vary-
ing grid conditions. This adaptability ensures effective frequency regulation throughout
the simulation.
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4.3. Future Scope

The proposed control method has its limitations including economic drawbacks due
to deloading compared to MPPT methods. However, the opportunity costs could be
compensated for by participating in reserve markets. On the other hand, advancements in
ESS technologies, particularly long-duration and large-scale hydrogen storage, could make
the “OSW + hydrogen” solution economically viable for enhanced frequency support. The
economic benefits of these options could be further quantified and leveraged. Furthermore,
this study’s focus on individual wind turbine control does not account for variable wind
speeds across wind farms due to the wake effect. Exploring adaptive deloading factors that
consider both grid and wind conditions could further enhance system performance. As a
next step, we plan to develop distributed, coordinated control strategies for offshore wind
farms integrated with hydrogen storage to improve frequency regulation and optimize
cost-effectiveness.
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5. Conclusions

This paper proposed a hybrid deloading GFM approach for MMC-based WECSs.
Based on real-time wind speed measurements, it enables seamless transitions between
different control modes to regulate the grid system frequency effectively. Notably, the
proposed control eliminates the need for a PLL for frequency measurement, thus avoiding
PLL-related instability issues in weak grid conditions. Rigorous numerical simulations
conducted in MATLAB/Simulink have validated the ability of the proposed method to
provide robust inertial and frequency support to the grid across varying wind and loading
conditions. The results confirm that the proposed method offers enhanced frequency
regulation capabilities during both transient and steady-state conditions. Moreover, this
study has addressed the key operational challenges associated with MMCs, including
circulating currents and capacitor voltage imbalances, which paves the way for more
reliable and efficient practical implementations in OSW.
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