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Abstract: Thanks to investments in diversifying the supply of natural gas, Poland did not encounter
any gas supply issues in 2022 when gas imports from Russia were ceased due to the Russian
Federation’s armed intervention in Ukraine. Over the past few years, the supply of gas from routes
other than the eastern route has substantially grown, particularly the supplies of liquefied natural gas
(LNG) via the LNG terminal in Świnoujście. The growing proportion of LNG in Poland’s gas supply
leads to a rise in ethane levels in natural gas, as verified by the review of data taken at a specific
location within the gas system over the years 2015, 2020, and 2022. Using measurements of natural
gas composition, the effectiveness of the steam hydrocarbon reforming process was simulated in the
Gibbs reactor via Aspen HYSYS. The simulations confirmed that as the concentration of ethane in
the natural gas increased, the amount of hydrogen produced, and the heat required for reactions
in the reformer also increased. This article aims to analyze the influence of the changes in natural
gas quality in the Polish transmission network caused by changes in supply structures on the mass
and heat balance of the theoretical steam reforming reactor. Nowadays, the chemical composition of
natural gas may be significantly different from that assumed years ago at the plant’s design stage.
The consequence of such a situation may be difficulties in operating, especially when controlling
the quantity of incoming natural gas to the reactor based on volumetric flow without considering
changes in chemical composition.
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1. Introduction

Poland’s natural gas market is among the fastest growing in European Union (EU)
countries. Gas demand in Poland rose by over 33% between 2011 and 2021, compared to
just a 3.8% increase throughout the EU [1]. The recent armed conflict between the Russian
Federation and Ukraine in 2022 has significantly impacted gas supply sources in both
Poland and the EU. The EU implemented measures to reduce gas imports from Russia,
decreasing from 153.4 billion cubic meters (bcm) to 67.4 bcm in 2021, and witnessed a
significant rise in liquefied natural gas (LNG) imports, increasing from 73.7 to 123.2 bcm.
Additionally, gas supplies from Azerbaijan increased from 8.1 to 11.4 bcm. In 2022, Europe
became the foremost destination for U.S. LNG exports, accounting for 64% of the overall
exports. Notably, France, the United Kingdom, Spain, and the Netherlands collectively
accounted for 74% of U.S. LNG exports to Europe [2]. In 2022, Norway surpassed Russia to
become the largest natural gas supplier to the EU. Russia’s share of gas exports to the EU
has plummeted from 41.1% in 2021 to 18.75% in 2022. Compared to the previous year, gas
deliveries from Norway to the EU rose by over 7% [3].

Although global LNG supply increased by 5.5% in 2022, Europe experienced the
largest increase in fuel demand, at 66 bcm. High natural gas prices, which exceeded
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340 euros/MWh in August 2022, were the primary driver of a significant decrease of 55 bcm
in demand in EU countries, a 13% decrease from 2021. The most considerable declines in
gas demand happened in Finland, Lithuania, and Sweden, whereas only Malta and Ireland
slightly raised their gas consumption. If we examine the gas consumption by the economic
sector, the EU sector saw the most significant drop in consumption, amounting to 28 bcm;
the buildings sector observed a 20% reduction (including both households and commercial
and public buildings). A substantial reduction in gas consumption was recorded in the
industrial sector in 2022, namely by 25 bcm (25% compared to 2021). This decrease was
mainly due to the vast increases in gas prices and the uncertain situation of gas supplies.
Many EU countries have had production curtailments or periodic halts, especially for the
mineral fertilizer industry [4,5]. The European Commission announced a new action plan
REPowerEU to address the upcoming energy crisis and reduce Europe’s dependence on
Russia for energy before 2030 [6,7]. For years, the Russian Federation has pursued an active
foreign policy, particularly towards Central and Eastern European countries. It uses natural
gas supplies to exert political pressure and achieve its strategic geopolitical objectives [8,9].

Both the current Energy Policy of Poland until 2040 and earlier government strategic
documents have indicated that the primary goal regarding gas is to diversify natural gas
supplies [10]. The most critical infrastructure projects implemented over the past decade
include the construction of an LNG terminal in Świnoujście and the Baltic Pipe, providing
direct gas supplies to Poland from the Norwegian Continental Shelf. The commissioning
of the LNG Terminal in Świnoujście and other investments in constructing gas connections
that integrate with other markets, for example, the Czech Republic, Lithuania, and Slovakia,
formed part of the development of the North–South corridor. These investments have
enabled the provision of natural gas to Poland through alternative routes. As a result of
diversifying gas supplies through investments, Poland’s natural gas supply sources have
been altered. In recent years, the proportion of gas flows originating from Russia has
gradually declined, while the percentage of gas from sources alternative to the Eastern
route has increased (Figure 1) [11]. Gas deliveries from Russia ended in April 2022. To
address the natural gas demand in Poland, similar to other EU countries, there has been
a notable surge of approximately 50% in LNG supplies in 2022 when compared to 2021
(Figure 2). The leading suppliers of LNG to Poland in 2022 were the United States and
Qatar, the world leaders in terms of LNG exports. These countries are investing in LNG
liquefaction capacity, which is expected to increase by 42 million tons annually by 2027. As
a result, U.S. gas is set to surpass all other countries in LNG supply growth by 2027 [12].
Table 1 demonstrates that the majority of LNG terminals in the EU, including the one in
Świnoujście, experienced significant growth in usage throughout 2022 compared to the
previous four-year period (2018–2021) [13]. The initial regasification capacity of the LNG
Terminal in Świnoujście amounted to 5 bcm/y. Since 2022, it has increased to 6.2 bcm/y,
and there is an ongoing plant expansion program that aims to elevate the regasification
capacity to 8.3 bcm/y by 2024 [14]. The development of the regasification capacity of the
LNG Terminal in Świnoujście and the construction of a new Floating Storage Regasification
Unit (FSRU) in the Gulf of Gdansk is in line with Poland’s energy policy goals [15].

While the natural gas market in Poland has shown dynamic growth over the past
decade, there was a significant drop of almost 17% in gas sales in 2022. As with other EU
countries, the main cause for the decline in demand for natural gas was due to its high
prices in the wholesale market. Table 2 reveals that the majority of gas in Poland is supplied
to industrial customers. In 2022, the industrial sector received 56.4% of all gas deliveries,
whereas only 32.7% of gas sales went towards households. In 2021, natural gas sales to
industrial customers experienced a notable drop of 23.1%. However, the decline in sales for
households was smaller, at just 5.2% [17]. The COVID-19 restrictions put in place between
2020 and 2021 had an adverse effect on gas sales, particularly to households and trade
and services sector customers [18]. It is worth noting that Poland’s primary industrial gas
consumers are the refining and chemical industries.
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Figure 2. LNG imports to Poland, 2016–2022 [bcm] [16].

As of April 2022, gas imports from Russia have come to an end, with an increase
in supplies of LNG, and the beginning of supplies from Norwegian fields via the Baltic
Pipe in October 2022. As previously mentioned, there has been a noticeable change in the
sources of gas supply in Poland in recent years. This shift in gas supply sources has affected
the composition of natural gas in Poland. Regarding Russian gas, methane accounted for
approximately 97% and ethane for 1%. In contrast, for LNG, the rate of methane is generally
lower, typically below 95%, with ethane ranging from 2% (Egypt), to approximately 6%
(Norway, Nigeria, Qatar) and up to 13% (Libya) [19–22]. The growing use of LNG to meet
domestic gas demand has an impact on the levels of methane and ethane present in natural
gas, as seen in Figure 3. Since mid-2021, there has been a reduction in the proportion of
methane present in natural gas, which is largely attributable to a corresponding increase in
the concentration of ethane [23].
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Table 1. The utilization ratio in EU LNG selected terminals [%] [13].

Terminal Country Average Utilization
2018–2021

Average
Utilization

2022

Zeebrugge LNG Terminal BE 29 61

Barcelona LNG Terminal ES 23 23

Bilbao LNG Terminal ES 60 76

Sagunto LNG Terminal ES 16 46

Dunkerque LNG Terminal FR 25 75

Fos Cavaou LNG Terminal FR 48 92

Revythoussa LNG Terminal GR 27 39

Panigaglia LNG Terminal IT 42 54

FSRU Independence LT 37 72

Rotterdam Gate Terminal NL 41 92

Świnoujście LNG Terminal PL 61 80

Sines LNG Terminal PT 77 82

Table 2. Natural gas consumption by sector in Poland, years 2020–2022 [GWh] [17].

2020 2021 2022

Gas sales to
end users 201,133.2 206,626.7 171,795.0

Industry 132,731.7 126,137.1 96,963.7

Trade and services 14,570.0 15,639.3 11,913.4

Households 49,878.7 59,265.2 56,200.9

Total 203,145.9 208,626.0 173,763.2
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Further changes in the composition of natural gas transported through the trans-
mission grid are anticipated, particularly due to the injection of renewable gases such as
biomethane and hydrogen into the grid [24–28]. In 2022, global demand for hydrogen
increased to 95 million tons. New production volumes were primarily generated through
fossil fuel conversion processes [29]. In Poland, the third largest hydrogen producer in the
EU, natural gas currently dominates as the source of hydrogen production [30]. Neverthe-
less, it is anticipated that there will be changes in the production structure, and low- and
zero-emission hydrogen will become increasingly important. In this context, the regions of
the Baltic Sea designated for offshore wind energy development appear to be particularly
attractive [31]. Another crucial aspect of the energy transition could involve utilizing hy-
drogen for large-scale energy storage, such as in salt caverns. This solution would partially
address the energy storage issue associated with the growing use of renewable energy
sources (RES) in the electricity generation mix. In 2022, RES accounted for 17.4% of Poland’s
electricity generation mix. To implement this solution, hydrogen must be introduced into
the natural gas grid, and a natural gas–hydrogen mixture must be transmitted [32–34].
Material design aspects must be considered in this case. High-strength and advanced
high-strength steels are utilized among the pipe materials for natural gas pipelines, as
required by legal conditions and applicable standards. Classic arc welding methods are
used for the welding processes. When introducing hydrogen into gas, particularly around
fittings, new automated welding techniques with high power density, such as electron
beam or laser welding, are being utilized more regularly [35,36]. The welding area and the
heat-affected zone could potentially be the weakest area due to crystallization conditions
or as a result of thermal conductivity during welding [37].

This study aims to demonstrate that a structural change in the supply of natural
gas to Poland could noticeably affect the amount of hydrogen produced in the steam
methane reforming process at existing production facilities that receive gas directly from
the transmission network. The impact of changes occurring in the chemical composition of
the feedstock on the reforming process in the SMR reactor has been analyzed in previous
studies, including [38–42]. Based on these studies, a model for which simulations were
conducted by assuming changes in the quality of the supplied natural gas corresponding
to accurate measurements was developed. In the authors’ opinion, the novelty of this work
is not the SMR reactor model but the obtained characteristic results on how the plants were
impacted with the changes of the natural gas quality, as noted in Poland due to changes in
the supply structure.

2. Materials and Methods
2.1. Materials

To illustrate the effects of modifications in the structure of the natural gas supply to
Poland on the quality of natural gas, publicly available information from the information
exchange system SWI GAZ-SYSTEM S.A. was examined about a selected point located
in the southern part of Poland. The exit point Area No. 308 Opole was chosen as an
example [23]. Figure 4 shows histograms depicting the annual measurements of methane
(on the left) and ethane (on the right) concentrations at the analyzed exit point in 2015, 2020,
and 2022. Data were extracted from the SWI database. The results were divided into six
groups on individual histograms. The study of the graph indicates that in 2020 and 2022,
following the launch of the LNG terminal, there was a substantial increase in the frequency
of samples containing natural gas with a lower methane content when compared to the
samples analyzed in 2015, where the average concentration of methane was 95.875% v/v
and ethane was 1.616% v/v. Based on the analyzed data, the minimum methane level was
identified as 94.461% v/v, with the maximum level at 97.353% v/v. Similarly, the minimum
ethane concentration was noted as 1.604% v/v, while the maximum concentration was
found to be 2.241% v/v.

In 2020, the average calculated from the available and analyzed methane results at
the exit point decreased to about 94.818% v/v compared to the 2015 average. However,
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ethane’s calculated average noticeably increased to 3.477% v/v. Additionally, due to the
higher supplies of LNG, the lowest measured concentration of methane at the analyzed
point was 92.450% v/v this year, and the highest was 97.147% v/v. The decline in methane
concentration within natural gas was offset by a rise in ethane concentration, ranging from
1.169% v/v at a minimum to 6.565% v/v at a maximum.
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With the continued high level of LNG supply in 2022, an increase in the frequency of
analytical results with higher concentrations of ethane was observed in comparison to the
conditions in 2015. Subsequently, the average methane concentration was determined to be
94.629% v/v and ethane at 3.379% v/v. The minimum measured methane concentration
was 91.456% v/v, whereas the maximum was 97.118% v/v. As for ethane, the minimum
was determined to be 1.135% v/v, and the maximum at 6.477% v/v.

The above analysis confirms that alterations in the configuration of natural gas supply
to the Polish gas system have impacted the quality of gas customers receive from the
transmission grid. Tracking the changes in ethane concentration enables us to postulate
that the gas received at the LNG terminal in Świnoujście, situated in the northern part of
Poland, directly reaches both the transmission infrastructure elements and the customers
located in the southern part of the country.

The natural gas quality measurements from the years 2015, 2020, and 2022 were
surveyed for methane concentrations, and the values with the highest and lowest concen-
trations were recorded. These data formed the basis for Table 3, which presents the findings
of the study. Chemical compositions formed the basis for preparing six scenarios used in
simulations to illustrate the impact of quality changes in natural gas caused by the shift in
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the supply structure on the amount of hydrogen produced in a theoretical steam reforming
reactor located in the southern part of Poland.

Table 3. Historical results of natural gas quality measurements at the analyzed transmission system
exit point with the highest and lowest methane levels in 2015, 2020, and 2022 [23].

# Year CH4
[%v/v]

C2H6
[%v/v]

C3H8
[%v/v]

N2 *
[%v/v]

i-C4H10
[%v/v]

i-C5H12
[%v/v]

n-C4H10
[%v/v]

n-C5H12
[%v/v]

1
2015

94.46 1.20 0.24 3.99 0.04 0.01 0.06 0.01
2 97.35 1.47 0.25 0.84 0.04 0.01 0.04 0.00

3
2020

92.45 5.26 1.34 0.53 0.11 0.02 0.29 0.00
4 97.15 1.64 0.16 0.94 0.03 0.01 0.09 0.00

5
2022

91.46 6.44 0.70 1.23 0.06 0.01 0.10 0.01
6 97.12 2.57 0.11 0.18 0.01 0.01 0.01 0.00

* As the sum of percentages of N2, CO2, and C6+.

2.2. Methods
2.2.1. Simulation Method

A simplified model was subsequently developed using Aspen HYSYS V11 to evaluate
the effects of modifications to natural gas quality on the changes in the amount of hydrogen
produced in the reforming reactor.

The model is based on the assumption that changes in natural gas quality in industrial
hydrogen plants with an SMR reactor are particularly noticeable in terms of quantity and
quality when the reforming node is in operation.

Therefore, the model consisted of a node responsible for preparing a natural gas/steam
mixture, as well as a component representing the catalytic tubes of the reforming furnace.
A visual display of this model is depicted in Figure 5.
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Figure 5. Model of the node for preparing the natural gas/steam mixture considering the natural gas
reforming process developed via Aspen HYSYS.

The modelling assumes that natural gas is taken directly from the grid, then heated to
the desired temperature and mixed with a stream of steam. The natural gas/steam mixture
is then heated to reaction conditions and fed into the reactor.

Reactions under industrial conditions occur on a nickel catalyst within catalytic tubes.
In the model, the reactions in the catalytic tubes are described by means of a Gibbs-type
reactor. The Gibbs reactor assumes that minimizing the free enthalpy of the reaction system
enables one to estimate the degree of conversion for equilibrium reactions by considering
information on the reagents’ composition. The assumption is that the system’s free energy
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is minimal when the change in the Gibbs free enthalpy is zero. This condition is satisfied
when the product of temperature and total entropy change equals zero, achieved when p,
T = const., limiting the process to equilibrium conditions. One notable drawback of the
approach is that the computations are limited to equilibrium values, failing to account for
the temperature gradient across the flow inside the reactor. The reactor’s design and the
catalysts’ characteristics are not considered either [43]. The determination of minimum free
enthalpy using a Gibbs reactor is based on a non-stoichiometric formula and assumes the
simulation of an ideal mixture. At the same time, it is not necessary to write equations for
the reactions taking place or to possess knowledge of empirically determined parameters
that describe their kinetics, which is a significant simplification [44]. The accuracy of the
results is sufficient from the point of view of the purpose of this study.

2.2.2. Process Description

A stream of natural gas NG_1 with a flow rate of 300 kmol/h, temperature of
40 ◦C, and pressure of 3.2 MPaA is extracted from the grid and directed to heat exchanger
E-1. The heat flux Q_1 is also supplied to the exchanger, which is regulated by the logic
element AD_1. The purpose of this element is to maintain a constant temperature of the
gas stream NG_2 at the outlet of E-1, at 370 ◦C. The heated natural gas is guided towards
the mixer MIX-1. The stream NG_2 is mixed with the stream of steam S_1 in the mixer. It is
assumed that steam is externally supplied at a temperature of 243.4 ◦C and a pressure of
3.5 MPaA. The logic element AD_2 ensures that the steam-to-carbon ratio in the natural
gas stream is always 3.3 kmol H2O/kmol C. By performing this procedure, a mixture of
steam and natural gas NG + S_1 is produced at the outlet of MIX-1. This stream is then fed
to the exchanger E-2, to which the heat flux Q_2 is also provided. Consistently maintaining
a temperature of 570 ◦C for the NG + S_2 stream at the outlet of E-2 is achievable by
utilizing the logic element AD_3 across all simulation scenarios. The NG + S_2 stream is
subsequently routed to reactor R-1. The heat flux Q_3 regulated by AD_4 is injected into
the reactor R-1 to achieve the temperature of the process gas PG_1 of approximately 830 ◦C
in each simulation scenario.

2.2.3. Assumptions

The following assumptions and simplifications were made in constructing the model:

- The process does not result in heat loss to the ambient through the walls of the piping,
exchangers, mixer, and reactor shell.

- The key elements influencing the steam reforming process in the tube reactor are the
chemical composition of the feedstock, the heat balance, the temperature and pressure
of the process, the properties and mass of the catalyst used, and the reactor design
(including, inter alia, the material and thickness of the catalytic tubes, the operating
characteristics of the burners, etc.). These elements directly influence the reactions
taking place, the mass and heat transport through the porous catalyst grains, the mass
and heat transfer processes between the catalyst grains and the fluid core, the heat
transfer between the flue gases and the process gas flowing through the catalytic tubes,
and the heat transfer of the flue gases from the burners to the combustion chamber,
taking into account the furnace parameters and the catalysts used. These elements
influence the overall kinetics and thermodynamics of the process, which has a direct
impact on the degree of feedstock reactivity and the energy intensity of the process.
Currently, the most accurate SMR reactor models are based on empirical models. Their
development requires knowledge of detailed reaction kinetics and thermodynamics
parameters, detailed information on the reformer design, catalyst-specific constants
(e.g., catalyst density, grain density, grain porosity, pore curvature factor, average pore
radius), and bed (specific surface area, bulk density, porosity). Some of the parameters
can be found in the literature, while others need to be determined empirically or
obtained directly from manufacturers. To simplify the model to a degree acceptable to
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the subject of the work, it was assumed that the processes taking place in the catalytic
tube space could be described by a Gibbs reactor.

- Pressure losses of gas flowing through the pipelines and apparatus are not taken into
account (except for pressure drops in the exchanger E-2 = 0.02 MPa and R-1 = 0.07 MPa).

- The heat supplied to the exchangers E-1, E-2, and reactor R-1 (Q_1, Q_2, and Q_3,
respectively) depends on the desired temperatures maintained by the corresponding
logic element. For the NG_2 stream via AD_1 with an expectation value of 370 ◦C, a
tolerance of 0.1 ◦C and an iteration step of 1000 kJ/h. For the NG + S_2 stream, the
desired temperature was maintained via AD_3 with an expectation value of 570 ◦C, a
tolerance of 0.1 ◦C and an iteration step of 2000 kJ/h. The temperature of the PG_1
stream was maintained by AD_4 with a tolerance of 0.1 ◦C and an iteration step of
10,000 kJ/h. The model did not include the combustion of fuel gases for the heat input
to the reaction space of the catalytic tubes.

- The steam supplied to MX-1 remains at a constant temperature and pressure, while
the amount directed to the mixer varies. Stream S_1 is derived from the expected
value taken in AD-2. The desired number of moles in S_1 was calculated based on the
number of moles of C in NG_2, while keeping S/C constant at 3.3 kmol H2O/kmol C
(to the nearest 0.01). It is assumed that the steam is supplied from an external source.

2.2.4. Limitations

The limitations of this work are primarily related to the variability in the quality
of the natural gas used in the simulations and the assumptions made during the model
development stage.

The analysis of the variability in natural gas quality was limited to a review of the
results from the historical determinations recorded at transmission system exit point No.
308 Opole. Analysis of determination results at other exit points may require an adjustment
of Table 2.

The simulation results may differ from the process parameters obtained at production
facilities under real conditions due to the assumptions made. Additionally, it is important
to note that the model is not a digital twin of any of the existing production facilities.
Furthermore, excluding the exhaust gas utilization section and the boilers utilizers from
the model makes it impossible to assess the impact of changes in natural gas quality
on the steam balance and overall economy of the process. This is due to the necessity,
adopted within the framework of the work, to keep the S/C ratio and the inlet and outlet
temperatures of R-1 constant during the simulation.

3. Results

Six simulations were conducted utilizing a dedicated model and natural gas compo-
sitions specified in Table 3. The crucial assumptions and outcomes from the simulations
are shown in Figure 6. The numbers 1 to 6 on the coordinate axes of each graph represent
the simulations that utilized the gas quality outlined in the corresponding rows of Table 3
(matching numbers in column #).

To demonstrate alterations in the levels of methane, ethane, and propane within
natural gas NG_1 streams subjected to simulations, we have prepared Figure 6a. The
lowest methane concentration recorded in the natural gas stream was 91.46% v/v, while the
highest was 97.35% v/v. The range of ethane content varied from 1.20% to 6.44% v/v, while
propane varied from 0.11% to 1.34% v/v. It is assumed that hydrogen is not added to natural
gas, which is usually done if the installation is equipped with a hydrodesulfurization
node. Consequently, the raw material sent for mixing with steam in the mixer MIX-1 is
qualitatively identical to the natural gas received from the transmission grid.
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As the quality of natural gas varied, the number of carbon atoms present in the
NG_1 stream also changed accordingly. To maintain consistency in the simulations, it
was presumed that the molar flow of natural gas would remain constant at 300 kmol/h
every time. Knowing the chemical composition and molar flow, the number of carbon
moles were calculated. The results obtained varied noticeably from 294.1 kmol C/h in
Simulation No. 1 to 326.1 kmol C/h in Simulation No. 3. As the concentration of ethane and
propane increased, the number of carbon moles in NG_1 increased. For each simulation,
the number of carbon moles in natural gas and the molar flow of natural gas are shown
in Figure 6b. Figure 6c presents variations in the amount of steam directed to the mixer
MIX-1 and the S/C ratio. Following the assumptions, the S/C ratio in NG_2 was kept at
3.3 kmol H2O/kmol C. Steam was assumed to be imported from an external source. As
the number of moles in the natural gas stream rose, so did the amount of steam fed into
the mixer. In these examined cases, the steam directed to the process varied from 970.6 to
1076.0 kmol H2O/h.

During the simulations, as the quality of the mixture NG + S_2 changed, so did the
quantity and quality of the process gas PG_1 exiting the reactor R-1. The findings indicated
that the variation in the concentrations of hydrogen present in PG_1 ranged from 43.07
to 43.37% v/v, methane from 4.75 to 4.83% v/v, carbon (IV) oxide from 5.88 to 6.02%
v/v, and carbon (II) oxide from 6.72 to 6.83% v/v. Changes in the concentrations of these
components in the process gas exiting the reactor are shown in Figure 6d. Quantitative
changes were observed in addition to alterations in the quality of the process gas attained
through the simulations, as demonstrated in Figure 6e. These changes were mainly related
to fluctuations in the amount of steam fed into the reforming process and the chemical
composition of natural gas. The results showed that the amount of process gas produced
varied between 1697 and 1852 kmol/h. The most significant amount of gas was produced
in Simulation No. 3, while the smallest in Simulation No. 1. To lessen the impact of
temperature variations and corresponding changes in reactivity levels on the outcomes,
we assumed a constant gas temperature at the inlet and outlet of the reactor, regardless of
the raw material’s quantity and quality. The graph of temperature changes in the streams
NG + S_1 and PG_1 is shown in Figure 6f. It can be assumed that during each simulation,
the steam/natural gas mixture at the inlet of the reactor was 570 ◦C, and the temperature
of the process gas leaving the reactor was 830 ◦C.

A conclusion that can be drawn from the results is that as the concentration of ethane
and propane in the natural gas increases, so does the amount of hydrogen produced in the
reactions occurring in reactor R-1. Thus, it has been verified that, based on the assumptions
made, variations in the quality of natural gas could potentially result in a discrepancy of
up to 8% in the amount of hydrogen derived from methane steam reformation (producing
a minimum of 732.6 kmol/h in Simulation No. 1 and a maximum of 797.7 kmol/h in
Simulation No. 3).

In practice, increasing hydrogen production using natural gas with increased ethane
levels is not always possible. Figure 7 shows changes in the amount of heat delivered to
the exchangers E-1, E-2, and the reactor R-1 in the form of Q_1, Q_2, and Q_3. The heat
flux Q_1 delivered to E_1 varied from 4.60 × 106 to 4.89 × 106 kJ/h. To ensure that the
temperature of the natural gas/steam mixture (NG + S_2) remains constant at the inlet
of reactor R-1 throughout the simulation, the Q_2 flux was modified in response to any
alterations in the process mixture’s composition. In the simulations, the range of variation
of Q_2 was 1.67 × 107–1.84 × 107 kJ/h, primarily because of fluctuations in the quantity of
steam supplied to MIX-1. The least amount of heat was applied to E-2 during Simulation
No.1, where the process mixture was also exposed to the least amount of steam compared
to other simulations (970.6 kmol H2O/h). Conversely, the highest quantity of heat was
administered in Simulation No. 3 (1076.0 kmol H2O/h). The heat flux Q_3 varied in the
range of 6.06 × 107–6.58 × 107 kJ/h. When running an industrial plant at full capacity,
higher levels of ethane in natural gas can cause a plant overload leading to disruptions in
heat balance at vulnerable points. This will happen if the composition of natural gas differs
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significantly from the chemical composition of the gas used in the design assumptions. In
practice, preventing plant overloading can be achieved by maintaining nominal hydrogen
production at a lower level than the projected amount of natural gas fed into the process.
The obtained results generally align with findings from other studies, encompassing at
least [45–47].
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4. Conclusions

In recent years, Poland has expanded its import infrastructure, enabling it to start
importing gas in the form of LNG from sources that provide an alternative to natural
gas traditionally transported via pipelines from the east. These measures have led to a
rise in the concentration of ethane in the natural gas transmission grid compared to the
situation before the commissioning of the LNG terminal in Świnoujście. The examination
of the SWI database confirmed this outcome. The information extracted from the database
was also used to create a table depicting the variability of the chemical composition of
natural gas at a specific exit point (Area No. 308) in the southern part of Poland. Historical
gas composition results were extracted based on the minimum and maximum methane
concentrations measured in 2015, 2020, and 2022. These compositions were utilized to
simulate the influence of changes in the quality of natural gas, caused due to supply
diversification, on the efficiency of the steam hydrocarbon reforming carried out in the
Gibbs reactor. The simulations confirmed that these changes had a noticeable effect on the
amount of hydrogen produced when the natural gas intake control was implemented using
a constant molar flow rate each time.

In conclusion, the six simulations conducted to study the impact of natural gas compo-
sition on hydrogen production and process heat balance yielded several important findings.

• The methane concentration in the analyzed natural gas stream ranged from 91.46%
to 97.35% v/v, while ethane and propane concentrations varied between 1.20% and
6.44% v/v, and between 0.11% and 1.34% v/v, respectively.

• The number of moles of carbon (C) in the natural gas varied from 294.1 kmol C/h in
Simulation No. 1 to 326.1 kmol C/h in Simulation No. 3.

• The water steam fed into the process ranged from 970.6 to 1076.0 kmol H2O/h, and it
depended on the quality of the natural gas. More steam was introduced as the number
of C moles in the natural gas stream increased. The simulations were run so that the
ratio of steam atoms to carbon atoms in the feedstock (S/C = 3.3).

• Changes in the water steam–natural gas mixture led to variations in the quality
and quantity of the process gas PG_1 exiting the reactor. Key components in PG_1,
including hydrogen, methane, carbon (IV) oxide, and carbon (II) oxide, showed
slight fluctuations.

• The amount of process gas produced ranged from 1697 to 1852 kmol/h, with Simula-
tion No. 3 yielding the maximum and Simulation No. 1 the minimum,
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• To minimize the impact of temperature changes on the results, a constant temperature
assumption was applied. The inlet temperature to the reactor was set at 570 ◦C, and
the outlet temperature at 830 ◦C.

• Notably, as the concentration of ethane and propane in natural gas increased, the
amount of hydrogen generated in the reactor increased. This observation implies
that variations in the analyzed natural gas quality could theoretically affect hydrogen
production by up to 8%. The simulations recorded a change in the amount of hydrogen
produced contained in the process gas in the range of 732.6–797.7 kmol/h. As the
ethane concentration in the process gas increased, the heat demand of the reactions
occurring in the reformer also increased. The molar heat of the gas stream also changed,
affecting the thermal balance of the process.

• The simulations highlighted the potential challenge of overloading the plant when
using natural gas with a high ethane content. This overload could disrupt the heat
balance and other critical processes. Thus, maintaining nominal hydrogen production
might require limiting the amount of natural gas fed into the process.

In practical terms, these findings underscore the importance of carefully considering
natural gas composition and its potential impact on hydrogen production and plant opera-
tions in industries relying on steam reforming of methane. Adjustments and safeguards
may be necessary to ensure the stable and efficient operation of such processes when
dealing with variable natural gas compositions.
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21. Szoplik, J.; Stelmasińska, P. Analysis of gas network storage capacity for alternative fuels in Poland. Energy 2019, 172, 343–353.

[CrossRef]
22. Mozgovoy, A.; Burmeister, F.; Albus, R. Contribution of LNG use for the low calorific natural gas network’s safe and sustainable

operation. Energy Procedia 2015, 64, 83–90. [CrossRef]
23. GAZ-SYSTEM. Katalog Punktów Systemu Przesyłowego. Available online: https://swi.gaz-system.pl/swi/public/#!/ksp/

points?lang=pl (accessed on 30 June 2023).
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