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Abstract: Evaluating uncertainty in CO2 injection projections often requires numerous high-resolution
geological realizations (GRs) which, although effective, are computationally demanding. This study
proposes the use of representative geological realizations (RGRs) as an efficient approach to capture
the uncertainty range of the full set while reducing computational costs. A predetermined number
of RGRs is selected using an integrated unsupervised machine learning (UML) framework, which
includes Euclidean distance measurement, multidimensional scaling (MDS), and a deterministic
K-means (DK-means) clustering algorithm. In the context of the intricate 3D aquifer CO2 storage
model, PUNQ-S3, these algorithms are utilized. The UML methodology selects five RGRs from
a pool of 25 possibilities (20% of the total), taking into account the reservoir quality index (RQI)
as a static parameter of the reservoir. To determine the credibility of these RGRs, their simulation
results are scrutinized through the application of the Kolmogorov–Smirnov (KS) test, which analyzes
the distribution of the output. In this assessment, 40 CO2 injection wells cover the entire reservoir
alongside the full set. The end-point simulation results indicate that the CO2 structural, residual, and
solubility trapping within the RGRs and full set follow the same distribution. Simulating five RGRs
alongside the full set of 25 GRs over 200 years, involving 10 years of CO2 injection, reveals consistently
similar trapping distribution patterns, with an average value of Dmax of 0.21 remaining lower than
Dcritical (0.66). Using this methodology, computational expenses related to scenario testing and
development planning for CO2 storage reservoirs in the presence of geological uncertainties can be
substantially reduced.

Keywords: carbon storage; reservoir simulation; uncertainty quantification; geological realizations;
unsupervised machine learning; CO2 trapping mechanisms

1. Introduction

The primary focus of carbon capture and storage (CCS) is the mitigation of human-
induced emissions of CO2 [1]. This practical strategy entails the capture of CO2 from the
atmosphere, its transport to an underground storage reservoir, and injection into deep
formations, where it remains securely stored within the pore spaces of the rock [2]. Various
geological formations, such as depleted oil and gas reservoirs and deep saline aquifers,
have been identified as suitable sites for storage of CO2 at depths of several thousand
meters [3–5]. The use of geological realizations (GRs) is common in the development and
management of these CO2 storage reservoirs. GRs help to determine long-term trapping of
CO2, plume migration, and the potential for leakage [6–8]. However, due to the limited
availability of geological data for each storage site, there is a notable level of uncertainty, af-
fecting estimates of CO2 storage capacities, leakage risks, and the potential for groundwater
contamination [1].
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The evaluation and quantification of geological uncertainties have become increasingly
crucial in industries dedicated to decarbonization [2,9,10]. The geological structure of a
storage reservoir, coupled with variations in its petrophysical characteristics, constitutes the
primary origin of geological uncertainty [11]. Traditional approaches to assessing geological
uncertainty involve the generation of numerous potential GRs and the analysis of statistical
metrics derived from ensemble objective functions [1]. To encompass the uncertainty space,
Monte Carlo sampling is commonly employed to efficiently generate a large number of
GRs [12]. However, the computational challenges associated with simulating numerous
GRs pose a hurdle, leading to the exploration of methods to expedite this process. These
methods can be categorized into two groups: data-driven approaches and physics-based
simplifications [13].

Data-driven proxy models for uncertainty quantification rely on simplified fitting
procedures, bypassing the flow simulation for CO2 injections and post-injection [14]. This
enables the quick determination of many objective functions but may overlook fluid flow’s
physical laws, potentially causing errors, especially in high-dimensional input-parameter
spaces [15]. On the other hand, physics-based simplifications, such as low-fidelity re-
alizations including up-scaled GRs or reduced ensembles, aim to simplify geological
characteristics significantly. Although these methods provide simplicity in implementation,
they may limit the representation of sub-grid heterogeneity impacts [14]. Representative
geological realizations (RGRs) are a subset of reduced ensembles that aim to represent
critical heterogeneity and CO2 injection phenomena, as long as the model’s fidelity is main-
tained. Their validity relies on the assumption that RGRs closely reflect the uncertainty
of the full set. If this approximation fails, predictions about CO2 storage and migration
may be inaccurate. Therefore, it is crucial to assess the representativeness of RGRs and
explore optimal selection methods that maximize uncertainty representation. One of the
RGR selection methods is the Unsupervised Machine Learning (UML) method [16].

Machine learning and deep learning have recently been explored in many fields to
accelerate computationally heavy processes [17–20]. In this area, UML specifically stands
out as a widely adopted method to select RGRs, as evidenced in several case studies [21–24].
UML is designed to uncover the underlying structures in unlabeled data, employing tech-
niques such as dimensionality reduction and clustering [25,26]. Dimensionality reduction
identifies crucial attributes for distinguishing data samples, while clustering groups similar
samples. UML transforms realizations into a reduced-dimensional space and clusters them
according to static and/or dynamic features [26]. For instance, UML is applied to discover
similar realizations using 3D facies models [27], assess similarity based on generalized
travel time (GTT) differences [28], and evaluate various properties for RGR selection [21,29].
In experiments with a 2D aquifer CO2 model, ref. [30] demonstrated that an effective
UML framework for RGR selection involves utilizing Euclidean distance for dissimilarity,
multidimensional scaling (MDS) for dimensionality reduction, and deterministic K-means
(DK-means) for clustering realizations.

In our investigation, we try not only to select RGRs for a 3D synthetic aquifer CO2
storage model but also to delve into the efficacy of the optimal UML framework de-
rived from the study by Mahjour and Faroughi [30]. Our objective is to explore the
UML framework’s ability to maintain the inherent uncertainty found in the full set repre-
sented by the RGRs. To gauge the method’s performance, we conduct a series of statisti-
cal experiments, assessing the outcomes within the context of the PUNQ-S3 benchmark
model [31]. This model, designed to mimic a folded geologic formation forming an anti-
cline, serves as an excellent testing ground for examining the robustness and reliability of
the UML-based RGR selection method under diverse geological scenarios. Through com-
prehensive analyses and assessments within this model, we aim to highlight the method’s
strengths and limitations, offering insights into its practical applicability in capturing and
preserving uncertainty within complex subsurface systems. This exploration is crucial for
enhancing the efficiency and reliability of RGR selection processes in the context of CO2
storage initiatives.
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2. Methodology

In this work, the RGR selection process is based on the optimal UML algorithm
detailed by Mahjour and Faroughi [30], encompassing the measurement of the Euclidean
distance, MDS, and the DK-means clustering. As shown in Figure 1, the workflow begins
with the generation of numerous GRs while considering uncertainties. To evaluate the
UML framework’s effectiveness, both the full and RGR sets undergo examination using
CMG-GEM (Canada Modeling Group-Generalized Equation of State Model). Consequently,
we compare the distributions of simulation outputs obtained from the RGRs with those
originating from the full set.

Generating 
GRs

Measuring 
Euclidian distance

Applying 
MDS

DK-means 
clustering

Selecting 
RGRs

Start

Numerical 
simulation

Uncertainty 
evaluation

UMLEndValidation

Figure 1. RGR selection and validation workflow including (i) the selection of RGRs by measuring
Euclidean distance, applying Multidimensional Scaling (MDS), and implementing Deterministic
K-means (DK-means) clustering and (ii) the validation of the RGRs’ representativeness through the
simulation of both the full and RGR sets using a numerical simulator.

2.1. Generate Multiple Geological Realizations (GRs)

In the initial phase, a set of GRs is generated to capture geological uncertainties. While
there are various sampling techniques to create multiple GRs, this study specifically adopts
Latin Hypercube Sampling (LHS). LHS serves as a probabilistic geostatistical approach
tailored for uncertainty quantification, drawing from diverse data sources [32]. This method
ensures comprehensive sampling across the entire parameter range, minimizing the number
of simulations required while preserving the statistical integrity of the outcomes [33]. It
is essential to emphasize that this particular step, while integral to the overall workflow,
is not the primary focus of this study and operates independently of the technique used
for scenario reduction. Following this initial stage, the main focus of the study is on the
application of UML for the selection of RGRs.

2.2. Euclidean Distance Measurement Between Realizations

Within the UML process, a crucial step involves constructing a matrix based on dis-
tance indicators, denoted as δ, calculated between each pair of realizations. This distance
metric, δij, quantifies the similarity between realization ‘i’ and realization ‘j’ [34]. The
selection of a specific reservoir attribute and an appropriate distance measurement method
significantly impact the evaluation of these distance indicators [35]. Concerning geolog-
ical distributions, multiple generated geological realizations may exhibit similarities at
certain distances, resulting in comparable flow responses. The ability to distinguish these
realizations enables the generation of simulation outputs based on a reduced subset of
realizations, each representing diverse flow responses [24].

This study employs the Reservoir Quality Index (RQI) as a static reservoir attribute to
measure the distance between pairs of realizations. RQI finds widespread applications in
various reservoir-related domains, including permeability estimation, stratigraphy, and
reservoir modeling [36–40]. Porosity and permeability, integral petrophysical properties
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within the RQI formulation, hold particular significance in the context of fluid flow mod-
eling in heterogeneous porous media [41,42], especially in the modeling of CO2 storage
and plume migration [43,44]. Studies by [16,24] have explored the effectiveness of RQI in
identifying realizations with similar flow behaviors, which yield promising results. The
mathematical definition of RQI is given by,

RQI = 0.0314

√
K
ϕ

, (1)

where K represents permeability in milli-darcy (mD), and ϕ is the porosity as a fraction.
The constant 0.0314 serves as the conversion factor from permeability in µm2 to mD [45].
The RQI is derived from the Kozeny–Carman equation, defined as,

K = 1014
ϕ3

(1 − ϕ)2

(
1

Fsτ2S2
gv

)
, (2)

where Fs represents the shape factor, τ indicates tortuosity, and Sgv is the specific surface
area per unit grain volume. Each grid cell within the GRs possesses spatial coordinates and
a set of geological attributes, including porosity and permeability. To create RQI maps, the
RQI value is computed for each grid cell. Subsequently, a distance indicator between these
RQI maps is measured using the Euclidean distance metric.

The measurement of the distance between two 3D samples, denoted as ‘X’ and ‘Y’,
characterizes the degree of similarity between these samples [35]. In this study, we employ
the Euclidean distance as the chosen measurement, given its widespread use and familiarity
in similarity assessments [46]. After this step, we generate an ‘n × n’ distance matrix, D,
based on the ‘n’ RQI models, which serve as input for the subsequent step.

2.3. Multidimensional Scaling (MDS)

MDS is used to represent the similarity measurements among objects as distances be-
tween points in a low-dimensional space, where each point corresponds to one
object [47]. The fundamental concept behind MDS is to construct a map or configura-
tion of points in a lower-dimensional space that accurately reflects the similarities between
objects [48]. The outcomes of MDS are visualized by plotting the points in the k-dimensional
space. As highlighted by Scheidt and Caers [35], using high-dimensional Euclidean spaces
may not significantly enhance correlation, thereby suggesting that a 2D space (k = 2) can be
appropriate in such cases. Each point in this 2D space represents an individual realization,
and the Euclidean distance between two points serves as the measure of similarity between
these realizations.

2.4. Deterministic K-Means (DK-Means) Clustering

After the transformation of data from a high-dimensional initial space to a lower-
dimensional one, clustering techniques are employed to categorize models into distinct
clusters [23]. Realizations within the same cluster exhibit similarity to each other. This
study employs DK-means for clustering similar realizations, representing a modification of
the conventional K-means clustering algorithm [49]. The objective is to address K-means’
non-deterministic behavior resulting from its random choice of initial centroids. The DK-
means algorithm incorporates a deterministic initialization approach by either exploring
a range of potential centers through constrained bi-partitioning or implementing a novel
systematic method to select initial centroids. The primary goal of DK-means is to enhance
the reliability and consistency of clustering outcomes compared to the traditional K-means
algorithm [50].

Upon grouping the realizations through clustering, a representative realization from
each group is selected using centroid-based sampling. This method targets the model
closest to the center of the cluster for selection [23]. To determine a representative, the
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Euclidean distance between a model and the center of its corresponding cluster is calcu-
lated, indicating the model’s closeness to that center. Determining the optimal number of
RGRs poses a challenge, necessitating careful consideration of factors such as geological
realization complexity, the number and types of uncertain parameters, desired accuracy
levels, and available computational resources [16]. The chosen sample size aims to strike
a balance between computational efficiency and comprehensive coverage of the entire
uncertainty space.

2.5. Numerical Simulation and Uncertainty Evaluation

In this phase, we conduct a comparative analysis of simulation outputs from an in-
jection plan (IP) for both RGRs and the full set to assess how well the RGRs capture the
characteristics of the entire set. Initially, the simulation outputs for each set are processed
using a commercial flow simulator. Throughout the simulation, numerical realizations
are specified to define objectives over time. Focusing on trapping mechanisms, we ex-
plore the physics governing CO2 migration, resulting in three specific simulation outputs:
(i) CO2 structural trapping, (ii) CO2 residual trapping, and (iii) CO2 solubility trapping,
using CMG-GEM. Simulation outputs are employed to assess and compare uncertainty
between the full set and the RGRs. The methodology for quantifying uncertainty plays
a crucial role in evaluating the representativeness of the RGRs. In this study, we analyze
the distribution of the simulation outputs at the end of the simulation process to provide
insights for decision-making under uncertainty [14]. To compare the uncertainty ranges,
we examine CDF curves [51] derived from the simulation results of the RGR set and the
entire ensemble. The proximity of their uncertainty ranges is assessed by measuring the
maximum vertical difference, denoted as Dmax, between the CDFs of the two datasets,
F(x)RGR, m and G(x) f ull. This analysis is carried out using the Kolmogorov–Smirnov
(KS) test [52]. The Dmax value is determined by,

Dmax = max ∀x
∣∣∣F(x)RGR, m − G(x) f ull,n

∣∣∣. (3)

Here, the number of realizations in the RGR set (m) and the whole set (n) is predeter-
mined based on the budget and simulation time. If Dmax is lower than the critical Dcritical,
defined as,

Dcritical,0.5 = 1.36

√
n + m

nm
. (4)

Thus, if Dmax from the RGR and full-set samples is less than Dcritical, we ensure that
the RGR set adequately represents the full ensemble.

3. Model Description
3.1. Geometric Model

This study validates the effectiveness of the UML framework in selecting RGRs using
the synthetic reservoir model PUNQ-S3. Specific details of the PUNQ-S3 model, adapted
by Juanes et al. [31] to represent a storage aquifer, are documented by Floris et al. [53].
PUNQ-S3 consists of five layers of sand and shale, typical sedimentary phases com-
monly found in geological formations [54]. This configuration results in a grid layout of
19 × 28 × 5 grid blocks, totaling 1761 active blocks. The top formation is positioned at a
depth of 2340 m with an average thickness of 15 m. Each grid’s length spans 180 m in the
horizontal direction. The average horizontal permeability and porosity are 100 mD and
0.2, respectively. The initial pressure and the fixed temperature are set at 23,446 kPa and
32.2 °C, respectively. The rock compressibility is measured at 5.5 × 10−7 kPa−1, and the
water compressibility is 4.3 × 10−7 kPa−1. Furthermore, the relative permeability curves,
adapted from Juanes et al. [31], incorporate the Killough hysteresis model [55] for the
non-wetting phase (CO2). The relative permeability curves for CO2 and brine are shown in
Figure 2. This study relies on Land’s trapping models [56] for the residual CO2 trapping
mechanism. Hence, during the simulation process, computations for drainage and imbibi-
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tion processes are conducted utilizing Land’s residual model. Residual water saturation is
considered 0.31 for the simulation.

Figure 2. Relative permeability curves used in the CO2 storage simulation (Killough’s model is used
for hysteresis [55]).

3.2. Well Control Configurations

We implement an extensive injection plan (IP) specifically designed to elicit a com-
prehensive and varied response from the reservoir’s behavior, facilitating RGR selection.
The IP includes forty vertical injection wells strategically positioned to cover the entire
reservoir without restrictions in the injection system. The objective behind choosing this
well configuration is to ensure unbiased coverage of the reservoir model and to address
its inherent heterogeneity. Figure 3a,b shows the top view of the reference porosity map
and the placement of these wells within the IP, respectively. Within IP, the surface gas
rate (STG) is set at 10,000 m3/day, and the bottom hole pressure (BHP) is maintained at
44,500 kPa for each well. The wells are fully perforated from the top to the bottom of
the reservoir.

Figure 3. Reference PUNQ-S3 model. Panel (a) shows the 3D porosity map. Panel (b) represents the
well locations including forty wells, spanning the whole reservoir. Panel (c) shows the simulation
outputs structural (i) CO2 trapping, (ii) residual CO2 trapping, and (iii) solubility CO2 trapping
during 200 years with ten years of injection.
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3.3. Reference Simulation Outputs

We delve into the physics underlying CO2 migration and extract three simulation
outputs—(i) structural CO2 trapping, (ii) residual CO2 trapping, and (iii) solubility CO2
trapping—using CMG-GEM. In the solubility trapping simulation, we take into account
the chemical interactions between the gaseous and aqueous phases [57]. However, mineral
trapping is excluded from our study, as it predominantly occurs after 1000 years, whereas
our simulation duration spans 200 years with 10 years of injection. The simulation output
of the reference model is depicted in Figure 3c.

4. Results

We generated N = 25 realizations using LH sampling, considering diverse variations
in porosity and permeability models to ensure comprehensive spatial sampling. The array
of 25 porosity models (top views) is illustrated in Figure 4. Subsequently, we generated
RQI models using porosity and permeability properties. The RQI for each grid cell was
calculated to create the RQI map and determine the distances between pairwise GRs. In
this study, we specifically chose five predetermined numbers of RGRs, amounting to 20%
of the full set, using UML. This selection enables a reasonable reduction in both realizations
and computational expenses while maintaining the full set’s uncertainty domain.

1

     

     

     

     

     
 

Porosity 
(fraction)

0.01

0.15

0.30

Figure 4. Top views of the 25 3D porosity models generated through LH sampling, showing diverse
variations in porosity and permeability.

Figure 5 displays a 2D map showing all the realizations obtained through the
Euclidean/MDS/DK-means approach with five clusters. The MDS algorithm positions
these realizations on a 2D map while preserving their distances based on Euclidean measure-
ments in a distance matrix. Subsequently, the DK-means algorithm groups the realizations
into multiple clusters. Using the centroid sampling method, one realization is selected
as a representative of each cluster. The black points on the 2D map represent these five
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representative realizations. Upon visual examination, it is evident that the representative
realizations are evenly distributed across all the models.

Figure 5. A 2D map displaying all realizations generated through the Euclidean/MDS/DK-means
framework employing five clusters. The X-axis corresponds to Dimension 1 (D1), and the Y-axis
represents Dimension 2 (D2). Five RGRs, marked as black points, are selected through clustering
and centroid-based sampling. These RGRs exhibit an even distribution across all models, effectively
representing the full uncertain domain.

Next, we proceed with simulating the chosen five RGRs alongside the full set of
25 GRs to evaluate their simulation outputs over 200 years. This includes assessing CO2
trapping, residual CO2 trapping, and solubility CO2 trapping, taking into account the
essential inputs for the simulation process. In Figure 6, we compared the CDFs based on
the endpoint simulation results of both the RGRs and the entire set. The Dmax values for
CO2 trapping, residual CO2 trapping, and solubility CO2 trapping are 0.20, 0.24, and 0.16,
respectively. These values are lower than Dcritical, 0.66. Additionally, we compute the total
trapping, representing cumulative trapping at the endpoint simulation, generating CDF
curves for both RGRs and the full set. The resulting Dmax value is 0.24, also lower than
Dcritical. Thus, the CDFs reveal that the simulation outputs from RGRs, selected through
the Euclidean/MDS/DK-means framework, stem from the same distribution as the full set.

Figure 7a displays the average CO2 trapping for different mechanisms from both the
RGRs and the full set. The values obtained from the RGRs closely reflect those derived
from the complete set of 25 GRs. The values obtained from the RGRs—6.9 × 109 for
CO2 residual trapping, 1.9 × 1010 for CO2 structural trapping, 8.9 × 109 for CO2 solubility
trapping, and 3.5 × 1010 for total CO2 trapping—closely align with those derived from the
complete set (6.9 × 109, 1.9 × 1010, 8.8 × 109, and 3.5 × 1010, respectively). This alignment is
evident across various trapping mechanisms, highlighting the effectiveness of the selected
RGRs in representing the full set. The proximity in the averages indicates a consistent
trend, emphasizing the reliability of the RGRs in simulating CO2 trapping mechanisms.
Additionally, for visual validation, time series curves of the simulation outputs for both
RGRs and the full set are depicted in Figure 7b–d. The figure clearly shows that the RGRs
properly capture the entire uncertainty domain, confirming their ability to represent the
full-set results.

Furthermore, evaluating the UML framework involves a computational efficiency
analysis to gauge its effectiveness. We compare the simulation time for the full set against
the utilization of five RGRs chosen from Euclidean/MDS/DK means to quantify uncertainty.
The results show a significant reduction in time, decreasing from approximately 16 min
for the full set to only 3 min for the five RGRs, indicating an 80% time reduction for
the simulation. While simulating all 25 GRs is not overly time-consuming at this stage,
executing robust optimizations to maximize CO2 storage can be notably time-intensive
with the full set. This highlights that the use of RGRs can significantly reduce the time
required for CO2 storage reservoir development and management compared to employing
the full set.
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(a) (b)

(c) (d)

Figure 6. Comparison of CDFs between RGRs and the full set for CO2 trapping mechanisms. The
Dmax values for (a) structural, (b) residual, (c) solubility, and (d) total CO2 trapping are 0.20, 0.24,
0.16, and 0.24, respectively. The average Dmax is 0.21, which is lower than Dcritical, 0.66, indicating
a close similarity in the distribution patterns of trapping mechanisms between the RGRs and the
entire set of 25 GRs.

(b)

(c)

(d)

(a)

Figure 7. Statistical analysis of CO2 trapping mechanisms between RGRs and the full set. Panel (a) com-
pares the average of CO2 trapping mechanisms between RGRs and the full set. The average values
obtained from the RGRs—6.9 × 109 for CO2 residual trapping, 1.9 × 1010 for CO2 structural trap-
ping, 8.9 × 109 for CO2 solubility trapping, and 3.5 × 1010 for total CO2 trapping—closely align
with those derived from the full set (6.9 × 109, 1.9 × 1010, 8.8 × 109, and 3.5 × 1010, respectively).
Panels (b–d) show the time series curves of structural, residual, and solubility CO2 trapping, respec-
tively, for both RGRs and the full set. The comparison validates the RGRs’ representation of the
full-set results, confirming their reliability in simulating CO2 trapping mechanisms.



Energies 2024, 17, 1180 10 of 13

Our findings suggest that the UML framework, using static models for RGR selection
without requiring forward numerical simulations, effectively identifies a smaller subset,
capturing the uncertainty of the full set within a 3D model characterized by high hetero-
geneity. Subsequently, these selected RGRs can be employed for rapid scenario testing and
development planning at CO2 storage locations under geological uncertainties. To enhance
the efficacy and precision of these outcomes, we recommend further research and evalu-
ation of the employed UML framework, including (i) implementing robust optimization
on both the full set and RGRs, comparing results regarding CO2 storage maximization
and computational costs, (ii) analyzing the optimal quantity of RGRs within the UML
framework and assessing the trade-off between computational efficiency and accuracy, and
(iii) investigating the spatial distribution and plume footprint of the CO2 plume across both
the full set and the RGRs.

5. Conclusions

In this study, the efficacy of employing unsupervised machine learning (UML) to
select representative geological realizations (RGRs) within a complex 3D aquifer CO2 stor-
age model, PUNQ-S3 was investigated. To address the inherent geological uncertainty, a
workflow generated 25 geological realizations (GRs) through Latin hypercube sampling
(LHS) for uncertainty quantification. Subsequently, an integrated UML framework, includ-
ing Euclidean distance measurement, multidimensional scaling (MDS), and deterministic
K-means (DK-means) clustering, selected five RGRs (20% of the full set). The Kolmogorov–
Smirnov (KS) test was used to evaluate the UML framework, comparing absolute distances
(Dmax) between the cumulative distribution functions (CDFs) of simulation outputs from
the RGR sets and the full set. The findings demonstrated that the selected RGRs properly
captured the uncertainty domain of the full set, evident through similar trapping distribu-
tion patterns, with an average Dmax value of 0.21, remaining lower than Dcritical (0.66).
Furthermore, the average CO2 trapping for different mechanisms from the RGRs was
aligned with those derived from the full set of 25 GRs, highlighting the effectiveness of the
selected RGRs in representing the full set. Computational time significantly decreased from
around 16 min for the full set to only 3 min for the five RGRs, indicating an 80% reduction in
simulation time. Extending verification to the synthetic reservoir model PUNQ-S3 showed
the robustness of the UML-based RGR selection method, especially in scenarios with high
heterogeneity. These results emphasized the potential of this approach for expediting
scenario testing, decision-making, and development planning in CO2 storage locations
faced with geological uncertainties.
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Abbreviations
The following abbreviations are used in this manuscript:

BHP Bottom Hole Pressure
CCS Carbon Capture and Storage
CDF Cumulative Distribution Function
CMG-GEM Canada Modeling Group-Generalized Equation of State Model
DK-means Deterministic K-means
GR Geological Realization
GTT Generalized Travel Time
IP Injection Plan
KS Kolmogorov–Smirnov
LHS Latin Hypercube Sampling
MDS Multidimensional Scaling
RGR Representative Geological Realization
RQI Reservoir Quality Index
STG Surface Gas Rate
UML Unsupervised Machine Learning
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