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Abstract: The adoption of electric vehicles (EVs) has gained significant momentum in recent years as
a sustainable alternative to traditional internal combustion engine vehicles. However, the efficient
utilization of batteries in EVs, coupled with the growing demand for sustainable transportation,
has posed complex challenges for battery management in the context of electric vehicle routing
problems in a broad sense, which includes vehicle routing problems, team orienteering problems,
and arc routing problems, all of them using EVs. This paper presents a comprehensive review of the
state-of-the-art approaches, methodologies, and strategies for battery management in each of the
aforementioned optimization problems. We explore the relevant factors influencing battery perfor-
mance and the interplay between routing, charging, and energy management in the context of EVs.
The paper also discusses the advances in optimization algorithms, vehicle-to-grid integration, and
intelligent decision-making techniques aimed at enhancing the range, reliability, and sustainability of
EV operations. Key findings indicate a paradigm shift towards addressing uncertainties, dynamic
conditions, and synchronization challenges inherent in large-scale and dynamic routing problems
within the context of EVs that require efficient battery management.

Keywords: battery management; electric vehicle routing problems; metaheuristics

1. Introduction

In numerous countries worldwide, the adoption of EVs is driven by the pursuit of
sustainable and environmentally conscious transportation and citizens’ mobility [1]. These
vehicles offer a promising alternative to traditional internal combustion engine vehicles
(CVs), aligning seamlessly with global objectives to reduce carbon emissions and enhance
energy efficiency [2]. However, the integration of EVs into daily transportation and mobility
operations, presents significant challenges, particularly within the context of electric vehicle
routing problems (EVRPs) [3]. The limitations posed by the low energy density of batteries
and the efficient utilization of limited available resources can be counted among these
difficulties [4]. The low energy density of batteries limits the range and endurance of
EVs, constraining their practicality for long-distance travel and necessitating frequent
recharging. Malik et al. [5] listed the primary variables that impacted an electric battery’s
range: increasing vehicle mass as energy density rose, temperature, air resistance, rolling
resistance, battery cooling charge, traffic, speed, and cabin air conditioning. Numerous
scholars worked on intelligent algorithm-based function-monitoring and control schemes.
Since it was not feasible to directly examine their essential microscopic physical factors,
they provided the foundation for extending the driving ranges of electric batteries [6].
Furthermore, the intermittent nature of renewable energy sources such as solar and wind
increases the challenge of matching energy supply with demand. However, addressing
these challenges through innovative approaches to resource management and utilization
can produce substantial benefits [7]. Efficient utilization of limited resources, such as
optimizing charging and discharging schedules for EVs based on grid demand and energy
pricing, can enhance overall system reliability and resilience.
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Simultaneously, in the pursuit of sustainability, cities worldwide are experiencing a
growing adoption of EVs for citizens’ mobility [8] and last-mile logistics [9]. Governmental
initiatives in regions such as Europe, North America, and Asia endorse zero-emission
technologies, despite challenges such as driving range anxiety, extended recharging du-
rations, insufficient infrastructure, and limited financial incentives hindering widespread
EV acceptance in urban environments [10]. In urban settings, fleet-based activities re-
lated to freight transportation and citizens’ mobility necessitate efficient coordination to
reduce costs, operational times, energy consumption, and environmental impacts. This
coordination is often modeled as mathematical optimization problems, including vehicle
routing problems (VRPs) [11–13], arc routing problems (ARPs) [14,15], and team orien-
teering problems (TOPs) [16,17], which are NP-hard even in basic forms. Heuristic-based
algorithms [18] and simulation-based approaches are crucial tools for addressing real-life
instances compounded by operational complexities, including driving range constraints
and lengthy recharging times. To assess the increasing interest in EVRPs, Figure 1 illus-
trates the annual number of published documents in Google Scholar and Scopus databases
containing the expression ‘electric vehicle’ AND ‘routing problem’ in their title or abstract.
The time series highlights a continuous rise in interest within the scientific community over
the last decade.

Figure 1. Number of Google Scholar and Scopus-indexed articles on EVRPs by year.

This paper explores cutting-edge approaches, methodologies, and strategies dedicated
to battery management within EVRPs. In response to the increasing demand for sustainable
transportation and mobility, the development of efficient concepts, strategies, and algorith-
mic solutions becomes indispensable. Hence, the paper analyzes key factors influencing
battery performance within EVs, examining the relationship between routing decisions,
charging infrastructure, and energy management. Moreover, recent advancements in
optimization algorithms, the integration of vehicle-to-grid systems, and intelligent decision-
making techniques are also discussed. The manuscript not only identifies critical gaps
in the existing knowledge but also outlines promising future directions for research. The
main contributions include a detailed literature review on various electric vehicle routing
problems. Thus, our research extends to the connection between sustainable transportation
and the expanding utilization of electric vehicles.

As can be observed in the studies by Zhou and Zhao [19] or Kucukoglu et al. [3],
the majority of review papers on electric vehicle routing problems have been exclusively
focused on EVRPs, creating gaps in the literature regarding other types of challenges related
to routing and electric vehicles. As a result, our research contributes with a comprehensive
review of electric vehicle routing problems, encompassing not only EVRPs but also various
models of electric arc routing problems (EARPs) and electric team orienteering problems
(ETOPs). This includes a thorough discussion of the algorithms employed for their resolu-
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tion. In contrast to most of the reviews, such as those mentioned earlier, particular emphasis
is placed on models under uncertainty or dynamic conditions, reflecting the increasing
necessity for the development of more realistic models. Strategies such as synchronized
routing or agile optimization are also discussed, providing researchers with insights into
novel approaches applicable to numerous emerging problems.

The remainder of the paper is structured as follows. Section 2 offers an exploration of
various EVRPs. This section serves as a foundational overview, establishing the context
for the subsequent discussions on routing challenges specific to EVs. The challenges in
routing based on electric vehicles are examined in Section 3. Section 4 discusses battery
logistics, providing a comprehensive analysis of the logistical considerations surrounding
the efficient utilization and management of batteries in the context of EVs. This includes
an exploration of key factors influencing battery performance and the interplay between
routing decisions, charging infrastructure, and energy management. Sections 5–7 form
a trilogy of comprehensive reviews, addressing the EVRP, ETOP, and EARP, respectively.
Each section dissects the existing literature, synthesizing the state-of-the-art approaches,
methodologies, and strategies specific to the corresponding routing problem. The subse-
quent sections, namely Sections 8–11, analyze electric routing under different conditions
and paradigms. From simheuristics to learning-based approaches, agile optimization,
and synchronized routing, each section explores novel strategies and techniques aimed at
optimizing electric routing efficiency. Section 12 provides a glimpse into the future trends
in the domain of electric vehicle routing. It explores emerging concepts, technologies, and
methodologies that could define the future of electric routing problems. Finally, Section 13
summarizes the findings from each section and provides some future research lines.

2. Different Routing Problems in Transportation

Routing problems refer to a class of optimization problems concerned with finding
the most efficient routes or sequences of visits for vehicles tasked with delivering goods or
services. These problems typically involve determining optimal paths through a network
of nodes (e.g., customers, locations) while satisfying various constraints such as vehicle
capacity, time windows, and distance or time limitations. The scientific literature contains
a variety of problem families, depending on the particulars of the transportation activity.
VRPs, ARPs, and TOPs are some of the most prevalent. Even in their most basic forms,
these problems are NP-hard and can model scenarios involving both road and aerial EVs.
Therefore, in this paper, we will concentrate our review on these three problem families,
aiming to provide insights into their formulation, solution methods, and applications in
the context of EVs and battery management. We provide a short explanation on each of the
routing combinatorial optimization problems that are considered in this article: the EVRP,
the EARP, and the ETOP.

2.1. The Vehicle Routing Problem with EVs

Starting with the VRP, this is a well-known challenge that consists in finding optimal
routes for a fleet of vehicles, while meeting the demands of customers [20]. Therefore, in
VRP problem-solving, the objective is to design routes for cargo vehicles with minimal
transportation costs, facilitating the distribution of goods between a central depot and a set
of customers. Each customer, assigned to a single product, places demands on the depot,
where a fleet of capacitated vehicles (which are typically considered homogeneous) are
stationed. These vehicles visit customers to fulfill their demands, eventually returning
to the central depot once all customers are served. The optimization goal is minimizing
distribution costs, such as travel distance or time-based expenses, to efficiently serve all
customers without surpassing the loading capacity of the vehicles. Key constraints include
ensuring each route starts and ends at the depot, each customer is visited precisely once
by a single vehicle, and the total demand within a route does not exceed the vehicle’s
capacity. Figure 2 provides a representation of a simple EVRP scenario, featuring a single
depot, multiple customers with specific demands, a homogeneous fleet of EVs with a
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maximum loading capacity and maximum driving range due to battery constraints, and
associated travel costs between any pair of nodes. EVRPs involve planning routes tailored
for electric commercial vehicles in the logistics services sector. The fundamental constraints
of these EVRPs mainly revolve around managing the variable energy levels upon reaching
a customer, initiating routes with a full charge, identifying permissible charging points,
and accounting for travel, charging, and service times. To extend the mathematical model
of the VRP to the EVRP, new constraints must be incorporated into the original problem.
The model is based on the one described by Dantzig and Ramser [21], represented as
an undirected graph G = (V, E). Additional constraints ensure that exactly m vehicles
depart from the depot and that each client is visited exactly once. Further constraints
are introduced to eliminate sub-tours. To model this problem with EVs, an additional
constraint needs to be added to the model. This constraint restricts the total travel distance
throughout the tour to the EV’s maximum battery capacity Lh. This constraint can be
observed in Equation (1), where cij refers to the battery cost of traveling from node i to node
j, and xh

ij is a binary variable, that takes value 1 if vehicle h traverses the edge (i, j) ∈ E.

∑
(i,j)∈E

xh
ij · cij ≤ Lh ∀h ∈ {1, 2, . . . , m} (1)

Figure 2. Representation of a simple EVRP.

2.2. The Team Orienteering Problem with EVs

In contrast to VRPs, where visiting all customers is obligatory, in a TOP the necessity
to skip certain customers arises frequently. This is driven by restrictions on fleet size and
the maximum allowable route length. Each customer in a typical TOP contributes a reward,
collected upon the initial visit. Consequently, solving a TOP involves maximizing the total
reward collected by a fixed fleet of vehicles as they visit a set of customers. Unlike the basic
version of VRPs, cargo constraints are typically not considered in the basic version of TOPs.
When employing EVs, operational constraints stem from their limited driving range. As a
consequence, not all customers can be visited, as depicted in Figure 3, which illustrates a
basic ETOP. Regarding this problem, a similar process is employed to transform the TOP
into an ETOP. The model, based on the one described by Lin [22] incorporates a maximum
time per route restriction in addition to the constraints of an EVRP. Contrary to the VRP, the
TOP is modeled as a directed graph G = (N, A), where N stands for the set of nodes and
A represents the set of arcs. Given that this maximum time restriction does not need to be
related to the vehicle’s maximum traversable distance, the constraint given by Equation (2)
needs to be considered.

∑
(i,j)∈A

xh
ij · cij ≤ Lh ∀h ∈ {1, 2, . . . , m} (2)
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Figure 3. Representation of a basic ETOP.

The integration of unmanned aerial vehicles (UAVs) in cargo transportation by parcel
delivery companies has introduced a new dimension to TOP systems. UAVs, constrained by
load capacity and battery-driven driving range, pose operational challenges that necessitate
careful route planning to avoid failures. Addressing questions of battery recharge locations
and timing, a concern not exclusive to UAVs but pertinent to all types of EVs has become a
critical aspect of TOP operations [23].

2.3. The Arc Routing Problem with EVs

The ARP can be modeled on an undirected or a directed graph, where a subset of
requesting edges or arcs holds positive demand that requires fulfillment by a fleet of
capacitated vehicles, typically treated as homogeneous. The remaining edges, designated
as traversing edges, bear null demand. Hence, the visitation of these traversing edges is
non-mandatory and they are only used in case they allow a vehicle to visit a requesting
edge. In Figure 4, an illustration of a simple EARP is presented. The goal of the EARP lies
in finding a set of routes that cover the demands of all requesting edges (arcs), aiming to
minimize overall costs. These costs can be delineated in terms of expenditures, traveled
distance, or time. Each route is covered by a single capacitated EV, commencing and
concluding the journey at a singular depot. The return journey can utilize the same edges
(arcs) employed during the outward trip or opt for different ones. It is imperative that
the total demand from all requesting edges (arcs) within each route does not surpass the
capacity of the assigned vehicle. Furthermore, every edge (arc) with a positive demand
must be serviced exactly once. In addition, EVs have to consider a finite driving range,
typically quantified in terms of time or distance, which must be adhered to. To transform
the ARP into an EARP, whenever this problem is represented with an undirected graph,
the constraint given by Equation (1) needs to be added to the problem. Likewise, in the
case of a directed graph, the constraint given by Equation (2) would be added. The basic
model can be found in Van Bevern et al. [24].

Figure 4. Representation of a simple EARP.
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3. Challenges in Routing Based on Electric Vehicles

One of the most significant challenges EVs face in comparison to conventional vehicles
is their limited driving, which restricts their utility as transportation tools [25]. Not only
battery capacity plays an important role there, but weather conditions and even the so-
called range anxiety can impact the distance an EV user is able or willing to travel [26,27].
Moreover, recharging stations are not as integrated into the transport network as they
should be, largely due to the historical dominance that traditional combustion vehicles have
had in the market, which makes EV users deviate from their destination and take longer
routes in order to recharge their vehicles. This effect is called distance inconvenience, and
although these situations make EVs less effective and more difficult to refuel in comparison
to traditional vehicles, considerable effort has been put into addressing these issues, driven
by the increasing demand for EVs.

Given their possible scarcity, determining the location of new recharging stations
is a critical problem needed to address, to incentivize and enhance the use of EVs, but
numerous variables come into play when planning one. For instance, it is essential to take
into account the type of facility or its capacity. Additionally, the location of the recharging
station should vary depending on factors such as the number of planned stations or even
traffic patterns, making this problem inherently complex to solve. It is considered a specific
case of the facility location problem, and most models either aim to minimize the maximum
cost of travel, which is referred to as the center problem, or minimize the average cost of
travel, known as the median problem. Depending on the refueling demand, the challenges
associated with determining recharging station locations can be categorized into flow-
based and node-based models [28]. Flow-based models operate under the assumption
that EV drivers who travel for distances longer than their driving range need to recharge
the battery during the journey. Consequently, recharging stations have to be strategically
located so that the distance between two consecutive charging stations does not exceed the
driving range of the EV. On the other hand, node-based models are more suitable for people
who prefer to recharge their EVs near their home or workplace while they are resting,
working, or engaging in other activities. Thus, for example, Ahangar et al. [29] conducted a
case study in one district of Tehran and implemented a bi-objective mixed-integer linear
mathematical model solved by the Lagrangian relaxation method where limited budget,
disruption in charging stations and customer dissatisfaction (measured by the traveling
distance to charge EVs) are considered. However, node-based and flow-based models are
not the only two approaches used to model this problem as can be seen in Jung et al. [30],
where the authors propose a method based on vehicle trajectory to solve the problem for
electric taxis routing. Those two studies highlight the adaptability and diversity of methods
used to tackle the challenges associated with the different features of EVs and recharging
infrastructure planning.

Moreover, it is also important to consider that the arrival time of the EVs to the stations
and their level of charge is not usually known, resulting in significant variations in the
time EVs spend there and creating problems related to the scheduling and capacity of
the station. For instance, García-Álvarez et al. [31] propose hybrid metaheuristics and a
memetic algorithm to solve the scheduling problem for a large set of EVs, both the dynamic
and the static problem. For the metaheuristic part, a greedy randomized adaptive search
procedure (GRASP) is used. Results show that these methods outperform others like
genetic algorithms (GAs) and a method based on priority rules (EVS). According to our
findings, there are a lot of variables that need to be taken into account when planning new
stations. Still, in order to improve routing problems of non-conventional vehicles, stations
should offer easy public access and be situated at safe and highly visible locations [32].
This will raise public awareness of the benefits of EVs and bring confidence to users about
the reliability of the recharging network.
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4. Battery Logistics

Ever since lithium-ion batteries were first brought to market, incredible progress has
been made in terms of increasing energy density, lowering costs, and raising overall perfor-
mance. The development of EVs, which present a viable option for lowering dependence
on gas and reducing vehicle emissions, has been aided by these developments in battery
technology. As a result, almost all of the big manufacturers have started producing EVs,
and several countries have plans to get rid of CVs over the next few decades. Figure 5
shows the evolution in the sales of EVs by country, provided by the International Energy
Agency. However, there are still a lot of challenges to overcome, especially in the area of
battery technology [33]. This section delves into the essential prerequisites and difficulties
of battery logistics in EVs to provide a thorough grasp of the variables influencing the
direction of EVs in the future.

Figure 5. EV sales evolution by country.

As previously explained, EVs face challenges related to their limited driving range
compared to conventional vehicles. This is a significant concern for potential EV customers,
as it directly impacts the practicality and usability of these vehicles. The driving range of
an EV is mainly determined by the battery’s energy density, which refers to the amount of
energy stored per unit volume or weight. In EVs, batteries with higher energy densities
are essential for driving longer distances. Lithium-ion batteries (LIBs), currently one of
the most common battery technologies used in EVs, have relatively high energy densities.
However, these energy densities are still significantly lower than that of gasoline, neces-
sitating a large number of batteries to achieve a comparable driving range [34]. As the
energy densities of LIBs approach a limit, the development of next-generation batteries with
even higher energy densities becomes imperative for effectively increasing driving range.
Various solutions have been explored to surpass the energy densities of LIBs [35]. However,
these alternative designs face challenges such as safety concerns or poor cyclability, which
currently limit their application in EVs. Another significant challenge of EVs compared to
CVs is their high upfront purchase price, which remains a significant barrier to widespread
adoption. The cost of the battery, which sets a large portion of the EV’s total price, is a
major contributor to this expense [36]. Over the years, there has been a dramatic reduction
in battery costs to achieve cost parity with CVs. One approach to cost reduction is the use of
high-energy-density materials, which require smaller amounts of material. However, tran-
sitioning to materials with higher energy densities poses challenges related to safety and
cyclability. Another avenue for cost reduction is the replacement of expensive materials like
cobalt with more affordable alternatives. However, eliminating them presents its own set of
challenges, as it impacts battery safety and cycle life. In addition, managing manufacturing
costs is crucial in reducing the overall cost of a battery system [37]. Each battery production
involves numerous process steps, with some steps requiring long processing times and
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affecting yield rates. Furthermore, EVs encounter the issue of battery degradation over time,
resulting in a gradual decline in the vehicle’s driving range until repair or replacement be-
comes necessary. This issue is absent in CVs, thus contributing to a reduced lifespan for EVs
compared to CVs. Some studies have focused on assessing the environmental impact of this
phenomenon, considering that EVs produce no greenhouse gas emissions during operation.
However, the production of batteries and a significant portion of their components is more
environmentally harmful compared to equivalent components of CVs. An extensive study
on this topic is available in the work by Zhang et al. [38], where the authors explore the
life cycle environmental impact of EVs and other types of vehicles across various indexes.
Batteries can also be significantly impacted by environmental conditions, which play a
crucial role in determining their performance and longevity. As electrochemical systems,
batteries are influenced by factors such as temperature, which can significantly impact
their charging/discharging rates and degradation mechanisms. Balancing these effects
becomes challenging as batteries must maintain consistent performance across a range
of temperatures. Since EVs may encounter diverse environmental conditions throughout
their operational lifespan, maintaining battery performance under varying temperatures
is important. Effective thermal management systems are essential in achieving this goal
by regulating battery temperature within an optimal range. However, efficiently cooling
or heating batteries when necessary presents challenges due to limitations such as limited
contact area and heat transfer rates. Moreover, recharging time is a crucial factor influencing
the adoption of EVs, leading to the classification of recharging stations into two groups:
fast and slow charging stations. Fast charging stations can replenish EVs in a relatively
short amount of time but at the expense of reducing the lifespan of the batteries. In contrast,
slow charging stations preserve better the battery but require a significant amount of time
to fully complete a recharge. Recharging stations can also be categorized into three levels:
level 1 stations have a charging power less than 5 kW, while those of level 2 are considered
fast charging facilities and operate on a range from 5 to 50 kW. Both of them can completely
refuel an EV in 2 to 8 h, which may not be optimal for users requiring a driving range
beyond the maximum capacity of their vehicles. Lastly, level 3 stations are considered
super-fast stations and have a charging power greater than 50 kW [39]. While these may be
the preferred option for users in need of quicker recharges, it is essential to consider that
such high-speed charging could potentially lead to a reduction in the lifespan of the battery,
posing a trade-off between charging speed and long-term battery health.

These stations typically have limited capacity, meaning only a small number of vehicles
can be charged simultaneously, while others have to wait in queues. Different routes, battery
capacity or departure time can result in EVs reaching the stations at different times, posing
challenges in managing these variations. Moreover, charging stations can produce an
increase in the peak load of the electric network, threatening the power system’s security.
Thereby, some strategies are needed to mitigate this issue, suggesting that the creation
of new charging stations should be coupled with an improvement of the power supply
system [28]. Following this perspective, Yu et al. [40] defined a critical short circuit ratio
as the short circuit ratio when the system voltage is in a critical state. They utilized this
concept to differentiate between weak and strong systems, a distinction that will be essential
in the near future as EVs become more prevalent. A potential solution to the charging
stations problem involves replacing the existing depleted or nearly depleted battery with a
fully recharged one. This process is known as battery swapping and could be completed
in less than 10 min, which is faster than a significant amount of recharging stations [41].
Battery swap stations offer several advantages: for instance, the depleted batteries can be
charged at night slowly, extending the battery lifespan and minimizing electricity costs.
Furthermore, they enable a refueling process comparable to conventional vehicles, while
also providing centralized grid-support services, potentially enhancing the adoption of
EVs. As we have explained before, batteries are one the most contaminant parts of EVs.
Thus, having the station recharge the batteries at the most optimal moment, and taking care
of them from bring-up to recycling when the battery is not functional can reduce one of the
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worst environmental impacts EVs have. Moreover, this solution can also help us to deal
with reduced driving range due to battery degradation, since the station could potentially
replace the battery once it is degraded enough. However, the capacity of the battery swap
station could also become a problem, as not having enough chargers or ready batteries can
lead to changing a depleted battery to a non-fully recharged one. This can force the user to
stop at a non-planned station, with the consequences previously stated. Another potential
solution was investigated by Jaman et al. [42], where researchers investigated various
topologies and control strategies for integrated onboard charger systems in EVs, analyzing
their component count, switching frequency, efficiency, controllability, and reliability. They
evaluated performance indices such as setting time and rise time for charging and traction
operations, while also exploring the feasibility of level 3 charging stations. Additionally, the
study discussed power density trends in commercial integrated charging systems, offering
insights for researchers and engineers in the automotive industry. While considerable
progress is required in this domain, the current outlook suggests that in the meantime
battery swap stations are better suited for EVs in the public transportation sector, while
regular users are better with a mix of battery swap stations and recharging stations due
to irregular demand, as highlighted by Zhan et al. [43]. Nevertheless, this solution suffers
from the lack of battery standards for EVs, which complicates the feasibility of establishing
widespread battery swap infrastructure.

5. Review of the Electric Vehicle Routing Problem

In the EVRP the constraints of the VRP are modified based on new considerations
regarding electric vehicles, such as their limited battery capacity. These modifications give
rise to new operational challenges for the problem. Various variants of the EVRP have
been considered, encompassing aspects like time windows, homogeneous or heteroge-
neous fleets, partial or total recharge stations, and the incorporation of stochastic, fuzzy,
or dynamic variables. Different techniques have been employed to address this problem,
including exact methods and heuristics. However, due to the problem’s complexity, exact
methods can only handle small-sized instances. Consequently, diverse heuristics and meta-
heuristics have been developed. In this section, a review of various articles is presented,
highlighting a range of approaches when dealing with this problem. Thus, Almouhanna
et al. [44] proposed a fast multi-start heuristic and a metaheuristic to address the location
routing problem with constrained distances. The heuristic integrates biased-randomization
techniques to Tillman’s heuristic for the VRP, while the metaheuristic combines biased-
randomization with variable neighborhood search (BR-VNS). Experimental results indicate
that the multi-start biased-randomized Heuristic is able to generate high-quality solu-
tions in almost real-time, while the BR-VNS provided even better solutions with higher
computational times.

Real-life problems do not usually behave in a deterministic manner. Therefore, one ap-
proach to extending the EVRP is by incorporating uncertainty. Keskin et al. [45] addressed a
VRP with time windows and stochastic queuing times at recharging stations. In this variant,
a homogeneous fleet of EVs might have to wait at recharging stations due to limited charg-
ers available. In addition to this, queue waiting times at stations follow known probability
distributions and are determined once the EV arrives at a station. In this paper, the goal
is to minimize the sum of energy cost, vehicle acquisition cost and driver wages, while
satisfying different constraints regarding electric vehicles, such as battery capacity or their
cargo capacity and time windows. In addressing the issue, they introduced a two-stage
heuristic approach based on simulation, employing adaptive large neighborhood search
(ALNS). During the initial stage, routes were established while considering the anticipated
waiting times at stations. Once the actual waiting time was revealed, if the time window of a
customer was violated, the second stage corrects the solution. They finally tested it on both
small and large literature instances, obtaining good results in both computational times and
quality of the solution. A different approach was taken by Zhang et al. [46], who presented
an ALNS algorithm to solve a fuzzy EVRP with time windows. The model included a
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single depot, stations allowing partial recharge and a homogeneous fleet of EVs. Battery
energy consumption, service time and travel time are considered uncertain and, therefore,
addressed with fuzzy variables. A Variable Neighborhood descent (VND) algorithm is also
applied to further improve the solution’s quality. Numerical experiments finally validated
the performance of the proposed method, showing its effectiveness. Another aspect to
consider in EVRPs is the fleet type. Typically, a homogeneous fleet is considered for its sim-
plicity in modeling, but considering a heterogeneous fleet offers a more realistic approach.
Erdem and Koç [47] presented a hybrid metaheuristic combining GAs and a VND to solve
a variant of the home healthcare routing problem, where a group of healthcare workers
performed a number of jobs using EVs. In this problem, multi-depot and heterogeneous
fleet were considered, using EVs with different battery capacities, energy consumption
and recharging rates. Time windows were also considered, in addition to preferences,
competencies, connected activities, different charging methods, including partial or full
charge strategies and an objective function aimed to minimize the total travel time. To solve
the problem the authors proposed a hybrid metaheuristic, where the GA diversifies the
solution space and the VND intensifies the solution. Finally, computational experiments
were made, first for parameter tuning and a comparative test afterward. It is shown in
the paper that having a time limit of 3600 s, the metaheuristic achieved the same solutions
as the ones obtained using the CPLEX commercial solver and better solutions in those
instances where CPLEX reached the time limit, while having much lower computational
times. Following the same context, while electric vehicles are a much cleaner option than
conventional vehicles, they often struggle to compete in terms of cost. Nevertheless, due to
the environmental impact, several companies are starting to include EVs in their delivery
operations. Goeke and Schneider [48] proposed an EVRP with time windows and a mixed
fleet, where a mix of conventional vehicles and EVs was considered. Non-linear energy
consumption and variable recharging times are considered, depending on the vehicle’s
speed, battery level and cargo load. An ALNS enhanced by a local search was developed
to address the problem and numerical studies showed that considering the actual load
significantly improved the quality of the solutions generated.

Yet another important consideration in addressing an EVRP is the factor of dynamism.
When dealing with a real-life problem, several aspects can change with time. In this regard,
Wang et al. [49] discussed a dynamic electric vehicle routing problem, where the demand of
the customers could change over time. They considered a homogeneous fleet of EVs with
fixed load capacities and limited driving ranges. No charging stations were considered,
so each EV was required to return to the depot for full charging. A memetic algorithm
(MA) with an adaptive local search method was proposed to solve the problem, being
compared afterward in computer experiments with another eight algorithms, including
GAs and MAs with different local search methods. Finally, other aspects can be considered,
such as battery consumption or charging time. Xiao et al. [50], investigated an EVRP with
time windows where they considered an energy consumption rate per unit of distance as
a function dependent on speed and load—as battery consumption in an EV rises as their
speed increases. The objective function’s purpose was to minimize total cost, considering a
fixed cost per EV and driver, the cost produced by battery usage and drivers’ wage rate,
taking into account the constraints occasioned by EVs and time windows. To provide a
solution to this problem, a mixed-integer linear programming (MILP) model was developed,
optimally solving it with CPLEX for up to 25 customers and being partially optimized for
large instances of up to 100 customers utilizing a dynamic heuristic. The heuristic was
named as dynamic partial optimization with iterative neighborhood search. Comparative
tests based on simulations were made, showing that the proposed algorithm obtained
either the best-known solution or a near-optimal solution with much lower computing
time when compared to CPLEX. Similarly, Montoya et al. [51] considered an EVRP with a
nonlinear charging function. A hybrid metaheuristic was proposed, combining an iterated
local search and a heuristic concentration, achieving better solutions than those obtained
by the Gurobi commercial solver.
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Table 1 shows a summary of the EVRP articles, categorized according to their problem
characteristics and their solution approach. Regarding problem characteristics, the use
of time windows, homogeneous or heterogeneous fleet and whether it is considered as a
deterministic, stochastic, fuzzy or dynamic problem. According to the second criterion,
solution approaches considered are heuristics, metaheuristics and exact methods.

Table 1. Summary and classification of revised EVRP references.

Reference Problem Characteristics Solution Approach

Almouhanna et al. [44] ELRP, HoF, DP H, MH
Keskin et al. [45] EVRP, TW, HoF, SP H
Zhang et al. [46] EVRP, TW, HoF, FP MH
Erdem and Koç [47] HHRP, TW, HeF, DP MH
Goeke and Schneider [48] EVRP, TW, MF, DP MH
Wang et al. [49] EVRP, HoF, DyP MH
Xiao et al. [50] EVRP, TW, HoF, DP EM, H
Montoya et al. [51] EVRP, HoF, DP MH

Note: ELRP = electric location routing problem, EVRP = electric vehicle routing problem, HHRP = home
health routing problem, TW = time windows , HoF = Homogeneous Fleet, HeF = heterogeneous fleet (of EVs),
MF = mixed fleet (of CVs and EVs), DP = deterministic problem, SP = stochastic problem, FP = fuzzy problem,
DyP = dynamic problem, EM = exact method, H = heuristic, MH = metaheuristic.

6. Review of the Electric Team Orienteering Problem

The rising popularity of EVs for cargo transportation in recent years has also resulted in
their use in TOP applications. For such applications, effective operational planning is essential
to prevent undesired and typically costly route failures [52]. This is natural as every route is
constrained due to the limited driving range caused by battery usage, and not every client can
be visited. In addition, new considerations about where and when to recharge the batteries
are among the issues that have arisen. In particular, all EV types face this difficulty [23].

In single-vehicle orienteering problems (OP), Lee and Park [53] introduced a tour plan-
ning service focused on selecting a maximum number of places to visit, considering the time
interval during which tourists waited for their vehicles to charge without participating in
any activity. They assumed each spot had a charging station. To address this problem, they
proposed a GA. Their experiments showed that 95% of the selected spots could be visited
without causing waiting times for tourists. Similarly, Wang et al. [54] considered an EV tour
planning with time windows. In addition, the study introduced EV recharging limitations
to ascertain the battery’s condition at each visit. This way, researchers determined whether
or not the following visit was feasible considering battery usage. Heuristic-based strategies
were used to address this problem and the Taiwanese road network was used to test the
different heuristic strategies. More recently, an EV that traveled from an origin depot to a
destination depot while maximizing reward along its path was addressed by Juan et al. [55].
The vehicle came across a variety of charging stations in diverse areas with station type,
weather, congestion, and battery condition as dynamic aspects that influenced rewards.
The study developed a hybrid strategy that integrated simulation and reinforcement learn-
ing to navigate this dynamic environment. Computational experiments showed that the
methodology could produce route plans that performed better than arbitrary choices. In
the context of surveillance operations, Pěnička et al. [56] examined an OP using a UAV for
data-gathering missions in military operations. In this regard, the UAV was outfitted with
sensors to collect data from a list of predefined targets. This problem took into account
the possibility of gathering the data (i.e., reward) from a nearby neighborhood sensing the
distance surrounding the target places. To address this problem, a VNS metaheuristic was
proposed. Similar to the previous study, Dasdemir et al. [57] discussed route planning for a
reconnaissance mission involving a UAV in a radar-monitored region. The UAV had to visit
several targets, each with data that could be collected in a certain amount of time. Target
selection, visit order, and trajectory decisions were all included in the route construction,
which took into account a number of goals including safety, mission duration, and informa-
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tion gathering. For smaller instances, the study suggested a mixed-integer programming
model. For larger instances, the authors suggested a hybrid algorithm that combines exact
methods with heuristics. A case study based on a Colorado terrain was included, followed
by a discussion of practical issues related to UAV route planning.

In multiple-vehicle OPs or TOPs, Mufalli et al. [58] discussed the assignment of sensors
to UAVs and their routing to maximize intelligence gain. One base was available where
the UAVs could start from and return to. The UAVs could only travel a certain distance
before needing to come back due to limited battery. The authors took into account that
adding sensors would make the UAVs heavier and reduce their travel distance. They came
up with a detailed plan to solve this problem using both a complex mathematical model
solved with CPLEX 12.2 software and simpler strategies that used local search methods.
These strategies were enhanced by column generation for larger missions, where efficiency
was critical. In the context of smart cities, Reyes-Rubiano et al. [52] studied the routing
of a set of UAVs to deliver goods to customers in a space that was shared by different
types of vehicles. In their case, the problem was modeled with random rewards and a
variable service time for visiting each customer which depended on the collected reward.
In addition, UAV batteries could require more time than the estimated time needed to
travel the routes. To address this problem, a simheuristic algorithm was proposed. Results
showed that solutions given by the simheuristic algorithm outperformed the ones given by
the deterministic version in uncertainty scenarios. Likewise, Saeedvand et al. [59] presented
a hybrid technique for solving a TOP with time windows for rescue operations, combining
a learning algorithm with an evolutionary multi-objective approach. Humanoid robots
made up the fleet, and their five goals were to maximize overall energy, maximum energy
consumption for a single robot, task rewards, job completion time, and missed deadline
penalties. Every robot completed a set of tasks to serve a route, making money each time
a task was completed within its designated time frame. Similar to other studies, every
robot had a finite amount of energy, meaning that the assigned tasks were to be finished
before the energy ran out. The learning algorithm sought to update robot plans so that they
could quickly and accurately make decisions. In Xu et al. [60], an alternative use of EVs in
TOP systems was described where energy-critical sensors needed to be charged by mobile
chargers. The ability to visit every sensor was restricted since these mobile chargers had
limited energy capacity. A separate cost was assigned to each node to account for the energy
consumption of the mobile charger during sensor charging, in addition to the travel cost.
The research also considered several vehicle types based on how much power each one had
and how far they could fly. Moreover, a sensor may be visited by several vehicles, which
would reduce the marginal profit. The researchers presented an approximation algorithm to
solve this problem, which was later improved to handle vehicles of the same type. Recently,
Sundar et al. [61] proposed a concurrent multi-threaded branch-and-price algorithm with
acceleration schemes to solve an ETOP. In this case, the study focused on fixed-wing drones
which introduced additional constraints to the problem. Among these were kinematic
restrictions that limited the drones’ ability to make quick turns, which ultimately limited
the minimum turn radius. These limitations were addressed with the introduction of
branching mechanisms. While the approach successfully found optimal solutions for most
problem instances, the use of exact approaches, as proposed in their study, limited the
ability to find real-time solutions—a crucial requirement in many dynamic systems.

Table 2 summarizes the revised ETOP papers according to the following criteria: (i) the
problem characteristics being addressed; and (ii) the solving method used to solve the
problem. The first criterion considers either single or multiple vehicles in the fleet of vehi-
cles, the use of a homogeneous fleet (vehicles with the same capacity) or a heterogeneous
fleet (vehicles with different capacities), the consideration of time windows for visiting
locations, and the formulation of the problem as deterministic, stochastic or dynamic. As
for the second criterion, the proposed solving methods are categorized into exact methods,
approximate methods, heuristics, and metaheuristics.
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Table 2. Summary and classification of ETOP references.

Paper Problem Characteristics Solution Approach

Lee and Park [53] SV, HoF, DP MH
Wang et al. [54] SV, HoF, DP, TW EM, H
Juan et al. [55] SV, HoF, DyP H
Pěnička et al. [56] SV, HoF, DP MH
Dasdemir et al. [57] SV, HoF, DP EM, H
Mufalli et al. [58] MV, HeF, DP, TW EM, H
Reyes-Rubiano et al. [52] MV, HoF, SP MH
Saeedvand et al. [59] MV, HeF, DP, TW MH
Xu et al. [60] MV, HeF, DP AM
Sundar et al. [61] MV, HoF, DP EM

Note: SV = single vehicle, MV = multi vehicle, HoF = homogeneous fleet, HeF = heterogeneous fleet,
DP = deterministic problem, SP = stochastic problem, DyP = dynamic problem, TW = time windows, EM = exact
method, AM = approximate method, H = heuristic, MH = metaheuristic.

7. Electric Arc Routing Problem

UAVs can directly travel from a location to any other location, without the limitations
of existing roads, whose characteristics are the foundations of ARP applications. Nev-
ertheless, a major problem preventing the adoption of UAVs is the absence of airspace
management to avoid collisions between UAVs themselves, with static objects such as
buildings, dynamic flying objects such as birds and human-controlled flying objects such as
planes or helicopters. Different studies have been made in this aspect, to develop systems
where the UAVs avoid possible colliding objects with different solution approaches [62–64].

Campbell et al. [65] examined different aspects of ARPs involving a single UAV. They
explored scenarios where the UAV would serve various edges sequentially, with the possibil-
ity of stopping service to one edge and serve another before returning to complete the service
to the first edge. This turns the problem into a continuous optimization problem. To solve it,
they approximated edges as polygonal chains, transforming it into a discrete optimization
problem. They created random instances where a single UAV with unlimited range was
used. Later, in Campbell et al. [66], they tackled a more realistic scenario by considering
limited UAV range, necessitating a fleet of UAVs. They devised a mixed-integer linear
model and solved it using a branch-and-cut algorithm. They also proposed a matheuristic
approach based on edge splitting to tackle the problem. Chow [67] introduced a determin-
istic arc-inventory routing problem, particularly useful in scenarios with uncertainty like
city monitoring during major events. They formulated a policy aimed at maximizing value
under such uncertainty, treating it as a selective vehicle routing problem. To approximate
this policy, they developed an approximate dynamic programming algorithm based on least
squares Monte Carlo simulation. They tested the algorithm on real-time trajectory instances
spanning five time periods to assess its effectiveness. Results indicated that, depending on
the design parameters, the algorithm generally outperformed the myopic policy.

Real-world scenarios involving UAV EARPs have been extensively explored in re-
search. For example, Li et al. [68] delved into the UAV scheduling problem with uncertain
demands to enhance real-time monitoring of road traffic across multiple time periods.
They devised a mixed-integer programming model by merging a capacitated ARP with
an inventory routing problem and developed a local branching-based solution method
for it. They applied this model to study road traffic in Shanghai, China, conducting nu-
merical experiments to validate its effectiveness and the efficiency of the solution method.
However, to overcome UAVs’ limited endurance, cooperation with vehicles can be ben-
eficial. Liu et al. [69] investigated a new system for inspecting high-voltage power lines,
involving a UAV and a ground vehicle. The ground vehicle served as a mobile platform for
launching and retrieving the UAV, which inspected the power lines. They optimized both
the ground vehicle and UAV routes to improve inspection efficiency, creating a two-layer
point ARP. They designed constructive heuristics and local search strategies to enhance
solution quality, testing their algorithms on practical cases based on Ji’an, China’s road
and power line networks, and conducting sensitivity analysis on UAV-related parameters.
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A similar challenge is addressed by Luo et al. [70], who proposed and studied the traffic
patrolling routing problem with UAVs in urban road systems. They modeled the prob-
lem as a double-layer ARP considering road network equations and task heterogeneity.
They presented a mixed-integer linear programming formulation and two-stage heuristic
solution approaches for practical-sized problems. Through numerical experiments, they
demonstrated that their solution method could quickly provide optimal path planning for
various test sets. They also analyzed relevant parameters of the patrol process and tested
the algorithm’s performance on benchmark instances and a real-world case in Hefei, China.

Most literature concerning EARP typically focuses on the utilization of UAVs across
various applications. However, Yurtseven and Gökçe [71] took a different approach by
examining a waste collection scenario employing a heterogeneous fleet of electric street
sweepers. Their aim was to execute a predetermined service within realistic operational
constraints while minimizing energy consumption for service provision, travel, and disposal
operations. They solved multiple small instances based on a real case in Izmir, Turkey,
achieving optimality under different demand levels and time windows. Similarly, Moazzeni
et al. [72] proposed a dynamic location-arc routing optimization model for waste collection
utilizing EVs. Their model determined optimal routing plans and the best locations for
charging stations, dynamic charging arcs, and waste collection centers. They utilized a GA
and a Grey Wolf Optimizer (GWO) to tackle large-scale randomly generated location-arc
routing problems. They presented a case study for Edmonton, Canada, demonstrating
that the GWO outperformed the GA. Moreover, they showcased the necessary infrastruc-
ture—waste collection centers, charging stations, and dynamic charging arcs—to ensure a
minimum required service for EVs throughout Edmonton’s waste collection system. Further-
more, Fernández et al. [73] explored the integration of EVs into waste collection operations,
addressing practical aspects like dynamic charging while driving, speed-dependent energy
consumption, and nonlinear charging functions based on battery state and charging time.
They introduced the concept of an energy-indexed graph to handle these aspects, formulat-
ing an integer linear programming model and a solution framework using a branch-and-cut
algorithm. They proposed efficient construction heuristics and a local search approach for
approximately solving large-scale instances. Computational analysis on realistic problem
instances not only evaluated the performance of their methods but also provided insights
into strategic decisions regarding battery size and charging facility deployment.

Table 3 summarizes recent EARP articles and categorizes them according to the fol-
lowing dimensions: (i) the characteristics of the addressed problem and (ii) the employed
solving approach. Regarding the first dimension, the analyzed papers can consider either
routes with a single period or multiple periods, a homogeneous fleet where all vehicles have
the same capacity or a heterogeneous fleet where vehicles have different capacities, and
the problem variables and constraints can either be deterministic, stochastic or dynamic.
As for the second dimension, exact methods, heuristic or metaheuristic approaches are the
considered methods to solve the different EARP articles.

Table 3. Summary and classification of revised EARP references.

Reference Problem Characteristics Solution Approach

Campbell et al. [65] SP, HoF, DP EM, MH
Campbell et al. [66] SP, HoF, DP H
Chow [67] MP, HoF, SP EM
Li et al. [68] MP, HeF, SP EM, H
Liu et al. [69] SP, HoF, DP H
Luo et al. [70] SP, HoF, DP H
Yurtseven and Gökçe [71] SP, HeF, DP, TW EM
Moazzeni et al. [72] SP, HoF, DP MH
Fernández et al. [73] SP, HoF, DyP EM, H

Note: SP = single period, MP = multi period, HoF = homogeneous fleet, HeF = heterogeneous fleet,
DP = deterministic problem, SP = stochastic problem, DyP = dynamic problem, TW = time windows, EM = exact
method, H = heuristic, MH = metaheuristic.
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8. E-Routing under Uncertainty

Routing problems are frequently classified as NP-hard and large-scale, therefore exact
methods require huge computing times in order to find optimal solutions. Consequently,
approximate optimization methods, such as metaheuristics and heuristics are employed
to solve these problems within reasonable times. In order to solve large-scale stochastic
optimization problems, a combination of simulation and optimization is used. One of these
hybrid methodologies is simheuristics, which integrates simulation and metaheuristics [74].
This method provides near-optimal solutions to stochastic optimization problems in short
computing times and therefore has been vastly studied in recent years. Electric routing
problems are often modeled as an extension of conventional routing problems. Therefore
most changes regarding uncertainty made in deterministic routing problems can be applied
to their electric counterparts. As highlighted in previous sections, when addressing vehicle
routing problems, uncertainty can be taken into account in customer demands, charging
station waiting times or travel costs, among others. When dealing with team orienteering
problems, we can consider both stochastic or fuzzy reward quantity or travel times. In the
context of the electric arc routing problem, edge demands and especially node rewards are
often related to uncertainty. Moreover, the use of electric vehicles entails other considerations,
such as energy consumption and charging stations which can be also considered as either
stochastic or fuzzy variables. Multiple approaches have been made in order to address EVRP
with uncertainty. Reyes-Rubiano et al. [75] developed a simheuristic to tackle the EVRP with
stochastic travel times. The simulation-optimization method developed integrates a Monte
Carlo simulation into a biased-randomized multi-start framework, allowing for fast genera-
tion of high-quality solutions. Computational experiments were conducted, illustrating that
using deterministic solutions in stochastic scenarios could result in sub-optimal solutions,
which can be easily improved with the use of a simulation-optimization technique.

Zhang et al. [76] discussed a location-routing problem with electric vehicles and stochas-
tic demands, considering battery swapping stations (BSS) in addition to electric vehicle
constraints – such as vehicle load capacity or battery capacity. The study proposed a hybrid
algorithm called HVNS, which combines binary particle swarm optimization and variable
neighborhood search. The former addressed the BSS location plan, being later improved
with local search strategies, while the latter provided the routing plan. Computational
experiments comparing the developed method and other algorithms and hybrid algorithms
showcased the effectiveness of the HVNS. Regarding electric arc routing problems, most arti-
cles refer to the employment of UAVs. Chow [67] studied a dynamic stochastic arc-inventory
routing problem. An approximate dynamic programming algorithm based on least squares
Monte Carlo simulation was presented and computational tests verified its effectiveness
while compared to the myopic policy. Similarly, the unmanned aerial vehicle scheduling
problem with uncertain demands was addressed by Li et al. [68]. A mixed integer program-
ming model was designed by combining the ARP with the inventory routing problem. To
tackle this hybridized problem, a local branching-based solution method was proposed,
achieving near-optimal solutions in much lower times than the ones obtained by CPLEX. In
a similar context, Panadero et al. [77] tackled the challenge of UAV surveillance routing with
stochastic travel times and reliability concerns. The problem involved a constrained fleet of
UAVs with limited driving ranges tasked with visiting multiple target zones to carry out a
monitoring mission. To face this problem, a simheuristic was developed, integrating Monte
Carlo simulation and a multi-start biased-randomized metaheuristic. Computational results
highlighted the importance of considering simulation when facing a stochastic scenario, as
the deterministic solution offers a worse performance both in terms of expected cycle time
and level of reliability. Previous articles added uncertainty to classical deterministic routing
problems by acknowledging the stochastic behavior of some variables, such as travel times,
customer demands, service times or battery durability. Nevertheless, some aspects cannot
be represented with stochastic uncertainty. In these occasions, fuzzy techniques might be
useful [78]. Following this logic, Oliva et al. [79] introduced the concept of fuzzy simheuris-
tics, which extended the simheuristic approach by incorporating fuzzy techniques, allowing
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them to tackle optimization problems that included stochastic and non-stochastic elements.
A TOP under an uncertainty scenario was proposed. In this problem, both stochastic and
fuzzy rewards were contemplated. Computational experiments were conducted, demon-
strating the effectiveness of the method to find solutions to the TOP with different degrees
of uncertainty. Ghobadi et al. [80] examined a multi-depot electric vehicle routing problem
with recharging stations and fuzzy time windows in pickup/delivery. Three metaheuristics
were developed, made up of simulated annealing (SA), VNS, and a hybrid of SA and VNS.
By analyzing numerical results, the authors concluded that the hybrid method outperforms
the individual ones in all instances regardless of their size.

Figure 6 depicts a sunburst chart that summarizes and classifies the revised e-routing
articles and categorizes them according to their problem characteristics. The problem char-
acteristics consider the problem family (EVRP, ELRP, EARP or ETOP), either homogeneous
or heterogeneous vehicles in the fleet (HoF or HeF), the uncertainty of the problem as
stochastic, fuzzy, or dynamic-stochastic (SP, FP, or DySP), and the consideration of time
windows (TW) or battery swapping solutions (BSS).

Figure 6. Summary and classification of revised references of e-routing problems under uncertainty.

9. E-Routing under Dynamic Conditions

With the incorporation of EVs into the transport industry, the need to efficiently solve
routing problems arises as the risk of draining the vehicle’s battery before reaching the
destination becomes a reality. In order to avoid or at least minimize inaccuracies when mod-
eling real-life problems, it is mandatory to consider traffic and weather conditions, as urban
areas are subject to constant change and dynamism. For this reason, real-time data-driven
problems need to be addressed. Machine learning techniques can take advantage of the
real-time data, and with their incorporation into metaheuristics, the concept of learnheuris-
tics comes to life, providing fast high-quality solutions to dynamic routing problems [81].
Different approaches have been made in order to include dynamism in routing problems.
Bayliss et al. [82] addressed an aerial-drone team orienteering problem, where the goal was
to maximize the reward from information gathering within a limited time lapse. The drone’s
flight path can affect greatly its speed due to multiple conditions, therefore a learnheuris-
tic consisting of the integration of a machine learning mechanism to a metaheuristic was
developed. This algorithm was also improved by using biased-randomization techniques
and different local search processes. Computational experiments were made, where the
developed learnheurisic was compared to different metaheuristics. Results showed that the
proposed algorithm obtained the second highest average reward while obtaining solutions
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in much lower computational times than all other algorithms. Regarding the EVRP, several
studies have been made including dynamic conditions. Basso et al. [83] studied a dynamic
stochastic EVRP. This problem was modeled as a Markov decision problem, and the goal was
to find a route for a single EV to service deterministic or stochastic customer requests. They
developed a safe reinforcement learning method and a re-optimization method, both com-
bined with a roll-out heuristic based on a tabu search, obtaining good results with different
levels of dynamism. The study concluded that the reinforcement learning algorithm could
save, on average, 4.8% of energy compared with the deterministic online re-optimization
approach. In a similar way, Dong et al. [84] proposed an improved memetic algorithm with
incorporated local search and economical random immigrant strategy to solve a dynamic
EVRP with mid-route recharging and new demand arrival. After computational tests, the
developed algorithm showed good performance time-wise and excellent performance un-
der different dynamic environments regarding solution quality. Similarly, Bi and Tang [85]
developed a hybrid roll-out algorithm (HRA) to address a dynamic EVRP in which traffic
conditions and energy consumption were time-dependent and stochastic. Its aim was to
minimize the overall service duration while not violating any EV-related constraints. The
algorithm’s performance was evaluated by performing computational experiments and
results showcased its effectiveness and robustness in finding near-optimal solutions in the
studied instances. Another path was taken by Lu and Wang [86], who proposed a bi-strategy-
based optimization algorithm to solve a dynamic capacitated EVRP. A partition between
possible customers was made, dividing them into static and dynamic groups and extensive
comparisons showcased the algorithm’s effectiveness in dealing with this dynamic problem.
Other approaches were made to find greener solutions regarding vehicle routing problems.
Xiao and Konak [87] addressed a time-dependent vehicle routing and scheduling problem
with CO2 emissions optimization. In order to tackle this problem, a hybrid solution approach
was taken, combining a genetic algorithm with a dynamic programming procedure. A hetero-
geneous fleet and dynamic traffic environment were considered. For larger size instances, the
problem was divided into two parts, the routing part and the scheduling part. Computational
tests showcased the effectiveness and efficiency of the proposed methodology.

Figure 7 depicts a sunburst chart that summarizes and classifies the revised e-routing
articles and categorizes them according to their problem characteristics. Regarding the
characteristics, reviewed papers are categorized depending on the problem family (EVRP
or ETOP), the use of homogeneous fleet or heterogeneous fleet of vehicles (HoF or HeF),
and the uncertainty type involved which is dynamic, or dynamic-stochastic (DyP or DySP).

Figure 7. Summary and classification of revised references of e-routing problems under dynamic con-
ditions.
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10. Agile E-Routing

Real-time decision-making is necessary for many practical applications of EVRPs.
Urban areas are constantly exposed to a variety of dynamic conditions, particularly in the
transportation sector, which emphasizes the necessity for intelligent and quick decision-
making. These scenarios can arise when one of these systems fails, such as battery failure,
unavailability of charging stations, or unexpected traffic congestion. In addition, the inher-
ent characteristics of many routing problems are often NP-hard, large-scale, and dynamic,
so traditional approaches of using exact methods or even metaheuristics are insufficient
as decision-making must occur within constrained time frames. In this case, intelligent
systems need to be able to respond fast and offer users high-quality solutions every few
seconds to adapt to the dynamic changes in data related to these systems. Thus, there is
an urgent need for approaches that can quickly produce near-optimal solutions to rout-
ing problems, particularly those tailored to the unique requirements of EVs. Obtaining
high-quality solutions in real-time for large-scale optimization problems is a major chal-
lenge. It occasionally presupposes that the model will need to be re-optimized because
inputs and constraints are subject to dynamic modification as a result of new data being
incorporated or conditions changing. Heuristics are extremely fast algorithms designed
to solve a specific problem, which construct feasible solutions but are not guaranteed to
be optimal. However, this deterministic procedure can be expanded into a probabilistic
algorithm by employing biased-randomization techniques [88]. These techniques make
use of skewed (non-symmetric) probability distributions such as triangular or geometric
ones to produce multiple different solutions, some of which will outperform the solutions
given by the heuristics alone. Hence, the biased-randomized algorithms (BRAs) are still
extremely fast procedures, which produce multiple high-quality solutions and require a
reduced number of parameters.

Naturally, BRAs can be extended to be executed in parallel, which is the foundational
idea behind agile optimization (AO) algorithms. AO algorithms rely on employing massive
parallelization techniques to concurrently execute a large number of BRAs, each one in
a different thread. Consequently, multiple solutions are generated at virtually the same
time as the one required by a single execution of the original heuristic, so thousands of
solutions could be generated from the BRAs execution if thousands of threads are run in
parallel. As a result, a pool of multiple alternative solutions is generated, from which the
solution that outperforms the others will be selected to be returned by this AO procedure.
Figure 8 depicts the main structure of the AO methodology. This combination of biased-
randomized approaches with massive parallelization is really adaptable to many high-
performance architectures, such as general-purpose computer processing units (CPUs),
graphical processing units (GPUs), clustered and distributed computing environments
or even cloud computing services. AO strategies leverage the strengths of both parallel
computing and optimization algorithms to enable: (i) real-time, efficient solutions to
large-scale, NP-hard optimization problems; and (ii) periodically re-optimize the model
when inputs and constraints change dynamically as a result of new data arriving or
conditions changing.

In their work, Panadero et al. [89] explored the increasing use of UAVs across various
fields like smart cities, logistics in urban areas, humanitarian aid, response to natural
disasters, and military operations. They focused on one particular challenge: optimizing
UAV operations in scenarios where travel times are unpredictable. To tackle this challenge,
they introduced a simheuristic algorithm that blends a biased-random approach with
simulation methods. Additionally, they proposed an AO methodology to adapt to the
ever-changing environment, stressing the urgency of providing real-time solutions to
potentially save lives. Similarly, Panadero et al. [90] studied the growing concern of
UAVs and self-driving vehicles in smart cities to serve customers by a specified due date
efficiently. An AO algorithm combining an extremely fast biased-randomized heuristic
with a parallel computing approach was proposed to solve the problem. The algorithm
was able to generate high-quality solutions in a matter of seconds given the importance
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of providing real-time solutions. In the context of EVs, Almouhanna et al. [44] examined
the shift towards greener road transportation practices with the introduction of EVs for
routing operations. The study discussed the location routing problem with a maximum
travel distance, which is a natural extension when EVs are utilized. An AO heuristic was
proposed to solve the proposed problem using the well-known Tillman’s heuristic for the
multi-depot VRP. A series of computational experiments showed that the AO heuristic was
able to generate good-quality solutions in just a few seconds of computational time.

Figure 8. Schema of the agile optimization methodology.

11. Synchronized E-Routing

Several real-world combinatorial optimization problems exhibit a high degree of
dynamic nature. This requires a certain level of synchronization among agents and events.
For instance, in order to reduce waiting times, it is crucial for EV routing operations to
coordinate the arrival of vehicles to charging stations. Considering charging stations have
a limited service capacity, this is achieved by giving priority to EVs in need of immediate
charging to manage the charging station queues effectively. Similarly, in warehouse logistics,
the routing of AGVs needs to be synchronized with the arrival of new products to maximize
their battery usage. In both examples, a number of interconnected events are scheduled
for the future, as operational decisions are made. Conventional optimization techniques
find the synchronization of events challenging, while discrete-event simulation naturally
processes the scheduling of events without an optimization component. Discrete-event
heuristics (DEH) presents a solution-construction procedure combined with discrete-event
simulation to solve optimization problems with synchronization issues. Fikar et al. [91]
introduced the DEH methodology to manage synchronization issues and time dependencies
in a ride-sharing problem. It was later extended to a biased-randomized DEH to generate
multiple feasible and high-quality solutions. Figure 9 outlines the main characteristics of
the DEH methodology. This allows us to solve practical large-scale optimization problems
that cannot be solved with exact methods alone, or with other metaheuristic algorithms
that do not take into account the synchronization of events. The main disadvantage of
the methodology is likely the difficulty in evaluating the quality of its solutions in large-
scale scenarios, where exact methods are not able to yield optimal solutions and where
alternative metaheuristics may also be severely limited by the time-dependent events that
characterize these highly dynamic environments.
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Figure 9. Schema of the discrete-event heuristic methodology.

Peyman et al. [92] developed a methodology based on DEH for solving a dynamic
ride-sharing problem in the context of EVs sharing strategies. This algorithm facilitated the
real-time processing of data collected from IoT systems to optimize automated decisions in
the city transportation system. These decisions included the optimization of vehicle routing,
the recommendation of personalized modes of transportation to citizens, the creation of
effective ride-sharing and car-sharing schemes, and the location of ideal charging stations
for EVs.

12. Future Trends

After a systematic review of a large variety of articles regarding routing problems, a
great amount of options arise for future work. Future trends should focus on improving
results obtained when dealing with a realistic problem, given the increasing necessity of
providing agile and very good solutions to real-world transportation problems. In this
sense, a vast amount of different options have been considered in order to turn a problem
into a more realistic one. Regarding routing problems by themselves, different approaches
have been made, including the consideration of uncertainty, including stochastic and fuzzy
scenarios, dynamic conditions, the need for agile computations and synchronization issues.
In the context of uncertainty, much more attention has been given to the study of stochastic
scenarios than to fuzzy scenarios. Therefore, future trends might include focusing on
developing fuzzy optimization methods for solving realistic problems, given that many
uncertain conditions cannot be associated with a stochastic nature. In this regard, richer
versions of the VRP and the TOP could employ and adapt fuzzy-simheuristic approaches.

Concerning dynamic conditions, studies can be found on EVRP and ETOP. However,
very few articles addressing the electric arc routing problem under dynamic conditions are
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found, indicating the need for further research in this area. Additionally, the exploration of
supervised learning methods, such as support vector machines, random forests, multiple
regression, or neural networks, can make a difference. As previously mentioned, quick
decision-making is becoming ever more needed as the transport sector is exposed to
dynamic conditions. With parallel computing becoming more affordable and accessible,
research into effectively parallelizing optimization methods would provide a valuable
asset in supporting agile optimization methods. When taking into account constraints
associated with the use of EVs, multiple ways have been explored. The energy consumption
of an EV is influenced by various factors like road conditions, weather, driver behavior,
and speed. To achieve more accurate results, these factors must be taken into account.
Additionally, factors such as energy usage for heating or air conditioning and battery
replenishment while driving downhill should also be considered. Some routes may lead
to EVs arriving at charging stations or depots with near-zero battery levels. Ignoring
or oversimplifying energy consumption aspects could lead to impractical routes. While
modeling energy usage precisely in large-scale applications is challenging, it’s crucial to
investigate when such impracticalities arise due to simplification. In energy consumption
computations, charging amounts or times at charging stations are often assumed to follow
a constant rate. However, the charging amount is not linearly proportional to the charged
battery level, necessitating the adoption of non-linear formulations for charging operations
to better reflect reality. While many routing problem studies use homogeneous fleets
for simplicity, real-world scenarios often require heterogeneous fleets, comprising both
pure EVs and a mix of conventional and pure EVs. Moreover, with several European
cities implementing low-emission zones, there is a growing need for benchmark instances
where specific customers can only be served by electric vehicles. Although some of these
aspects have been addressed in prior research, studies typically focus on one or a few
concepts, necessitating the consideration of various aspects to model problems realistically.
Developing more efficient and powerful methods is crucial to address these challenges,
as enhancing realism significantly increases problem complexity and computational time
needed to find optimal solutions.

13. Conclusions

This paper has provided a comprehensive exploration of electric routing problems,
including EVRPs, ETOPs, and EARPs. Specifically, 39% of the papers are dedicated to
EVRPs, 34% contribute to ETOPs, and 27% discuss EARPs. In addition, the paper has
analyzed diverse methodologies and scenarios, drawing from an extensive review of the
literature. One of the main topics that appeared throughout the study is the need to address
uncertainties. Simheuristic methodologies emphasize the significance of incorporating
uncertainties in travel times, customer demands, and node rewards. In parallel, dynamic
conditions in urban environments demand adaptive solutions. The exploration of dynamic
scenarios is linked to the increasing need for real-time decision-making. The incorporation
of machine learning techniques and the emergence of learnheuristics arise as innovative
methodologies for considering the dynamic scenarios of urban logistics. Yet another
concept is derived from the agile optimization algorithms. These algorithms combine
biased-randomized techniques with massive parallelization in order to provide high-
quality solutions, in real-time, to large-scale and NP-hard optimization problems. Factors
influencing energy consumption in EVs are also discussed, with such factors ranging from
road and weather conditions to driver behavior and auxiliary battery systems. Concretely,
25% have been solved by exact methods, another 25% with heuristic methods, and 36%
with metaheuristic methods. The remaining 14% have been addressed using methods such
as simheuristics, learnheuristics, agile optimization, or discrete-event heuristics. Thus, the
study provides a thorough examination of electric routing problems and their associated
solving methodologies.

Some research lines to be explored in future work are described next: (i) to explore
and develop advanced fuzzy optimization methods for EVRPs, considering uncertainties
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beyond stochastic scenarios; (ii) to investigate the application of supervised learning
methods to enhance decision-making in EVRPs; (iii) to further explore parallel computing
techniques for solving large-scale optimization problems in real-time; (iv) to enhance
models for energy consumption in EVs by considering additional factors, such as road
and weather conditions, driver behavior, and the impact of heating or air conditioning
systems; (v) to address routing problems involving heterogeneous fleets, including both
conventional and electric vehicles; (vi) to extend the focus to last-mile delivery and urban
logistics, addressing specific challenges related to EV routing in densely populated areas;
and (vii) to explore multi-objective optimization techniques to simultaneously consider
conflicting objectives in EVRPs, such as minimizing travel costs, reducing emissions, and
optimizing delivery times.
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