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Abstract: Microgrids are local energy production and distribution networks that can operate indepen-
dently when disconnected from the main power grid thanks to the integration of power generation
systems, energy storage units and intelligent control systems. However, despite their advantages, the
optimal energy management of real microgrids remains a subject that requires further investigation.
Specifically, an effective management of microgrids requires managing a large number of electrical
variables related to the power generated by the microgrid’s power supplies, the power consumed
by the loads and the aspects of power quality. This study analyzes how we can monitor different
variables, such as the active power, reactive power, power factor, total harmonic distortion and
frequency in the loads of a microgrid, using high-precision power meters. Our empirical study,
conducted using a functional microgrid comprising a hybrid wind–solar power system and several
household appliances, demonstrates the feasibility of using low-cost and high-performance power
meters with IoT functionality to collect valuable power quality and energy consumption data that
can be used to control the microgrid operation.

Keywords: energy data analysis; energy management; microgrids; power quality; smart homes;
smart meters

1. Introduction

The traditional electrical grid cannot cope with the new challenges of the world in
terms of reliable, efficient and clean energy [1]. In fact, the exponential expansion of
distributed generation systems in some areas evidences the tendency toward the decen-
tralization of electric networks. These transformations are driven by digital and green
transition policies [2], which require a faster adoption of technology. Considering that en-
ergy saving and the reduction in the use of natural resources have direct impacts on life and
humanity, the smart grids [3] emerge as a new paradigm that promotes greater efficiency,
enhanced security, and increased reliability. This is achieved through real-time monitoring
of electricity usage and the implementation of control strategies aimed at reducing energy
waste and improving system efficiency. Smart grids likewise work with the joining of
sustainable power sources and electric vehicles, contributing to a more sustainable future
by reducing greenhouse gas emissions [4].

Smart cities, smart homes and microgrids are completely interconnected ideas. A
smart city [5] incorporates technological solutions from a wealth of urban data in order to
improve residents’ personal satisfaction and urban management. An effective approach
for smart cities to achieve this goal is the implementation of microgrids [6]. Microgrids are
self-contained energy systems capable of operating independently from the main power
grid. They can use overflow energy created inside the microgrid and feed it into the main
grid during periods of low energy consumption within the microgrid. Moreover, smart
homes are important components of smart cities, as they employ modern technology and
automation to improve energy consumption and waste.
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The management and control of microgrids require monitoring the status of various
components of the system. A pivotal part is upgrading energy effectiveness by providing
detailed, real-time information on electricity consumption [7–10]. These advanced devices
not only provide accurate measurements of electricity consumption, but also enable the
implementation of algorithms for the optimal operation of the microgrid [10]. For instance,
non-intrusive load monitoring (NILM) techniques are commonly employed to identify
the energy consumption patterns of specific appliances and to detect the operational state
(on/off) of devices by analyzing the overall power consumption [11,12]. These data enable
households to receive personalized advice on improving their electrical consumption
management [13]. Therefore, the use of smart metering infrastructure in combination with
efficient management systems contributes to creating a more sustainable and efficient urban
environment, while making it possible to incorporate important data for strategic energy
planning and urban development decision-making [6].

This paper outlines the process of monitoring energy and power quality data in a
microgrid using advanced smart meters with IoT capabilities. The proposed framework
is validated through a real case study. Section 2 gives an overview of recent trends about
smart cities and microgrids, with particular focus on measuring electrical variables in
microgrids using smart meters. Section 3 describes how the proposed framework is able to
monitor a set of home appliances (loads) when they are switched on/off to obtain energy
consumption and power quality measures in a microgrid. Section 4 presents the outcomes
acquired in the experimental study, while Section 5 outlines the main conclusions and
suggests future research directions.

2. Related Work

A microgrid [14] can be characterized as a limited-scale electrical network that can
work freely or in relation to the higher-power lattice, utilizing nearby age sources (for
example, environmentally friendly power frameworks) and energy stockpiling frameworks.
One of the vital advantages of microgrids in smart cities is their energy dependability and
versatility. By producing and disseminating power at the neighborhood level, usually using
renewable energy sources, microgrids can continue to provide electric capacity during
framework blackouts. Moreover, microgrids can likewise assist with decreasing energy
costs by improving energy utilization and diminishing power demand on the grid. This
may result in financial savings for utilities as well as consumers, as well as reducing the
energy consumed during peak demand on the electric grid. Of course, the energy generated
in the microgrid and not consumed by the loads can be stored in the storage systems or,
alternatively, sent to the grid.

The integration of microgrids in smart cities is driven by the need for reliable and
smart energy, electricity networks and the transformation of urban infrastructure. Smart
cities [15,16] have evolved towards more sophisticated ecosystems [17]. The widespread
use of renewable energy sources and the progressive implementation of energy storage
systems are just a few examples. Additionally, the creation of intelligent transportation
systems further exemplifies this trend. Another key element for the development of smart
cities is determined by the continuous deployment of smart homes [18]. These are homes
equipped with electronic devices and appliances that can communicate with each other
and with the control system, allowing customers to better control their energy consumption
and expenses [19]. Smart homes in microgrids also enable homeowners to generate their
own power using renewable energy sources and utilize it to operate home appliances.

Efficient energy management in microgrids has become a highly relevant topic for
researchers worldwide. For example, some studies have proposed heuristic optimization
algorithms to optimize the schedule of home appliances [20]. In different cases, the point
is to give an essential structure to adjust the organic market variance for RES-based mi-
crogrids in a detached region [21] to such an extent that the foundation expected to carry
out the proposed technique is connected with building a checking station furnished with a
large number of PCs and sensors expected to apply NILM calculations. The improvements,
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advantages, and lacking features of smart grid communication methods have also been an-
alyzed in the literature [22]. Some authors have demonstrated that unsupervised methods
can achieve the same range of uncertainty as supervised NILM algorithms while saving
money on the acquisition of labeled data [13]. In [23], a hierarchical design is introduced
that requires no prior information or general models of individual loads. Furthermore, AI
strategies have additionally been applied to examine the adaptability of power utilization
in private structures [24]. In addition, the cyber and physical structures of the hardware
and software in a smart grid determine the security requirements [25] and are important in
guaranteeing secure measurement, communication and control [26].

To deal with the information in microgrids, smart meters and energy management
systems are used. Smart meters are often used to measure energy consumption and the
power quality variables of various loads, including household devices [9]. The relevant
features of a smart meter are the sampling frequency and the electrical measurements it is
capable of calculating [27]. Many investigations have proposed different smart metering
infrastructures to be used in microgrids [28]. For instance, some authors have proposed
multi-objective energy management systems with smart energy meters that allow for the
storage of data on energy generation and battery loads as well as information about the
appliances, in order to investigate the end-user’s energy use habits [29].

3. Monitoring Electrical Variables Using Smart Meters
3.1. Framework Description

The framework proposed here for monitoring and examining energy data at the loads
of a microgrid is divided into several steps:

• Number and type of smart meters: The first step is to determine the type and number
of smart meters to be installed in the microgrid. One option is to employ an intrusive
load monitoring (ILM) approach [30], which involves the use of low-end power meter
gadgets that straightforwardly measure every gadget’s energy utilization. Smart plugs
communicate with the smart meter to transmit real-time energy consumption data.
However, deploying many smart meters can be prohibitively expensive due to the
potentially large number of loads in the microgrid [31]. As an alternative, NILM
techniques [32,33] often involve using a single meter to measure power generation and
another meter to measure overall demand across multiple appliances. The proposed
framework enables the application of NILM methods [34] for different purposes.
For example, the data obtained can be used for load disaggregation, i.e., separating
the energy usage of specific appliances from the total household energy usage [35].
Therefore, it is essential to consider high-precision, low-cost smart meters for this
purpose. In our study, the openZmeter is used [7,36], which is capable of measuring
important variables, including, but not limited to current, voltage, power (active,
reactive and apparent), power factor, energy consumption, harmonics up to the 50th
order, total harmonic distortion, frequency, etc.

• Installation of the smart meters: Considering that our aim is to conduct measurements
on the loads within the microgrid, an openZmeter device is utilized for monitoring
these loads. For instance, Figure 1 illustrates how the openZmeter captures energy
data from home appliances at a single point, which is then transmitted to a computer
that will process the data received. With this, homeowners can access and view energy
consumption data at any time and receive alerts if any of the parameters are out of
normal range through a web page or mobile application linked to the smart meter.
Furthermore, the openZmeter can also be employed to monitor the power generated
by renewable energy sources.

• Data processing: The data collected by the smart meter can then be processed and
displayed using visualization tools to provide real-time and historical energy consump-
tion and power quality statistics [37]. Such visual data simplify complex information
into intuitive visuals, aiding homeowners in understanding energy usage patterns,
spotting peak demand periods, and identifying wasteful areas. Such visual insights
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assist homeowners in optimizing energy usage within small-scale microgrids by ad-
justing device settings, turning off devices when not in use or replacing outdated
appliances with newer, more energy-efficient models. Managing control within large
microgrids typically requires the implementation of advanced procedures, including
artificial intelligence methods [38].

Figure 1. Measuring electrical variables in home appliances using the openZmeter.

3.2. Differences with Other Studies

Recent studies have analyzed the use of metering infrastructures to monitor electrical
variables in microgrids. However, many of these studies are limited in their findings
compared to our framework. This is either due to the measuring of a smaller number of
electrical variables, primarily focusing on power quality data, using devices with limited
accuracy, or having a less versatile interaction system between the device and users.

On the one hand, empirical studies often analyze a limited number of variables. For
example, the authors of [39] present a method to optimize consumption to improve power
quality and security levels in electrical systems while considering economic costs. However,
only information regarding active power (W) and cost (monetary units) is provided. Simi-
larly, the authors of [40] modeled a smart metering system in a microgrid, but the empirical
study focused on analyzing the energy that flows between loads and renewable energy
systems. Other investigations have proposed using a smart meter with voltage, transformer
and microcontroller units equipped with embedded communication modules to measure
current, voltage, power factor, harmonics and frequency [41]. In [23], a method is presented
to infer load signatures of different home appliances based on active and reactive power
measurements, but no information is provided about the specifications of these meters.
Furthermore, other researchers have analyzed demand response in microgrids by coordi-
nating data measured by smart meters and distributed superconducting magnetic energy
storage units [39], but the empirical results are focused on the study of active power flows.

On the other hand, most of the devices used have limited measurement and communi-
cation capabilities compared to the openZmeter. For instance, the digital power meter used
in [42] provides voltage values in the range of [50 V–350 V] (while the openZmeter can
safely measure up to 1000 V), and current values in the range of [10 mA–15 A] (whereas
the maximum current measured by the openZmeter is 50 A) [7]. Additionally, the smart
meter described in [42] allows for communication via USB I/O and 100 Mbps Ethernet
interfaces. In [28], a metering infrastructure is presented that enables the measurement of
voltage, current and frequency, using wired and wireless communication interfaces (such
as Wi-Fi, IEEE 802.15.4 and LoRa) to transfer the measurements to a central unit. The access
to the graphical interface of the openZmeter allows direct access to the measurements via
the web, regardless of the end-user’s location.
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4. Results

The experimental study was carried out in the laboratory microgrid of the University
of Almería (Spain) (latitude: 36º49′45′ ′ N, longitude: 2º24′28′ ′ W). Almería is one of the
locations in Europe with long hours of daylight (more than 3000 h annually) [43]. Figure 2
shows the main elements of the microgrid. Firstly, Figure 2a shows the generation system
that consists of two solar tracker systems with 3600 watts capacity each. Three wind turbines
(model Wind 13+, manufactured by the Spanish brand Bornay) can also be connected to
the microgrid. The energy generated and not consumed is stored in batteries for later use
(see Figure 2b). The arrangement of loads in the microgrid incorporates several home
appliances like fridges, refrigerators, ovens, electronic devices, etc. (see Figure 2c,d). These
devices harness energy from renewable sources or batteries, in addition to the building’s
own electrical connection.

Figure 2. (a) Photovoltaic solar trackers; (b) power electronics and storage systems; (c,d) loads
(home appliances).

Although the aim of this paper is to monitor the loads (home appliances), the openZme-
ter device is capable of gathering real-time data on other parts of the microgrid. For
example, Figure 3 shows the energy generated by the photovoltaic system within one
week, where it can be observed that solar intensity varies periodically, as indicated by the
recurring patterns.

Figure 3. Energy produced by renewable sources in the microgrid.
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Focusing on load analysis, most published articles tend to focus on measuring active
power, although various authors have proposed the analysis of reactive power as part
of future work [28], which is a critical variable in real systems [44]. In fact, some recent
surveys have highlighted the importance of maintaining a balance between active and
reactive power to ensure power quality in microgrids [45].

The electrical power that is converted into useful work (light, motion or heat) is called
active or real power and is measured in watts (W). Reactive power (volt-ampere reactive,
VAR) is the power consumed by motors and transformers to create and maintain magnetic
fields, but performing no useful work. Therefore, it is also important to reduce the reactive
power, since it allows us to improve the power factor and, therefore, to reduce the energy
losses and improve efficiency. Figure 4 shows the active and reactive power measured
by the openZmeter during the experiment. It is evident that both variables experience
a significant increase when certain home appliances are switched on. Figure 5 shows a
breakdown of the active and reactive power consumed by different household appliances,
where each data point represents a measurement taken every 200 ms. As depicted, heating
element loads (such as the oven and water heater) appear to be nearly purely resistive and
therefore only absorb a small amount of VARs, whereas other appliances (like the vacuum
cleaner and kitchen hood) absorb substantial amounts of reactive power.

Figure 4. (a) Active power and (b) reactive power during the experiments.

Furthermore, the openZmeter is capable of capturing power quality data, as per the
EN50160 power quality standard, which is of significant importance in the microgrid
context. For instance, Figure 6 illustrates the frequency variation within the microgrid
relative to the standard 50 Hz frequency (commonly observed in Spain and many other
electricity systems worldwide). It is evident that the frequency remains close to—but
slightly below—the reference value for most of the experiment duration.

The openZmeter is capable of collecting data on other power quality variables, such
as total harmonic distortion (THD), in terms of current and voltage. THD numerically
represents the harmonic distortion present in a signal, and its presence can lead to issues
such as increased current, excessive heat, and other inconveniences that could cause
damage to equipment and systems. Figure 7a displays the THD of the voltage during the
experiment, where it can be observed that the values are below 2.5%. Meanwhile, Figure 7b
illustrates that the THD of the current is sometimes higher than 50%.

Table 1 shows the minimum, maximum, mean and standard deviation of different
electrical variables measured by openZmeter during the experiment. As it can be observed,
active power varies according to the home appliances connected in each instance, with
an average of 1911.88 watts. Reactive power varies from negative values (caused by
capacitive loads) to high positive values (inductive loads). It is shown that the average
power factor is close to 1 due to the presence of several purely resistive loads, but in
some periods, it decreases significantly due to the activation of reactive loads (inductive or
capacitive). In reference to the frequency, the mean value is 49.99 Hz, which is very close to
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the reference value (50.00 Hz). Finally, THD(v) values are lower than THD(i), as is usual in
most electrical installations.

Figure 5. Active and reactive energy measured for each home appliance.

Figure 6. Frequency measured during the experiment.

Figure 7. (a) Voltage THD and (b) current THD measured during the experiments.
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Table 1. Statistical values obtained during the experiment.

Active Power
[W]

Reactive Power
[VAR]

Power Factor
[0–1]

Frequency
[Hz]

THD(v)
[%]

THD(i)
[%]

MIN 45.71 −16.01 0.20 49.94 1.58 1.38
MAX 4445.29 1464.03 1.00 50.04 2.30 58.70
MEAN 1911.88 80.06 0.98 49.99 1.87 11.56
STD 1094.46 142.20 0.06 0.02 0.12 13.61

5. Conclusions

An efficient management of microgrids requires collecting and analyzing data on
energy consumption and power quality. Smart meters are key instruments for gathering
real-time data on energy usage, generation and power quality attributes. These measure-
ments aid in optimizing energy distribution and ensuring the seamless operation of smart
city infrastructure. This paper outlines the process of monitoring energy data in microgrids
using a smart meter with IoT functionalities capable of measuring voltage, current, power
(active, reactive, apparent), power factor, harmonics in voltage and current up to 50th order,
THD in voltage and current, or frequency, among other parameters. An empirical study
has been performed in a real microgrid that incorporates a combination of wind and solar
power generation, a battery storage system and various home appliances.

The findings illustrate that the smart meter is capable of collecting, processing and
displaying data from various components of the microgrid. Specifically, smart meters
offer valuable insights into both power generation and energy consumption within the
microgrid. Homeowners and microgrid operators can utilize this information to gauge
energy production against demand, devise strategies to reduce energy consumption and
costs, and thereby mitigate carbon emissions. Additionally, smart meters provide real-time
measurements of power quality parameters, offering insights into the electrical supply’s
quality. These data serve to identify and rectify any power quality issues that could poten-
tially damage appliances, result in energy wastage and ensure the microgrid’s reliability
and resilience. In summary, the utilization of low-cost high-precision smart meters in
microgrids presents a cost-effective and accurate solution for energy consumption and
power quality monitoring, complemented by versatile connectivity features.

As part of our future work, we plan to expand our measurements beyond the loads
to include other components of the microgrid, such as batteries. Additionally, we will
examine the ways to manage high-dimensional data using machine learning and prediction
techniques [46,47], including soft computing and other advanced techniques [48,49], with
the aim of improving energy management by leveraging information measured from power
supplies, storage systems and energy loads within the microgrid.
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