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Abstract: A novel multi-objective robust optimization model of an integrated energy system with
hydrogen storage (HIES) considering source–load uncertainty is proposed to promote the low-carbon
economy operation of the integrated energy system of a park. Firstly, the lowest total system
cost and carbon emissions are selected as the multi-objective optimization functions. The Pareto
front solution set of the objective function is applied by compromise planning, and the optimal
solution among them is obtained by the maximum–minimum fuzzy method. Furthermore, the robust
optimization (RO) approach is introduced to cope with the source–load uncertainty effectively. Finally,
it is demonstrated that the illustrated HIES can significantly reduce the total system cost, carbon
emissions, and abandoned wind and solar power. Meanwhile, the effectiveness of the proposed
model and solution method is verified by analyzing the influence of multi-objective solutions and
a robust coefficient on the Chongli Demonstration Project in Hebei Province.

Keywords: multi-objective optimization; hydrogen energy storage; compromise planning; source–load
uncertainty; robust optimization

1. Introduction

Countries around the world are actively exploring more low-carbon and econom-
ical energy utilization methods to alleviate the global energy crisis and environmental
pollution [1,2]. Hydrogen energy storage (HES) is characterized by high energy density
and a non-polluting use process. Therefore, HIES has become one of the most important
direction for the development of low-carbon economies in future integrated energy systems
(IES) [3,4]. In addition, the increasing variety of energy sources used in IES poses a great
challenge to optimizing the operation of IES in low-carbon economies [5,6]. Therefore, the
study of the optimal operation of these systems has become a hot topic in the energy field.

In recent years, a great deal of research has been conducted on optimizing the opera-
tion of hydrogen IES. The authors of [7] introduced an electric hydrogen production unit
into a microgrid and developed a real-time operation optimization model. The authors
of [8] presented a two-stage optimal selection method for an isolated electric hydrogen
heating–cooling cogeneration IES and verified the economic advantages of IES with sea-
sonal hydrogen storage. The authors of [9] proposed an optimal operation scheme for
electric hydrogen heating, which improved the economy and safety of the system. The
optimization objectives established in the literature [7–9] are all single objectives. However,
in the context of the low-carbon transition of the energy system, conventional single-target
economic dispatch has experienced difficulties in meeting the optimization requirements,
and the carbon emissions of the system have become an important part of the optimal
operation of IES [10]. For this reason, the studies in [11–14] examined the multi-objective
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optimization of IES. The author of [11] proposed an IES that includes hydrogen and renew-
able energy sources, and a multi-objective optimal scheduling model was developed by
considering the economic and environmental benefits. The authors of [12] proposed an
integrated natural gas–wind–photovoltaic–hydrogen energy system with a multi-objective
optimization model, considering its annual integrated cost and carbon emissions. A multi-
objective optimization model of a wind–hydro–hydrogen power generation system was
developed in [13]. The authors of [14] established a multi-objective optimization strategy
in which carbon emissions were better than the total cost, in order to further reduce the
carbon emissions of the system for the first time.

Multi-objective solving is a complex process, and commonly used methods include
the ε-constraint method [15], the non-dominated sequential genetic algorithm-II (NSGA-
II) [16,17], the multi-objective particle swarm algorithm (MOPSO) [18,19], and the multi-
objective genetic algorithm (MOGA) [20]. However, these algorithms always have certain
limitations; for example, the efficiency and completeness of the solution of NSGA-II will be
affected by the size of the population, and MOPSO is computationally complex and has
poor convergence.

In addition, there are uncertainties in the different energy systems involved above,
such as wind power, photovoltaics, and loads, which can adversely affect the optimal oper-
ation of HIES [21,22]. However, these uncertainties are not considered in the above studies.
To cope with the uncertainty, the following methods are commonly used: stochastic opti-
mization (SO) [23,24], RO [25,26], fuzzy optimization [27], and interval optimization [28].
Among these, SO and RO are the most widely used. The authors of [29] proposed an SO
framework for multi-energy systems, aiming to address multiple uncertainties in renewable
energy sources, tariffs, and loads. The authors of [30] described the uncertainty of energy
sources such as wind, photovoltaic, electricity, heat, cold, and hydrogen based on stochastic
scenario generation. The authors of [31] developed a hydrogen-based RO scheduling
model for smart micro-energy centers, aiming to reduce the cost of the risk associated
with electricity price uncertainty through RO. The authors of [32] proposed an RO model
for a microgrid, considering uncertainty to balance the economics and robustness of its
operation. The authors of [33] used a data-driven two-stage distributed robust optimization
(DRO) approach to cope with the uncertainty of electric vehicles. On this basis, the authors
of [22] proposed a framework for multi-objective optimization and robustness analysis by
combining multi-objective optimization and two-stage SO. The authors of [34] proposed
a multi-objective SO model to balance the economics and environmental friendliness of
a system under multiple uncertainties. In a recent study, a novel robust multi-objective
optimization model was proposed for islanded data center microgrids (DCMGs) [35].

In fact, when SO is employed to cope with uncertain disturbances, a large number
of stochastic scenarios need to be generated, which is computationally more complex,
especially when faced with a multi-objective problem [21]. In contrast, RO does not require
information about the probability distribution of the determinant and only requires upper
and lower bounds on the uncertain parameters, which is more efficient but may also lead to
overly conservative decisions. DRO improves the conservatism of traditional RO decisions,
but its transformation solution is complex and it may be less efficient when applied to
large-scale IES uncertainty optimization [36]. To summarize the unique features of the
proposed model compared to previous work in the field, a detailed comparison of the
reviewed articles is further presented in Table 1.

The results of the studies are summarized by comparing the related literature: al-
though there has been some development in considering multi-objective optimization
regarding HIES in the existing work, the efficiency and accuracy of their solutions need
to be improved. Meanwhile, the previous studies lack a comprehensive consideration of
the system uncertainty. Moreover, as of now, there is little research on the multi-objective
robust optimization of HIES considering the source–load uncertainty.
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Table 1. Comparison of different research methods.

Literature Application System Optimization Objectives Optimization Tools Uncertainty Handling

[7]
Microgrid with

a power-to-hydrogen
device

Minimize operating cost Mixed-integer
linear programming ×

[8]
Island IES combined

power–hydrogen–heat–
cooling cogeneration

Life cycle cost Random-trigonometric
grey wolf

Clustering and
scenario generation

[9]

Active distribution
networks + heat to district
heating networks + power-

to-hydrogen-and-heat
scheme

Minimize operating cost CPLEX RO

[11]

Wind turbine +
photovoltaic cell +

electrolytic hydrogen + fuel
cell + hydrogen storage

Operating cost + carbon
footprint NSGA-II ×

[12] Natural gas–wind–
photovoltaic–hydrogen IES

Annual consolidated cost +
annual carbon emissions

The branch and
bound procedure ×

[13]
Grid-connected

photovoltaic–hydrogen–
natural gas IES

Annual total cost + annual
carbon emissions

The branch and bound
procedure ×

[14] Wind–solar–water–
hydrogen IES

Minimum loss of daily load
+ maximum net annual

income + carbon footprint

Twin delayed deep
deterministic policy
gradient algorithm

×

[22] CCHP-based renewable
auxiliary BIES system

Total annual cost + annual
carbon emissions

Enhancement of
epsilon constraint Two-stage SO

[29] Multi-energy hub systems Minimize operating cost BONMIN SO

[30]
A grid-connected

electricity–hydrogen
integrated energy system

Minimize operating cost +
carbon footprint +

energy losses

Improved multi-tasking
and multi-objective

optimization
Scene generation

[31] Hydrogen-based smart
micro energy center Total cost minimization Strong duality theory RO

[32] Micro-grid Operating cost The Benders
dual algorithm RO

[33] IES, electricity–hydrogen
hybrid charging station Maximize revenue

Bisection-based distributed
algorithm combined with

the C&CG algorithm
DRO

[34] Multi-renewable hybrid
CCHP systems

Total annual cost +
environmental indicators NSGA-II SO

[35] DCMG

Total operation cost wind +
power curtailments +
computation resource

over-plus level

Epsilon constraint RO

This paper HIES Total system cost +
carbon emissions Compromise planning RO

A multi-objective robust optimization model for HIES considering source–load uncer-
tainty is proposed in this paper to fill the gap in the existing research. RO is adopted to deal
with the system uncertainty, and compromise planning and max–min fuzzy methods are
applied to solve the model. Finally, the model is validated by practical arithmetic examples.
The main contributions are summarized below.

1. A HIES multi-objective robust optimization model considering source–load uncer-
tainty is proposed to balance the economy and environmental protection of the system
operation under multiple uncertainties.

2. The compromise planning and max–min fuzzy methods are applied to solve the
multi-objective robust optimization models and to obtain the Pareto frontier solutions
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and its optimal solutions. Compared with the widely used NSGA-II, the compromise
programming method has a larger search space and more uniform frontier solutions.

3. The modified RO method used to ameliorate the source–load uncertainty improves
the system’s ability to cope with the uncertainty risk, and the multi-objective RO is
more efficient than the multi-objective SO. The system’s features are regulated by
adjusting the robustness coefficient, which overcomes the strong conservatism of the
traditional RO.

2. HIES Modeling
2.1. Schematic of HIES

This paper adopts the HIES structure shown in Figure 1, which is based on the Chongli
Large-Scale Wind–Solar Complementary Coupled Hydrogen Production System Applica-
tion Demonstration Project. The system includes a wind turbine (WT), photovoltaic (PV)
and combined heat and power (CHP), a gas boiler (GB), a heat pump (HP), electrolytics (EL),
a hydrogen fuel generator (HFG), an electric cooler (EC), an absorption cooler (AC), and
electric storage (ES), heat storage (HS), cold storage (CS), and HES, which are categorized
as four types of energy storage equipment.
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Figure 1. Schematic of HIES.

When the system is in normal operation, CHP, GB, and HP supply the heat to meet the
heat load demand of the park; EC and AC supply the cold to meet the cold load demand
of the park; the distributed WT and PV and the external grid supply power to the park
to satisfy the electric demand. The hydrogen production equipment of the system can
generate hydrogen to be stored and sold to the outside for revenue when the wind and
solar in the park are abundant and the electricity price is low, which reduces the abandoned
wind and solar energy to realize improved energy consumption. In contrast, the HFG can
supply power to the system to reduce the total system cost and carbon emissions when the
electricity price is high.

2.2. Mathematical Model of Main Equipment
2.2.1. Electrolytic Water to Hydrogen

An alkaline EL is selected as the hydrogen production unit in this paper. The rela-
tionship between the EL input electrical power and the hydrogen production output is as
follows [37]:

mP2H
t = ηH MH2 PP2H

t /UzF (1)
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where mP2H
t is the mass flow rate of hydrogen output from the electrolysis of water to

hydrogen at time t; ηH is the total efficiency of electric hydrogen production; MH2 is the
molar mass of hydrogen; PP2H

t is the AC power used in the EL; U is the EL voltage; z is the
number of charges transferred by the electrolysis reaction; F is the Faraday constant.

2.2.2. Hydrogen Storage Tank

Based on the variation in the total mass of hydrogen in the storage tank, the storage
tank is modeled as follows [37]:

Mstor
t = Mstor

t−∆t + ∆t
(

mcha
t−∆t − mdis

t−∆t

)
(2)

where Mstor
t is the total mass of hydrogen in the hydrogen storage tank at time t; mcha

t−∆t and
mdis

t−∆t are the input and output masses of the hydrogen storage tank at time t − ∆t; ∆t is
the time step.

2.2.3. Hydrogen-Fueled Generator

The great potential of the HFG to generate electricity by burning hydrogen has been
demonstrated in the literature [37]. Therefore, the HFG is also utilized in this work to
generate electricity by burning hydrogen. Based on the relationship between the input
hydrogen and the output electrical energy, the following model is obtained [37]:

PHFG
t = ηHFGmHFG

t HHHV/ρ0 (3)

where PHFG
t is the electrical power output of the hydrogen generator at time t; ηHFG is the

energy conversion efficiency of the hydrogen generator; mHFG
t is the mass of hydrogen

input at time t; HHHV is the calorific value of hydrogen; ρ0 is the density of hydrogen in
the standard state.

2.2.4. Combined Heat and Power

Working with the following expressions, the CHP converts the natural gas into electri-
cal and thermal energy as the main driving device:{

PCHP
t = ηc

CHPδgVCHP
t

HCHP
t = ηh

CHPδgVCHP
t

(4)

where PCHP
t and HCHP

t are the electric and thermal energy output from the CHP at moment
t;ηc

CHP and ηh
CHP are the electric and thermal energy conversion efficiency of the CHP;

δg is the natural gas calorific value; VCHP
t is the natural gas consumption of the CHP

at moment t.

2.2.5. Gas Boiler

The GB is a device that consumes natural gas for heating with the following working
expression:

HGB
t = ηGBδgVGB

t (5)

where HGB
t is the thermal power output of the GB at moment t; ηGB is the thermal energy

conversion efficiency of the GB; VGB
t is the amount of natural gas consumed by the GB at

moment t.

2.2.6. Ground Source Heat Pump

The working expression for the electrical–thermal conversion of the HP is as follows:

HHP
t = ηHPPHP

t (6)
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where HHP
t is the heat energy output from the heat pump at moment t; ηHP is the electrical

and thermal conversion efficiency of the HP; PHP
t is the electrical power input to the HP

from the HIES at moment t.

2.2.7. Electric Cooler

The working expression of the EC for electric cooling conversion is as follows:

CEC
t = ηECPEC

t (7)

where CEC
t is the cold energy output from the EC at moment t; ηEC is the electric cooling

conversion efficiency of the EC; PEC
t is the electrical power input to the EC from the HIES

at moment t.

2.2.8. Absorption Cooler

The working expression for the heat-to-cold conversion of the AC is as follows:

CAC
t = ηACPAC

t (8)

where CAC
t is the cold energy output from the AC at moment t; ηAC is the AC heat–cold

conversion efficiency; PAC
t is the thermal power input to the AC from the HIES at moment t.

3. HIES Multi-Objective Deterministic Optimization Model

The multi-objective deterministic model is presented in this section, where the two
objectives are the lowest total system cost and the lowest carbon emissions.

3.1. Objective Function
3.1.1. Objective Function 1: Total System Cost

f1 =
T
∑
t
(Cgas

t + Cele
t + CDR

t + Cope
t + Cwp

t − CH2
t )

Cgas
t = PgasVgas

t

Cele
t = Pbuy

t Pbuy,ele
t − Psell

t Psell,ele
t

CDR
t = Ve,cutPe,cut

t + Vh,cutPh,cut
t + Vc,cutPc,cut

t

Cope
t = ∑ λkope pk

t

∀k ∈ {CHP, GB, HP, EC, AC, EL, HFG, ES, HS, CS}
CH2

t = λH2 PH2
t

Cwp
t = awPW

t + bpPP
t

(9)

where f1 is objective function 1; Cgas
t is the purchase cost of the natural gas; Cele

t is the
purchase cost of the electric energy; CDR

t is the demand response compensation cost; Cope
t is

the equipment operation and maintenance cost; Cwp
t is the abandonment cost of the wind

and solar; CH2
t is the revenue of the hydrogen use; Pgas is the natural gas price; Vgas

t is
the natural gas amount consumed by the CHP and GB at all times; Pbuy

t and Psell
t are the

electricity purchasing and selling prices; Pbuy,ele
t and Psell,ele

t are the purchased and sold
power of the system at time t; Ve,cut, Vh,cut and Vc,cut are the price compensation coefficients
for the curtailed electric energy; Pe,cut

t , Ph,cut
t and Pc,cut

t are the electricity, thermal, and
cooling loads of the system; λkope is the unit operation and maintenance cost coefficient of
the k type of equipment; pk

t is the power of the k type of equipment at time t; λH2 is the
selling price of hydrogen; PH2

t is the amount of hydrogen used at time t; aw and bp are the
penalty coefficients for the abandoned wind and solar; PW

t and PP
t are the abandoned wind

and solar power at time t.
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3.1.2. Objective Function 2: Carbon Emissions

f2 =
T

∑
t
(αe

t Pbuy,ele
t + β

gas
t Vgas

t ) (10)

where f2 is objective function 2, αe is the carbon emissions factor of purchased electricity,
and βgas is the carbon emissions factor of purchased natural gas.

3.2. Binding Conditions
3.2.1. Major Equipment Constraints

The HIES is required to meet the following constraints in addition to the operating
conditions of the main equipment in Section 2.2:

PCHP
min ≤ PCHP

t ≤ PCHP
max

HCHP
min ≤ HCHP

t ≤ HCHP
max

HGB
min ≤ HGB

t ≤ HGB
max

HHP
min ≤ HHP

t ≤ HHP
max

CEC
min ≤ CEC

t ≤ CEC
max

CAC
min ≤ CAC

t ≤ CAC
max

PP2H
min ≤ PP2H

t ≤ PP2H
max

PHFG
min ≤ PHFG

t ≤ PHFG
max

Mstor
min ≤ Mstor

t ≤ Mstor
max

0 ≤ mcha
t ≤ mcha

max, 0 ≤ mdis
t ≤ mdis

max

Mstor
1 ≥ Mstor

t,1

(11)

where PCHP
max and PCHP

min are the upper and lower limits of the CHP power generation; HCHP
max

and HCHP
min are the upper and lower limits of the CHP heating power; HGB

max and HGB
min are the

upper and lower limits of the GB heating power; HHP
max and HHP

min are the upper and lower
limits of the HP heat output; CEC

max and CEC
min are the upper and lower limits of the EC cold

energy output; CAC
max and CAC

min are the upper and lower limits of the AC cold energy output;
PP2H

max and PP2H
min are the upper and lower limits of the EL hydrogen production power;

PHFG
max and PHFG

min are the upper and lower limits of the HFG power; Mstor
min and Mstor

max are
the upper and lower limits of the hydrogen storage tank capacity; mcha

max and mdis
max are the

upper and lower limits of hydrogen filling and discharging; mcha
t and mdis

t are the hydrogen
storage tank filling rate and hydrogen storage tank discharging rate; Mstor

1 is the hydrogen
storage quantity initially; Mstor

t,1 is the minimum hydrogen demand at the initial moment of
each day.

3.2.2. Energy Storage Constraints

The electric, thermal, and cold energy storage devices are operated similarly; the
three types of energy storage devices are modeled with unified energy storage constraints
as follows: 

SkS
t =

(
1 − ΓkS

)
SkS

t−1 +

(
ηkS

chaPkS,cha
t − PkS,dis

t
ηkS

dis

)
∆t

ΓkS
minMkS ≤ SES

t ≤ ΓkS
maxMkS

0 ≤ PkS,cha
t ≤ BkS,cha

t Mks
max

0 ≤ PkS,dis
t ≤ BkS,dis

t Mks
max

BkS,cha
t + BkS,dis

t ≤ 1

Mks = βks Mks
max

(12)
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where SkS
t is the kth class energy storage energy state at time t; ΓkS is the energy loss co-

efficient of the kth class energy storage equipment; ηkS
cha and ηkS

dis are the kth class energy
storage equipment’s charging and discharging efficiency; ΓkS

min and ΓkS
max are the minimum

and maximum values of the proportion of the total capacity of the kth class energy storage
equipment’s energy state; PkS,cha

t and PkS,dis
t are the kth class energy storage equipment’s

charging and discharging power; MkS and Mks
max are the kth class energy storage equip-

ment’s capacity and maximum power; BkS,cha
t and BkS,dis

t are the auxiliary binary variables;
βks is the ratio of the energy storage capacity to the energy storage equipment power.

3.2.3. Demand Response Constraints

The HIES regulates the electric cooling and heating loads mainly by curtailment, and
the electric load demand response models are as follows:

Pe
t = Pe,0

t + Pe,cut
t

Pe,cut
t ≤ 0∣∣∣Pe,cut

t

∣∣∣ ≤ λe,cutPe,0
t

(13)

where Pe
t is the electrical load after the demand response; Pe,0

t is the original electrical
power demand of the HIES at time t; λe,cut is the proportionality factor of the electrical load
that can be cut. The cooling load and thermal load are modeled similarly to the electric
load demand response and are not repeated here.

3.2.4. Energy Balance Constraints

The energy balance constraints ignore the system uncertainty and are illustrated
as follows:

Pbuy
t + Pwt

t + Ppv
t +PCHP

t + PHFG
t + PES,dis

t = Pe
t + PP2H

t + PEC
t + PHP

t + PES,cha
t + Psell

t

HCHP
t + HGB

t + HHP
t + PHS,dis

t = Ph
t +HAC

t + PHS,cha
t

CAC
t + CEC

t +PCS,dis
t = Pc

t +PCS,cha
t

mP2H
t + mdis

t = mHRS
t + mHFG

t + mcha
t

(14)

where Pwt
t , Ppv

t , PES,cha
t , and PES,dis

t are the WT, PV, and ES charging power and the ES
discharging power; Ph

t , PHS,cha
t , and PHS,dis

t are the thermal load after the demand response,
the thermal storage charging power, and the thermal storage discharging power; Pc

t , PCS,cha
t ,

and PCS,dis
t are the cold load after the demand response, the CS charging power, and the CS

discharging power; mHRS
t is the hydrogen load.

4. Uncertainty Handling and Model Solving
4.1. Uncertainty Handling

Strong output uncertainty exists in the models described above. RO [38] is used to
deal with the uncertainty in the HIES, and the uncertainty parameters are represented
as follows:

sij ∈ [s̃ij − ŝij, s̃ij + ŝij] (15)

Among them, s̃ij =
1
2

(
sij + sij

)
ŝij =

1
2

(
sij − sij

) (16)

where sij and sij are the upper and lower limits of the uncertain parameters; Equation
(15) can also be simplified as sij ∈ [sij, sij], which is the uncertain parameters’ fluctuations
within the upper and lower limits.

Equation (15) considers the worst-case scenario for the uncertain parameters, which
makes the decisions too conservative and costly in terms of the system economics and environ-
mental protection. Therefore, the robustness coefficient Γ, Γ ∈ [0, |J|] needs to be introduced
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to address the decision conservativeness, where J is the set of all uncertain parameters. The
interval of uncertain parameters sij can be expressed as [̃sij − Γŝij, s̃ij + Γŝij].

Therefore, the uncertainty interval of the WT can be expressed as

pwt
t ∈ [ p̃wt

t − Γwt p̂wt
t , p̃wt

t + Γwt p̂wt
t ] (17)

Among them,  p̂wt
t = 1

2

(
pwt

t + pwt
t

)
p̃wt

t = 1
2

(
pwt

t − pwt
t

) (18)

where pwt
t and pwt

t
are the upper and lower limits of wind power; Γwt is the robust coefficient

of WT at time t; Γwt ∈ [
∣∣Jwt

∣∣], Jwt is the uncertain collection of the WT and wind power
with only one uncertainty source at time t. Therefore, the WT robustness factor is adjustable
within the range of [0, 1]. The PV, electrical load, thermal load, and cold load uncertainty
intervals are expressed similarly to the wind power and are not repeated here.

4.2. RO-Related Constraints

The RO method in the literature [38] is realized to handle the uncertainties in the
WT, PV, and electrical, thermal, and cooling loads. The RO model is derived exactly as
in the literature [38]. The introduced RO constraints and the energy balance constraints
considering RO are shown below:

PWT
t + Γwt

t εwt
t + κwt

t ≤ 1
2

(
Pwt

t + Pwt
t

)
pPV

t + Γ
pv

t ε
pv
t + κ

pv
t ≤ 1

2

(
ppv

t + ppv
t

)
PE

t − Γe
t εe

t − κe
t ≥ 1

2

(
Pe

t + Pe
t

)
PH

t − Γh
t εh

t − κh
t ≥ 1

2

(
Ph

t + Ph
t

)
PC

t − Γc
t εc

t − κc
t ≥ 1

2

(
Pc

t + Pc
t

)
εwt

t + κwt
t ≥ 1

2

(
Pwt

t − Pwt
t

)
πwt

t

ε
pv
t + κ

pv
t ≥ 1

2

(
Ppv

t − Ppv
t

)
π

pv
t

εe
t + κe

t ≥ 1
2

(
Pe

t − Pe
t

)
πe

t

εh
t + κh

t ≥ 1
2

(
Ph

t − Ph
t

)
πh

t

εc
t + κc

t ≥ 1
2

(
Pc

t − Pc
t

)
πc

t

πwt
t , π

pv
t , πe

t , πh
t , πc

t ≥ 1

εwt
t , ε

pv
t , εe

t, εh
t , εc

t, κwt
t , κ

pv
t , κe

t , κh
t , κc

t ≥ 0

(19)

where εwt
t , ε

pv
t , εe

t, εh
t , εc

t, κwt
t , κ

pv
t , κe

t , κh
t , κc

t , πwt
t , π

pv
t , πe

t , πh
t , and πc

t are all introduced as
robust auxiliary coefficients.

The WT and PV supply constraints and the energy balance constraints are as follows:

0≤ PWTe
t ≤ PWT

t

0 ≤ PPVe
t ≤ PPV

t

Pbuy
t + PWTe

t + PPVe
t +PCHP

t + PHFG
t + PES,dis

t = PE
t + PP2H

t + Psell
t + PHP

t + PES,cha
t + PEC

t

HCHP
t + HGB

t + HHP
t + PHS,dis

t = PH
t +HAC

t + PHS,cha
t

CAC
t + CEC

t +PCS,dis
t = PC

t +PCS,cha
t

(20)
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where PWT
t and PPV

t are the WT and PV output considering the uncertainty, respectively;
PWTe

t and PPVe
t are the actual power supply for the WT and PV; PE

t , PH
t , and PC

t are the
electric, thermal, and cooling loads considering the uncertainties.

4.3. Multi-Objective Model Solving

The purchases of electricity and natural gas are the main sources of carbon emissions
in this multi-objective system. Minimizing the carbon emissions requires continuously
reducing the purchased amount of electricity and natural gas. However, minimizing the
costs may require an appropriate increase in the purchases based on the optimal economy
principle. Obviously, the two objectives cannot be achieved concurrently and are in conflict
with each other. In order to realize a win–win situation without sacrificing economy or
environmental protection, this paper adopts the compromise planning method illustrated
in the literature [39] to solve the multi-objective model. The differences between the optimal
values of the two objective functions and the criterion value are calculated when deriving
the Pareto frontier solution. The optimal solution of the Pareto frontier solution is calculated
by the max–min fuzzy method. The additional constraints need to be considered when
solving the multi-objective functions through compromise planning [39]:

min f = φ

ω1 + ω2 = 1
φ ≥ ( f1 − f1,min)(ω1/ f1,min)

φ ≥ ( f2 − f2,min)(ω2/ f2,min)

(21)

where φ is the Chebyshev distance; f1 and f2 are the values calculated for each iteration
of objective function 1 and objective function 2, i.e., the criterion values; f1,min and f2,min
are the minimum values of objective function 1 and objective function 2; ω1 and ω2 are the
weight coefficients.

After solving the Pareto frontier solution, the two objective function values need to
be normalized to unify the function dimensions. Then, the optimal solution of the Pareto
frontier solution is found by using the max–min fuzzy method, which is described as
follows [39]:

un
k =


1, f n

k ≤ fk,min

fk,max− f n
k

fk,max− fk,min
, fk,min ≤ f n

k ≤ fk,max

0, f n
k ≥ fk,max

(22)

where un
k is the unit vector of the nth solution of the kth objective function; fk,min and fk,max

are the minimum and maximum values of the Pareto solution of the objective function. The
optimal solution is obtained by comparing the following equations [39]:{

un = min(un
1 , un

2 ); ∀n = 1, 2, . . . , N

umax = max(u1, u2, . . . , uN−1, uN)
(23)

where un is the minimum value of all solutions after unifying the values of the objective
function; the maximum value among them is umax, which is the optimal compromise
solution. The multi-objective model solving process is shown in Figure 2.

In Figure 2, these extreme values are obtained directly by calling CPLEX. Secondly,
it is necessary to initialize the iterations n, set the maximum number of iterations N, and
start the iterative calculation. Thirdly, one must determine whether the maximum number
of iterations is reached; if not, continue to iterate; otherwise, output the Pareto frontier
solution. Finally, the optimal solution is chosen by the max–min fuzzy method.
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Figure 2. Multi-objective model solving flow chart.

5. Case Studies
5.1. Case Condition Setting

Based on the Chongli Application Demonstration Project, the load and new energy
output prediction data in the park are shown in Figure 3. It can be seen from Figure 3
that the wind power resources are sufficient at night and the photovoltaic resources are
abundant during the daytime, and their complementarity allows the system to handle
the load better. In addition, the electro-thermal cooling load has different demands in
the time scale and space scale, and multi-energy complimentary can be realized by using
a multi-energy flow coupling mechanism. A small-scale hydrogen load is set in this paper
to reflect the economy of hydrogen storage, so that the system can generate income by
selling the hydrogen to the outside. The electricity price and natural gas price in the time-
sharing purchase from the external grid are shown in Table 2. The parameters related to
each piece of equipment in the system are shown in Table 3. The efficiency parameters of
the main equipment of the system are shown in Table 4. The parameters of the hydrogen
storage system are taken from the literature [40]. The operating parameters of the alkaline
EL are detailed in the literature [37]. The model is solved by calling CPLEX of MATLAB
with a dispatch cycle of 24 h.
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Table 2. Time share tariffs and natural gas prices.

Energy Type Time Period Price

Electricity purchase price (CNY/kWh)
23:00–06:00 0.4

07:00–09:00, 15:00–17:00, 21:00–22:00 0.8
10:00–14:00, 18:00–20:00 1.2

Price of electricity sold (CNY/kWh) Full day 0.35

Natural gas price (CNY/m3) Full day 2.7

Table 3. Parameters related to each HIES device.

Equipment Capacity (kW) Unit Operation and
Maintenance Cost (CNY/kWh) Lifespan (Year)

CHP 1000 0.06 30
GB 1000 0.004 20
HP 600 0.007 20
EC 300 0.009 15
AC 400 0.008 15
ES 500 0.005 10
HS 600 0.002 10
CS 600 0.001 10
EL 1000 0.022 20

HFG 1000 0.042 20

Table 4. Efficiency parameters of critical equipment.

Parameters Value Parameters Value

ηH 0.75 ηGB 0.93
ηHFG 0.65 ηHP 4
ηc

CHP 0.3 ηEC 3.5
ηh

CHP 0.56 ηAC 0.7

5.2. Analysis of Multi-Objective Robust Optimization Results

In this section, the default scenery robustness coefficient and the load robustness
coefficient are described as Γwt = Γpv = 0.5, Γp = Γh = Γc = 0.05. Other values can be set
by the decision maker according to the risk preferences of the actual scheduling situation.
The results of the HIES multi-objective robust optimization are shown in Figures 4–7.

Energies 2024, 17, x FOR PEER REVIEW 14 of 22 
 

 

 

Figure 4. Electrical power optimization results. 

 

Figure 5. Thermal power optimization results. 

 

Figure 6. Cold power optimization results. 

 

Figure 7. Hydrogen energy balance results. 

Figure 4. Electrical power optimization results.



Energies 2024, 17, 1132 13 of 20

Energies 2024, 17, x FOR PEER REVIEW 14 of 22 
 

 

 

Figure 4. Electrical power optimization results. 

 

Figure 5. Thermal power optimization results. 

 

Figure 6. Cold power optimization results. 

 

Figure 7. Hydrogen energy balance results. 

Figure 5. Thermal power optimization results.

Energies 2024, 17, x FOR PEER REVIEW 14 of 22 
 

 

 

Figure 4. Electrical power optimization results. 

 

Figure 5. Thermal power optimization results. 

 

Figure 6. Cold power optimization results. 

 

Figure 7. Hydrogen energy balance results. 

Figure 6. Cold power optimization results.

Energies 2024, 17, x FOR PEER REVIEW 14 of 22 
 

 

 

Figure 4. Electrical power optimization results. 

 

Figure 5. Thermal power optimization results. 

 

Figure 6. Cold power optimization results. 

 

Figure 7. Hydrogen energy balance results. Figure 7. Hydrogen energy balance results.

Comparing Figures 4 and 7, it can be seen that during 23:00 p.m.–6:00 a.m., the
renewable energy is sufficient, the load demand is low, and the electricity has a low-valley
price. The surplus electricity can be converted into hydrogen storage by the EL, which
reduces the abandoned wind and solar energy to realize peak shaving and valley filling. The
presence of the PV and WT allows the system to better meet the demand of the multi-load
system; however, it will increase the solution uncertainty. During 10:00 a.m.–14:00 a.m. and
18:00 a.m.–20:00 a.m., the electricity purchase price is high and the cogeneration unit will
cause environmental pollution, which is not conducive to the park’s low-carbon economic
operation. Therefore, the HGF is operated to meet the power load demand during these
hours to reduce the operational cost and the system’s carbon emissions.

As can be seen in Figure 5, the electricity prices at night are lower and the off-grid
purchase carbon emissions factor is lower than that of natural gas. Therefore, the heat is
mainly supplied by the HP at night to reduce the system’s operational cost and carbon
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emissions. When the electricity price is at its peak during the daytime, the HP output is
reduced and the HIES system is mainly heated by the CHP to minimize the operational
cost. Meanwhile, the excess heat is absorbed by thermal storage to avoid energy waste
during the period of 23:00 p.m.–24:00 p.m.

As can be seen from Figure 6, cold energy is provided by the EC at night as the
electricity price is low, and part of the cooling load demand is supplied by absorbing waste
heat during the daytime. This shows that each energy source of the HIES is fully utilized
and its utilization rate is improved.

In Figure 7, hydrogen energy is not only used to generate electricity for the HGF when
the electricity price is high, but also supplies hydrogen to the hydrogen load. Since the
income from selling hydrogen is included in the total cost of the system in this paper, the
flexible application of hydrogen energy reduces the total system cost significantly.

5.3. Analysis of Multi-Objective Solutions

The multi-objective solutions considering compromise planning are shown in Figure 8
and Table 5, and the global optimal solutions yield 12,666.53 CNY and 4530.45 kg, which
are the optimal system operation cost and carbon emissions.
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Table 5. Multi-objective Pareto solution under compromise planning.

n ω1 ω2 un
1 un

2 f1 (CNY) f2 (kg)

1 0 1 0.8771 1 19,641.58 4280.12
2 0.05 0.95 0.9293 0.9947 16,240.96 4368.47
3 0.1 0.9 0.9492 0.9920 14,948.75 4414.54
4 0.15 0.85 0.9612 0.9903 14,167.38 4443.29
5 0.2 0.8 0.9694 0.9891 13,634.59 4462.57
6 0.25 0.75 0.9754 0.9883 13,245.59 4475.93
7 0.3 0.7 0.9796 0.9876 12,968.09 4488.33
8 0.35 0.65 0.9821 0.9863 12,805.06 4509.61
9 0.4 0.6 0.9843 0.9851 12,666.53 4530.45

10 0.45 0.55 0.9862 0.9839 12,542.14 4550.07
11 0.5 0.5 0.9876 0.9824 12,446.63 4575.09
12 0.55 0.45 0.9889 0.9809 12,359.52 4601.64
13 0.6 0.4 0.9903 0.9793 12,273.89 4627.64
14 0.65 0.35 0.9914 0.9772 12,204.21 4662.96
15 0.7 0.3 0.9924 0.9747 12,139.22 4705.54
16 0.75 0.25 0.9935 0.9721 12,068.51 4749.29
17 0.8 0.2 0.9946 0.9690 11,996.72 4800.34
18 0.85 0.15 0.9957 0.9657 11,919.86 4857.23
19 0.9 0.1 0.9970 0.9615 11,838.28 4927.21
20 0.95 0.05 0.9984 0.9576 11,744.72 4993.36
21 1 0 0.9999 0.9511 11,694.33 5040.12
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By observing the positions of the global optimal solutions in Figure 8 and Table 5, it can
be seen that compromise planning is able to achieve a reasonable trade-off between the total
system cost and carbon emissions and achieve a balance point between the two objectives.

In order to further verify the superiority of the multi-objective solution algorithm, all
the robustness coefficients are set to 0, and then the two objectives are optimized by using
the NSGA-II algorithm and the compromise planning method. The Pareto solution set
resulting from these two algorithms is shown in Figure 9.
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Figure 9. Distribution of Pareto solution set obtained by two optimal methods.

Compared with the NSGA II algorithm, the solution spacing in Figure 9 given by
compromise planning is more uniform, and a reasonable trade-off is directly made between
the cost and carbon emissions. However, its ability to approach the true Pareto front
is weak.

5.4. Comparison of Different Uncertainty Optimization Methods

The multi-objective deterministic optimization, multi-objective RO, and multi-objective
SO are used to optimize the HIES. The robustness coefficients in the multi-objective RO are
the same as in the previous section; in the deterministic optimization, the predicted values
are used as data inputs; in the multi-objective SO, the source–load prediction error obeys
a normal distribution, with the predicted value as the mean and 0.2 times this value as the
standard deviation. The solution results of the different optimization methods are shown
in Table 6.

Table 6. Results comparison of different methods.

Optimization Methods Total System Cost
(CNY)

Carbon Emission
(kg)

Time
(s)

Deterministic optimization 11,539.24 4146.48 35.21
Multi-objective SO 12,181.00 4357.95 390.34
Multi-objective RO 12,666.53 4530.45 36.55

As can be seen from Table 6, compared to the deterministic optimization, the total
system cost and carbon emissions of the multi-objective SO increase by 5.56% and 5.10%,
while those of the multi-objective RO increase by 9.77% and 9.26%. In comparison, the
multi-objective RO increases the total system cost and carbon emissions by 3.99% and 3.95%
over those of the multi-objective SO. This is due to the fact that the multi-objective RO’s
decisions are more conservative, resulting in a relatively higher total system cost and carbon
emissions, but, at the same time, it is more resilient to uncertain risks. In addition, in terms
of solution time, the multi-objective SO takes the longest time when considering multiple
scenarios, and the multi-objective RO is comparable to the deterministic optimization.
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5.5. Effect of Different Robustness Factors on Multi-Objective Solutions

In this section, the source–load robustness factor is varied from 0 to 100% with 20%
steps to evaluate the multi-objective solution’s effect with different robustness factors. The
Pareto frontier solutions and the optimal solutions for different degrees of robustness are
shown in Figure 10.
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Figure 10 shows that the solutions of the two objective functions for the same system
increase with the growth of the robustness factor correspondingly, while the Pareto front
solution domain shrinks. The robustness coefficient’s increase leads to the conservativeness
of the system’s decision making, which improves the system’s robustness but, at the same
time, causes a higher total system cost and carbon emissions.

5.6. Effect of Different Robustness Factors on the Optimal Operation of the System

The five uncertainty factors are combined with 18 uncertain scenarios and 1 determin-
istic scenario to analyze the impact of different robustness factors, and the combination
results are shown in Table 7. Among them, Scenario 1 does not consider the uncertainty,
Scenarios 2 to 7 only consider the new energy output uncertainty, Scenarios 8 to 13 only
consider the electric heating and cooling load uncertainty, and Scenarios 14 to 19 consider
the source–load uncertainty. The operation optimization results of each scenario are shown
in Table 8 and Figure 11.

Table 7. Each scenario set up by category.

Scenario Coefficient of Robustness Scenario Coefficient of Robustness

1 Certainty 11 Γp = Γh = Γh = 0.6
2 Γwt = Γpv = 0 12 Γp = Γh = Γh = 0.8
3 Γwt = Γpv = 0.2 13 Γp = Γh = Γh = 1
4 Γwt = Γpv = 0.4 14 Γwt = Γpv = Γp = Γh = Γc = 0
5 Γwt = Γpv = 0.6 15 Γwt = Γpv = Γp = Γh = Γc = 0.2
6 Γwt = Γpv = 0.8 16 Γwt = Γpv = Γp = Γh = Γc = 0.4
7 Γwt = Γpv = 1 17 Γwt = Γpv = Γp = Γh = Γc = 0.6
8 Γp = Γh = Γh = 0 18 Γwt = Γpv = Γp = Γh = Γc = 0.8
9 Γp = Γh = Γh = 0.2 19 Γwt = Γpv = Γp = Γh = Γc = 1
10 Γp = Γh = Γh = 0.4
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Table 8. Scheduling results for various scenarios.

Scenario Total System
Cost (CNY)

Carbon
Emissions (kg) Scenario Total System

Cost (CNY)
Carbon

Emissions (kg)

1 11,539.24 4146.48 11 14,492.35 5053.86
2 11,539.24 4146.48 12 15,350.51 5379.55
3 11,887.88 4269.00 13 16,357.64 5687.24
4 12,241.56 4392.78 14 11,539.24 4146.48
5 12,593.44 4516.13 15 12,876.22 4571.42
6 12,937.43 4637.57 16 14,209.94 4997.08
7 13,294.34 4762.21 17 15,433.65 5449.32
8 11,539.24 4146.48 18 16,928.91 5860.91
9 12,527.69 4448.81 19 18,186.84 6317.29
10 13,512.07 4751.44
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Figure 11. Comparison of different scenarios.

Comparing Scenarios 1, 2, 8, and 14 in Table 8, when the robustness coefficients of all
four scenarios are zero, the total system cost and carbon emissions are the same, and the
model degenerates to become deterministic. This verifies the generality and correctness of
the multi-objective robust optimization model.

Scenarios 2 to 7, Scenarios 8 to 13, and Scenarios 14 to 19 show that the total system cost
and carbon emissions increase with the robustness factor. This indicates that the uncertainty
set increases with the robustness factor accordingly, leading to more conservative decisions.

Comparing Scenarios 2–7 with Scenarios 8–13 reveals that the latter have a greater
increase in the total system cost and carbon emissions than the former, with the same
robustness factor growth. This illustrates that the energy production can be transferred
directly to the load side with lower losses and the load side uncertainty impacts the HIES
operation greatly.

By comparing Scenarios 7, 13, and 19, it can be seen that Scenario 19 has the largest
operating cost and carbon emissions when the robustness coefficient of the three scenarios
is 1, which is the most robust case. This shows that the source–load uncertainty, when
considered comprehensively, will influence the system’s operation significantly.

Therefore, decision makers can adjust the robustness coefficient individually in the
actual scheduling process according to the amount of acceptable risk, so as to make
reasonable decisions.

Figure 12 and Table 9 show the unit power adjustments of each time period and the
total values with different robustness coefficients for Scenarios 15–19 in Table 7. The total
adjustment refers to the sum of the power purchased, the CHP power, and the GB power
increased by the uncertainty of the source charge over the deterministic model for 24 h.
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Table 9. Total adjustment of unit output with different robustness factors.

Scenario 15 16 17 18 19

Adjusted total amount (kW) 2124 3656 5067 6684 7869

The system output increases to different degrees at each time in Figure 12. This in-
dicates that the difference between the load power (electric, thermal, and cold) and the
source output (WT and PV) fluctuates upwards. Therefore, the power purchase, CHP, and
GB all need to increase in output in order to maintain the energy balance. In addition,
Table 9 and Figure 12 reveal that the total power increases to 2124 kW, 3656 kW, 5067 kW,
6684 kW, and 7869 kW when the robustness coefficients are 0.2, 0.4, 0.6, 0.8, and 1, respec-
tively, which indicates that the larger the robustness coefficient, the greater the system
uncertainty, the more conservative the decisions, and the larger the total power.

6. Conclusions and Future Work
6.1. Conclusions

An integrated energy system containing hydrogen storage is proposed based on the
Chongli Large-Scale Wind–Solar Complementary Coupled Hydrogen Production System
Application Demonstration Project. Considering the source–load uncertainty of the system,
multi-objective optimization is combined with RO to establish the HIES multi-objective
robust optimization model, and the proposed method is verified by practical data. The
results show the following.

(1) The HIES multi-objective robust optimization model can reduce the wind and solar
abandonment significantly, decrease the purchased amount of electricity and gas in
the park, restrain the system’s operational cost and carbon emissions, and improve
the utilization rate of each energy source effectively.

(2) The compromise planning method achieves a reasonable balance between the two
objectives of total system cost and carbon emissions, to realize a win–win situation be-
tween both objectives, where their optimal solutions are 12,666.53 CNY and 4530.45 kg.
Compared with NSGA-II, compromise programming has a more uniform solution set
but is less capable of approaching the true Pareto front, which is one of its limitations.

(3) Compared with the multi-objective SO, the multi-objective RO has a faster solution
speed and better robustness. However, its total system cost and carbon emissions
increase by 3.99% and 3.95%, which is a minor limitation. In addition, the decision
maker can adjust the robustness coefficients in real scheduling situations to reduce
the decision-making conservativeness and overcome the strong conservativeness of
the traditional RO.
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6.2. Future Work

There are still some considerations for further study.
The HIES multi-objective robust optimization model developed in this paper pro-

motes the development of a low-carbon economy. However, RO is used to deal with the
uncertainty of the HIES, with high solving efficiency, but it may also have resulted in overly
conservative decision making. Therefore, DRO will be introduced to balance the robustness
and economy in the future.
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