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Abstract: Real options analysis is an adequate tool with which to value companies and projects
under investment uncertainty. Nevertheless, the estimation of the volatility to be employed in the
valuation procedure is a challenging task. The volatility parameter not only affects the investment
value, but is also important in strategic decision-making. The aim of this paper is to provide a suitable
methodology for the estimation of volatility in real option project valuation, with a focus on renewable
energy projects. Our procedure is a straightforward extension of the implied volatility methodology
employed for financial options; however, our proposal considers the debt-to-equity ratio instead of
the moneyness or strike price. Thus, the volatility of the project is the implied volatility obtained from
the volatility surface of comparable firms for a certain valuation date and the given debt-to-equity
relation of a renewable project. Furthermore, the natural spline model is utilized to calibrate the
volatility surface for real option valuation purposes. The empirical results demonstrate that the
implied volatility ranges from 3.37% to 113.78%, with median values between 16.42% and 47.10%,
in the period from January 2014 to December 2020, for our research study. Finally, we consider that
our proposal is a natural and straightforward manner in which to estimate the implied volatility for
projects under investment uncertainty, since real option valuation is based on the same idea and tools
used in financial option pricing.

Keywords: real options; renewable energy; volatility surface calibration

1. Introduction

Although renewable sources of energy—biomass, hydropower, geothermal, wind
power or solar power, among others—are increasing their market share at the expense of
other resources, a major concern in this direction is the search for accurate valuation meth-
ods for renewable energy (RE) projects. For this purpose, the use of the real option analysis
(ROA) is gaining importance as it provides more realistic values for energy projects [1–4]
and incorporates managerial flexibility in the valuation.

However, one shortcoming that emerges from this approach is the estimation of
the volatility parameter. As a matter of fact, for new and RE investments, the absence
of historical and market data makes the volatility estimation challenging. Furthermore,
renewable market uncertainty, high investment costs, and fossil fuel prices affect the risk
of the inflows in this type of project. The estimation and analysis of volatility is not only
important for a more reliable assessment of the project value but also crucial for strategic
decision-making due to the fact that higher volatility may delay the investment decision [5],
and thus increase (decrease) the owner’s (manager’s) value [6]. As a consequence, the
analysis of volatility for RE projects requires more research [7].

A common approach for volatility estimation is the use of the standard deviation of
the net present value (NPV) distribution obtained by Monte Carlo simulations; however,
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several works have demonstrated an overestimation of volatility when employing such a
methodology [8–10]. In particular, different studies focused on energy projects employ the
volatility of the WTI, electricity, or other commodity prices, either directly or as an input
in Monte Carlo simulations [11,12]. Nevertheless, the volatility of some projects is higher
than that of commodity prices [13]. Another approach considers the volatility of a stock or
commodity as a proxy for the project volatility. This is an appropriate approach provided
that the chosen ‘twin’ asset is highly related to the assets of the project—one example is the
implied volatility of call options on comparable firms [14]. Nonetheless, it is often difficult
to find an asset or similar company with the same characteristics as the analyzed project.
In the same line, the market proxy approach (MPA) [15] consists of adjusting the volatility
of stock prices of similar companies by the financial leverage ratio of their respective
companies. The main disadvantage of this method is that volatility estimation could be
distorted by different factors, including financial bubbles and investors’ overreactions.

A more natural technique for estimating volatility is the implied volatility approach,
which employs the volatility that satisfies the Black–Scholes–Merton (BSM) option pricing
formula to value European options. In our case, the implied volatility for real options is the
volatility that makes the value of a company equal to its market value. A similar procedure
was proposed by Brach and Paxson [14], but the authors suggest that a stock with volatility
similar to the analyzed project should be found. The practical disadvantage, as previously
mentioned, lies in the search for a suitable twin stock. In financial options, it is usual to use
the plot of the implied volatility against the strike price or moneyness. For real options,
we suggest the use of the debt-to-equity relation rather than the moneyness or strike price.
Therefore, our methodology relies on Merton’s model [16], where the equity value can be
seen as a call option on the firm’s assets. Under the assumption that the firm value follows
a geometric Brownian motion (GBM), the debt and equity values satisfy the well-known
BS partial differential equation. It is then assumed that the volatility employed for RE
project valuation is comparable to the implied volatility extracted from the firms listed
in an appropriate stock index, and this is the basis of our methodology described in the
next section. For a review and comparison of different methodologies to estimate project
volatility, see, for instance, Lewis et al. [17], Nicholls et al. [18], and Godinho [19].

Thus, the aim of this paper is to provide a suitable methodology with which to estimate
the volatility parameter for firms that invest in projects of RE sectors and use real options
for valuation purposes. Depending on the debt-to-equity level of the project, the firm
may employ an implied volatility estimated from the market data of peers. Therefore, our
procedure to estimate the implied volatility for real options resembles the methodology
employed to calculate the implied volatility in financial options. The difference is that we
employ levels of ‘debt-to-equity’ rather than values of ‘moneyness’ to obtain the volatility
surface under the real options framework. Given that real option tools are an application of
financial option machinery, we consider that our proposal is a natural and straightforward
approach to estimate the volatility for real options.

Although there are several approaches with which to estimate the implied volatility
for real options, to the best of our knowledge, this is the first attempt to determine the
implied volatility depending on the capital structure of RE projects. As noted by Myers
and Read [20,21], traditional financial theory about capital structures does not consider the
leverage capacity of real options, even though it is shown that the value of a real option is
affected by the option’s leverage capacity.

We expect that this methodology can be applied by practitioners and academics,
where the obtained results can be compared with actual methodologies in this field and be
considered for valuing investment projects.

2. Materials and Methods

Merton’s model [16] has been successfully applied in structural models for credit risk
frameworks, such as the KMV model, to estimate the distance-to-default (DD). To this
end, different methodologies have been proposed to estimate necessary but unobservable
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variables such as the firm’s assets volatility and the face value of debt [22]. One of the
first attempts was the proposal by Ronn and Verma [23] who developed two equations to
solve these two unknowns. However, as noted by Milidonis and Stathopoulos [24], the
disadvantage of this proposal is the non-consistency with Merton’s assumption of stochastic
equity volatility. To overcome it, Duan [25] suggests a data transformation method based
on the maximum likelihood, which seems to be superior to the previous methodology [24].
Moreover, several modifications have been introduced in the literature (see, e.g., [26]
and the references therein; however, this method presents estimation problems when the
likelihood function is relatively flat). An approach with similar results is the one proposed
by Vassalou and Xing [27], which is an iterated procedure—as is the one utilized by the
KMV model—to find the volatility and drift of the asset value. This method is considered
an expectation–maximization (EM) algorithm, according to Duan et al. [28]. More recently,
Christoffersen et al. [29] found that, although the maximum likelihood method yields
similar results to the iterative approach for the usual levels of firm leverage, there are
remarkable differences when asset values are comparatively lower than the face value of
the firm’s debt. In addition, the authors argue that the KMV method cannot be seen as an
EM algorithm, in contrast to Duan et al. [28], and consider the lognormality assumption as a
salient drawback [26]. The iterative procedure, and similar methods, have been successfully
employed in the literature in different applications. For instance, Lee [30] estimated the
firm value and its volatility to assess the default probability in credit risk applications; this
was followed by Charitou et al. [31], Doumpos et al. [32], Afik et al. [33], and more recently
by Andreou et al. [34] and Levine and Wu [35]. Other similar approximations were applied
by Zhang et al. [36] in the case of a bank’s liquidity risk framework and by Lovreta and
Silaghi [37] to obtain the surface of CDS implied in a firm’s asset volatility.

Overall, Vassalou and Xing’s [27] methodology has major advantages for the estima-
tion of asset volatility—see also [38]—and, based on this, we assume that the market value
of the RE firm’s assets follows the GBM as expressed in Equation (1):

dV = µVdt + σVVdB (1)

where V is the value of the assets of the renewable company, µ and σV are the instantaneous
drift and volatility, respectively, and B is a standard Brownian motion. According to the
Black–Scholes–Merton formula, the equity’s market value (E) is given by:

E = VN(d1)− De−r(T−t)N(d2) (2)

where

d1 =
ln(V/D) +

(
r + σ2

V/2
)
T

σV
√

T
(3)

d2 = d1 − σV
√

T (4)

N(d1) and N(d2) represent the standard normal cumulative distribution functions, T
is the time to maturity, and D is the market value of debt. Then, an iterative procedure is
employed to solve the firm’s asset volatility, σV . More details about the procedure are found
in Christoffersen [39], and it is implemented in our work. In our study, we employ the
10-year treasury bill rate, which is equal to 1.5%, as the proxy for the risk-free rate (although
the results are not sensitive to the use of other proxies), and the time to maturity is set to
2 years. An important input is the face value of debt, which is unobservable, and we assume
that it is equal to the short-term debt plus one half of the long-term debt as per Vassalou and
Xing [27], Bharath and Shumway [40], and Amaya et al. [41]. We also employ quarterly data
of equity market value, and short- and long-term debt due to data availability. Data from
the S&P/TSX RE and Clean Technology Index (This index measures performance of green
technologies and sustainable infrastructure companies listed on the TSX. Constituents are
screened by Sustainalytics. Source: us.spindices.com.) members were downloaded from
Bloomberg. For the asset value, the current market capitalization (CUR_MKT_CAP ticker)
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proxy was employed, while for the short-term debt and the long-term debt variables, the
BS_ST_BORROW and BS_LT_BORROW tickers, respectively, were utilized.

To estimate the implied volatilities, we employ the iterative method of BS_fit command
included in the Distance to Default—‘DtD’ library of R—and the aforementioned variables.

Once the volatilities are estimated, these parameter values are calibrated by employing
the natural spline model, which are b-spline in intermediate regions and linear splines in
extremes. Specifically, natural spline models are a class of functions defined piecewise by
the (cubic) polynomial, which is twice continuously differentiable, where the breakpoints
(also called knots) divide disjoint segments in the data, and the regression function is
fitted as a separate polynomial portion in each segment. For this reason, natural splines
perform better than cubic splines in the tails. For more details, please see, e.g., Hastie ([42],
Chapter 7).

We use the lm command from the ‘splines’ library of R, where the dependent variable
is the estimated volatility in the previous step and the independent variables are their
respective leverage ratios for each year. As usual, the selected knots are the first, second,
and third quartiles. Figure 1 depicts an example for implied volatility estimations in 2009
and 2020.
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Finally, after the implied volatilities are estimated and calibrated for each date of
valuation, the volatility surface is obtained. For a given date, the graph of implied volatility



Energies 2024, 17, 1225 5 of 13

against the debt-to-equity ratio can be represented and combined to obtain the surface
shape. Hence, for a given date of valuation and the leverage ratio of a project, the (implied)
volatility can be used to estimate the value of the project. It is noteworthy that we employ
the date of the implied volatility estimation (namely, the valuation date) rather than the
time to maturity used in the case of financial options. Although the main purpose of our
work is to provide an adequate methodology to estimate volatility in order to valuate new
RE projects, the implied volatility may also be used to valuate different strategic options, as
can be seen in our empirical results. Figure 2 depicts our proposed methodology.
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Figure 2. Procedure of estimation for the project volatility surface [27]. Stars correspond to the
implied volatility estimates following the iterative procedure.

3. Results

For the sake of general application on RE projects, information about stocks from the
S&P/TSX RE and Clean Technology Index is used to estimate the implied volatility in the
period 2009–2020. From the 17 stocks listed in the index, 11 stocks (these companies are
Brookfield Renewable Partners LP (Toronto, Canada), Ballard Power Systems Inc. (Burnaby,
Canada), Boralex Inc. (Kingsey Falls, Canada), Cascades Inc. (Kingsey Falls, Canada),
Clearwater Seafoods Inc. (Bedford, Canada), Innergex RE Inc. (Longueuil, Quebec, Canada),
Northland Power Inc. (Toronto, Canada), SunOpta Inc. (Brampton, Canada), Village Farms
International Inc. (Delta, Canada), 5N Plus Inc. (Montreal, Quebec, Canada), and Westport
Fuel Systems Inc. (Vancouver, Canada)) were considered due to information availability.
Table 1 shows the different renewable firms’ leverage ratios (Lev.) and their respective
estimated volatility (Vol.) for each year following the iterated procedure proposed by
Vassalou and Xing [27]. The data are sorted according to the leverage ratio, specifically, the
debt-to-equity relationship.

Table 1. Implied volatility estimation for the analyzed renewable companies.

2009 Mean Median

Lev (%) 3.55 13.01 27.33 36.56 40.93 42.71 44.19 47.91 55.79 72.23 38.42 41.82 Min Max
Vol (%) 48.79 68.75 77.45 45.41 33.48 37.27 26.37 49.85 29.88 94.58 51.18 47.10 26.37 94.58

2010 Mean Median

Lev (%) 3.48 10.59 23.08 29.36 36.00 40.15 46.25 49.44 58.98 63.15 36.05 38.07 Min Max
Vol (%) 30.52 30.93 29.41 27.18 36.75 29.85 45.23 57.13 31.42 68.62 38.70 31.18 27.18 68.62
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Table 1. Cont.

2011 Mean Median

Lev (%) 24.15 25.65 31.09 35.14 40.16 47.02 53.32 55.52 61.99 63.70 43.77 43.59 Min Max
Vol (%) 52.77 32.01 87.41 36.75 28.06 5.65 8.42 47.38 28.02 75.73 40.22 34.38 5.65 87.41

2012 Mean Median

Lev (%) 16.47 26.76 36.15 38.52 42.10 44.89 51.33 57.06 60.86 61.78 43.59 43.49 Min Max
Vol (%) 35.21 20.07 35.42 81.90 16.21 18.91 7.11 32.58 8.43 57.41 31.33 26.33 7.11 81.90

2013 Mean Median

Lev (%) 13.43 22.79 27.04 38.96 39.27 42.68 59.75 59.99 62.07 62.73 42.87 40.98 Min Max
Vol (%) 69.63 33.49 21.17 6.20 40.15 9.92 13.02 10.15 19.81 3.37 22.69 16.42 3.37 69.63

2014 Mean Median

Lev (%) 12.96 22.84 24.75 38.47 38.68 44.70 57.41 58.79 63.50 71.50 43.36 41.69 Min Max
Vol (%) 21.75 76.05 51.65 43.06 37.36 15.77 12.48 18.63 12.61 15.10 30.45 20.19 12.48 76.05

2015 Mean Median

Lev (%) 19.13 29.22 37.57 37.62 39.60 46.28 63.64 63.83 65.35 73.81 47.61 42.94 Min Max
Vol (%) 47.76 49.74 17.70 9.08 45.73 21.74 21.07 24.81 12.24 9.66 25.95 21.41 9.08 49.74

2016 Mean Median

Lev (%) 19.85 30.35 33.59 36.71 38.30 41.80 59.80 61.99 71.70 74.95 46.91 40.05 Min Max
Vol (%) 40.35 54.42 27.01 13.00 56.96 27.11 27.88 20.46 9.02 8.67 28.49 27.06 8.67 56.96

2017 Mean Median

Lev (%) 20.02 23.42 27.14 36.39 38.07 47.05 61.38 70.78 71.90 77.55 47.37 42.56 Min Max
Vol (%) 32.07 85.44 68.98 23.88 7.14 34.39 22.16 17.93 6.72 5.33 30.40 23.02 5.33 85.44

2018 Mean Median

Lev (%) 20.56 26.76 28.25 31.43 38.24 56.78 63.71 71.60 72.27 72.32 48.19 47.51 Min Max
Vol (%) 26.70 83.30 63.35 12.89 20.60 40.66 26.00 4.61 10.06 7.85 29.60 23.30 4.61 83.30

2019 Mean Median

Lev (%) 20.75 26.68 30.24 37.45 40.83 59.21 61.36 68.85 71.87 73.69 49.09 50.02 Min Max
Vol (%) 113.38 35.74 101.68 20.18 15.00 33.00 10.69 9.66 5.43 9.11 35.39 17.59 5.43 113.38

2020 Mean Median

Lev (%) 1.83 18.28 24.12 24.47 36.37 37.37 38.12 66.57 67.37 70.98 38.55 36.87 Min Max
Vol (%) 46.03 48.71 86.33 61.27 22.81 87.23 13.05 8.23 13.13 13.67 40.05 34.42 8.23 87.23

As observed, the minimum volatility is 3.37% (when the debt-to-equity ratio is 62.7%
in 2013) and the maximum is 113.38% (when the debt-to-equity proportion is 20.7% in
2019); however, the median of the estimated volatility ranges between 16.42% (2013) and
47.10% (2009). For RE data, the volatility surface at the annual basis is mapped in Figure 3.
Different values of implied volatility are obtained based on the analyzed period and the
leverage ratio of the sample.

To illustrate the utility of our methodology for the valuation of RE projects, this section
presents three case studies.

Case Study 1

The first case is based on Eissa and Tian [43] who propose a novel methodology based
on the construction of the Lobbato3C-Milstein (L3CM) method for real option valuation.
In addition, the study applies the proposed L3CM methodology to value a solar power
plant investment in the Arab Republic of Egypt, in particular to estimate the value of an
option to delay. This real option value is estimated as the price of a European call option
with the appropriate input variables. The details about the case study are found in [43] and
are summarized in Table 2.
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Table 2. Parameters employed for option valuation in Case Study 1.

Parameter Symbol Value Unit

Current cash flow from
investment S 302.8878 $US million

Fixed investment cost I 340 $US million
Time to invest T 25 Years

Volatility σ 0.1045
Risk-free discount rate r 0.0875

Source: Eissa and Tian [43].

Based on selling electricity prices published in a local decree issued on July 2014 and
using Abadie and Chamorro’s [44] methodology, the authors estimate a volatility of 10.45%.
With this information, the option to delay is valued at $US 264.7410 by employing the BS
formula for a European call option given in Equations (5)–(7):

C = SN(d1)− Ie−rT N(d2) (5)

where

d1 =
ln(V/D) +

(
r + σ2

V/2
)
T

σV
√

T
(6)

d2 = d1 − σV
√

T (7)

Since the leverage ratio for this specific project is unknown, we employ the minimum
and maximum implied volatility obtained from our methodology. In July 2014, these values
correspond to 12.48% and 76.05%, respectively for RE projects. Thus, the range of the
deferral option is between $US 264.748 and $US 297.363. Though the apparently significant
differences between the employed volatilities, our result for the option valuation is similar
to the one obtained by Eissa and Tian [43] and is mainly explained by the long time in
which to invest.

Case Study 2

In this case study, we work with data sourced from Kroniger and Madlener [45]. The
authors employ Monte Carlo simulations to obtain the main inputs to apply ROA to a
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hybrid wind power and hydrogen storage system. The details of the analysis for the
project’s viability are found in their paper and we focus on the real option valuation for the
base case. The impact of the hybrid energy system is also examined through real options
in [46], especially the option to upgrade or reconfigure the system which affects the design
choice. On the other hand, [47] employs real options to value wind power projects. Another
valuation approach is the model proposed by McDonald and Siegel [48], where the value
of the project, V, follows a GBM:

dV = αVdt + σVdz (8)

where α is the drift of the value process, σ is its volatility, and dz is the increment of a
Brownian motion. We are interested in the value of the option to invest, given by:

F(V) = e−rTmaxE[VT − I] (9)

where r is the discount rate, T is the time that the investment is performed, E is the expected
value operator, and I is the cost of the investment, which is assumed to be known and fixed.
Departing from the Bellman equation:

rFdt = E[dF] (10)

and applying Itô’s lemma to dF, it is shown that:

1
2

σ2V2F′′ (V) + αVF′(V)− rF = 0 (11)

Thus F(V) must satisfy the following boundary conditions:

F(0) = 0 (12)

F(V∗) = V∗ − I (13)

F′(V∗) = 1 (14)

where V∗ is a critical value such that it is optimal to invest when V ≥ V∗. The first condition
means that the option to invest has no value if V = 0, whereas the second condition is the
value-matching condition and the third condition is the so-called smooth-pasting condition.
A typical solution, which satisfies the first boundary condition, for the differential equation
is in the form of:

F(V) = AVβ1 (15)

where A is a constant and β1 > 1. The second and third boundary conditions are employed
to find A and V∗, and thus:

A =
(β1 − 1)β1−1

β1
β1 Iβ1−1

(16)

V∗ =
β1

β1 − 1
I (17)

Finally, the value of β1 that satisfies the condition (β1 > 1) is:

β1 =
1
2
− r

σ2 +

√(
r

σ2 − 1
2

)2
+

r
σ2 . (18)

In the application, the authors set α = 0 and I = 1 for simplicity, and the discount rate
is 4%. For more details about the derivation of the model, see, e.g., Dixit and Pindyck [5].
As an alternative for the project volatility, we employ the closest date (Jan 2014) for the
lowest and highest volatility estimated using our procedure for RE projects. The results are
presented in Table 3.
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Table 3. Results comparison on option valuation of Case Study 2.

Kroniger and
Madlener [45]

Lowest Vol
(January 2014)

Highest Vol
(January 2014)

σ 0.2100 0.1248 0.7605
β1 1.9367 2.8209 1.1232
A 0.2615 0.1598 0.6782

V∗ 2.0676 1.5492 9.1199
F(V∗) 1.0676 0.5492 8.1199

The volatility used by Kroniger and Madlener [45] is between the lowest and highest
implied volatility of our work (12.48–76.05%), but close to the estimated median of the
implied volatility (20.19%).

Case Study 3

Torani et al. [49] examine the adoption of solar photovoltaic energy by employing a
stochastic dynamic model. In the same line as with the previous case, the authors extend
the Bellman equation to consider two variables, which are the long-term price of electricity
(P) and the cost of solar (C). The dynamics for each of these variables are given by:

dP = αPPdt + σPPdzP (19)

dC = αCCdt + σCCdzC (20)

where αP (αC) is the drift of the electricity price (cost of solar) process, σP and σC are the
volatilities of the respective processes, and dzP and dzC are the increments of a Wiener
process or Brownian motion. Thus, the Bellman equation considering the two variables is:

1
2

(
σ2

PP2FPP + 2γσPσCPCFPC + σ2
CC2FCC

)
+ αPPFP + αCCFC − rF = 0 (21)

where γ is the correlation between P and C. The solution for F is analogous to the previous
case (one variable), and β1 is given by

β1 =
1
2
− αP − αC

σ2 +

√(
αP − αC

σ2 − 1
2

)2
+ 2

r − αC
σ2 (22)

and
σ2 = σ2

P − 2γσPσC + σ2
C (23)

Interestingly, the authors find that:

P∗
ROA =

(
β1

β1 − 1

)
P∗

NPV (24)

where P∗
NPV and P∗

ROA are the threshold electricity price at which a residential or commercial
consumer will adopt solar photovoltaic energy according to the NPV and ROA rules,
respectively. Once again, we are interested in the valuation result and more details are
found in Torani et al. [49]. Table 4 presents the comparison of the results obtained by using
the volatility extracted from the volatility surface for real options and r = 3% discount rate.

The authors employ σP = σC = 0.1409 and γ = 0; therefore, their volatility estimation
is 20.07% according to Equation (23). We also assume that the drift values are αP = 0.0289
and αC = −0.0441, and P∗

NPV as per the study by Torani et al.; however, for the project’s
volatility, we apply our proposal, which yields a more appropriate volatility estimation for
this RE case study. Since there is no information about the leverage ratio of the project, we
employ the information provided in Table 1, with a mean (median) implied volatility of
22.69% (16.42%). Otherwise, we could extract the implied volatility corresponding to the
debt-to-equity relation in 2013 from the volatility surface. Thus, replacing the values for σ,
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αP, and αC in Equation (22) we obtain a value of 1.0111 and 1.027 for β1 as can be seen in
columns 2 and 3 of Table 4. Finally, we apply Equation (24) to find the threshold electricity
price at which a residential or commercial consumer will adopt solar photovoltaic energy
according to ROA.

Table 4. Results comparison on option valuation of the case study.

Calculations Based on Torani et al. [49] Mean Vol in 2013 (Our Study) Median Vol in 2013 (Our Study)

σ 0.2007 0.2269 0.1642
αP 0.0289 0.0289 0.0289
αC −0.0441 −0.0441 −0.0441
β1 1.0118 1.0111 1.0127

P∗
NPV 0.0102 0.0102 0.0102

P∗
ROA 0.8760 0.9285 0.8137

4. Discussion

The empirical results demonstrate that the implied volatility ranged from 3.37% to
113.78% in the period from January 2014 to December 2020 for the RE projects. This differ-
ence is explained by the dissimilar leverage ratios employed by the analyzed companies.
Despite the relatively high range found in the estimated implied volatility, its median for
different years ranged between 16.42% and 47.10%. As a matter of fact, these estimates
have an impact on the valuation of real options, which would be relevant for practitioners
and managers, particularly those deciding on undertaking RE projects. Furthermore, the
lower implied volatility of renewable companies (compared with oil companies) supports
investment in renewable projects and contributes to a more efficient transition to renewable
and cleaner energy.

In an environment where the urgent implementation of renewable energy projects
is paramount, the incorporation of real options valuation methodologies allows for a
broader evaluation of the viability of these projects that would surely be discarded under
traditional methodologies. In particular, the characteristics of solar photovoltaic projects
provide an extreme validation of the usefulness of the real option valuation methodology.
First, given a fixed and inelastic energy demand, the supply of solar energy is inflexible,
since its availability is limited by the effective hours of sunshine. Consequently, the
interaction of supply and demand for solar energy can lead to negative energy prices in
the market at certain time points, which implies higher price volatility for any investment
project feasibility assessment. Second, because of the potential existence of negative prices,
traditional project evaluation methodologies would not provide an opportunity for project
development. However, the real options methodology allows for the value in waiting or
delaying for a better moment for a project’s development to be quantified, based on changes
in energy demand patterns or on the appearance of new energy storage technologies that
allow for a better cost-efficiency ratio for this type of energy generation. Finally, the
valuation of the best moment to implement this type of project is especially valuable in a
technology such as solar, which is quicker to implement, e.g., some months compared to
years for other renewal energy options such as hydroelectric power plants, wind power
and geothermal. To the extent that real options valuation maintains solar photovoltaic
projects as active instead of being discarded, changes in the demand or supply situation
can be capitalized in a short period of time.

5. Conclusions

RE project valuation requires accurate tools to estimate volatility, a problem that
has not been satisfactorily addressed in the literature. We cover this remarkable gap by
suggesting a method to estimate volatility for new and RE projects that follows the ROA
and thus is based on the concept of implied volatility for financial options. This method is
also applicable to conventional energy projects, such as the oil-based projects, which have
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been extensively studied in the literature, and other types of projects for which market data
are available.

As the framework is based on the concept of implied volatility for financial options,
we employed the debt-to-equity ratio for real options instead of the moneyness or strike
price used in the case of financial options. To this end, we applied the natural spline model
to calibrate the implied volatilities. We described our proposal in a step-by-step procedure
to be implemented for RE project valuation, which allows for flexibility in managerial
decisions. To the best of our knowledge, this is the first study to implement the volatility
surface for renewable and conventional energy projects. The main advantages of the
implied volatility model (for financial options) are its ability to provide more accurate
results and its widespread acceptance among academics and practitioners. Furthermore,
we consider that this is a natural and straightforward way to estimate the volatility for
ROA, since real option valuation is derived from the same ideas and tools as those used for
financial options.

Future research should also be focused on forecasting the implied volatility of energy
projects using the techniques proposed in this paper, given the importance of such pre-
dictions on decision making, e.g., extreme volatility in oil prices resulting in a decline in
manufacturing activity [50] and other types of projects for which market data are available.
Thus, a forecast of implied volatility may also help to anticipate real effects on the economy
and aid in decision-making processes that incentivize managers to not delay or abandon
valuable projects. A new strand in the literature is also pointing towards the analysis of
(renewable) energy portfolios [51–53]; accordingly, our methodology can be extended to
consider investments in projects based on portfolios. Finally, another avenue for research
is the use of the Lévy and geometric Lévy process for the calibration of RE projects and a
comparison of the results with our methodology.
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